Direct link to my CV and list of research talks
Current Research Communities, Collaborations, and Projects:

 In a joint project with Laura Cladek at UCLA and Blair Davey at CUNY, we recently obtained a variant of the classic Buffon needle problem, in which needles (infinite lines) are replaced with unit circles. The Buffon needle problem can be viewed as a quantitative version of the qualitative BesicovitchFederer projection theorem (which relates the dimension of a subset of the plane to the measure of its orthogonal projections onto lines through the origin). This is a continuation of my work with K. Simon in which we extend the BesicovtichFederer projection theorem beyond the setting of orthogonal projections. Our first paper on this topic has appeared on the arXiv and will appear in the Indiana University Math Journal. (For more on this topic, see [NVP]; I wrote a short summary of this topic, along with slides, for a summer school organized by C. Thiele).
 In collaboration with Kyle Hambrook at San Jose State, we are investigating the behavior of the Fourier transform of measures supported on sums and products of sets in Euclidean space. The first paper from this joint research program is available on the arXiv and will appear in the Proceedings of the AMS.
 In collaboration with Karoly Simon at Budapest University, we are building a research program on investigating the dimension, measure, and interior of large unions of circles; our work has applications to a number of geometric problems, including the study of distance sets (see [1], [2]). A theme throughout our work is the idea that projection and Fourier information on a set can be used to retrieve structural and topological information. In collaboration with A. Iosevich, we move beyond questions about spheres and sum sets to consider sets arising as the support of generalized Radon transform operators satisfying nonvanishing curvature conditions.
 I am working with Tyler Bongers on obtaining geometric bounds for the Favard curve length. The Favard length measures the size of a set, and is closely related to metric and geometric properties of the set such as rectifiability, Hausdorff dimension, and analytic capacity. Additionally, we are interested in prescribed or reverse projection problems for transversal families of maps.
 In a joint work with my PhD student, we are investigating lattice point counting problems in the intersection of Fourier analysis and number theory.
Published Research and preprints:


Energy techniques for nonlinear projections and Favard curve length, (with Tyler Bongers), (arXiv:2105.01708)

A quantitative version of the Besicovitch projection theorem via multiscale analysis, (with Blair Davey), ( arXiv:0706.2646)

Finite Point Configurations and the Regular Value Theorem in a Fractal setting, (with Yumeng Ou), (to appear in Indiana University Mathematics Journal)(2020).
 Upper and lower bounds on the rate of decay of the Favard curve length for the Cantor fourcorner set , (with L. Cladek, B. Davey), (to appear in Indiana University Mathematics Journal) (2021)



On kpoint Configurations with Nonempty Interior, (with Allan Greenleaf, Alex Iosevich), (to appear in Mathematika) (2021).

Configuration Sets with Nonempty Interior, (with A. Greenleaf, A. Iosevich) (The Journal of Geometric Analysis) (2019)


 On the Fourier dimension of Sums and Products of subsets of Euclidean Space, (with K. Hambrook) (to appear in Proceedings of the AMS) (2019)
 Finite trees inside thin subsets of R^d, (with A. Iosevich), Modern methods in operator theory and harmonic analysis, 5156, Springer Proc. Math. Stat., 291, Springer, Cham (2019)
 Pinned geometric configurations in Euclidean space and Riemannian Manifolds, (with A. Iosevich, and I. UriarteTuero), to appear in Journal d’Analyse Math’ematique (2019).
 Interior of Sums of Planar sets and Curves, (with K. Simon) (Cambridge Math. Society) (2018)
 Dimension and Measure of Sums of Planar sets and Curves, (with K. Simon) (arxiv) (2017)
 Maximal operators: scales, curvature, and the fractal dimension , (with A. Iosevich, E. Sawyer, and I. UriarteTuero), Anal Math (2018).
 Finite chains inside thin subsets of Euclidean space, (with M. Bennett, A. Iosevich), Analysis and PDE, (2016).
 Intersections of sets and Fourier analysis , (with S. Eswarathasan and A. Iosevich),Journal d’Analyse Mathematique, (2016).
 The lattice point counting problem on the Heisenberg groups, (with R. Garg, A. Nevo), Annales de l’Institut Fourier, (2015).
 Fourier integral operators, fractal sets, and the regular value theorem , (with S. Eswarathasan and A. Iosevich), Advances in Mathematics, volume 228, pages 23852402 (2013)
 On the MattilaSjolin Theorem for distance sets , (with A. Iosevich and M. Mourgoglou), Annales Academia¦ Scientiarum Fennica¦ Mathematica, Volume 37, 557 – 562, (2012).
 Lattice points close to families of surfaces, nonisotropic dilations and regularity of generalized Radon transforms, (with A. Iosevich), New York Journal of Mathematics, 17, 119, (2011).
Ph.D. thesis:

 Applications of generalized Radon transforms to problems in harmonic analysis, geometric measure, and analytic number theory, Thesis work for Ph.D. in Mathematics, University of Rochester; Advisor: Alex Iosevich, (2012).