DOI: 10.1112/mtk.12168

RESEARCH ARTICLE

Mathematika

Dimension and measure of sums of planar sets and curves

Károly Simon¹ | Krystal Taylor²

¹Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary

²Department of Mathematics, Ohio State University, Columbus, Ohio, USA

Correspondence

Krystal Taylor, Department of Mathematics, Ohio State University, 231 West 18th Avenue, Columbus, OH 43210, USA.

Email: taylor.2952@osu.edu

Funding information

MRI at the Ohio State; MTA-BME Stochastics Research Group, Grant/Award Number: OTKA 123782; Simons Foundation, Grant/Award Number: 523555; ICERM: this work came out of a collaboration initiated at ICERM at Brown University in Rhode Island

Abstract

Considerable attention has been given to the study of the arithmetic sum of two planar sets. We focus on understanding the measure and dimension of $A + \Gamma := \{a + v : a \in A, v \in \Gamma\}$ when $A \subset \mathbb{R}^2$ and Γ is a piecewise C^2 curve. Assuming Γ has non-vanishing curvature, we verify that:

- (a): if $\dim_H A \leq 1$, then $\dim_H (A + \Gamma) = \dim_H A + 1$;
- (b): if $\dim_H A > 1$, then $\mathcal{L}_2(A + \Gamma) > 0$;
- (c): if $\dim_H A = 1$ and $\mathcal{H}^1(A) < \infty$, then $\mathcal{L}_2(A + \Gamma) = 0$ if and only if A is an irregular (purely unrectifiable) 1-set.

In this article, we develop an approach using nonlinear projection theory which gives new proofs of (a) and (b) and the first proof of (c). Item (c) has a number of consequences: if a circle is thrown randomly on the plane, it will almost surely not intersect the four corner Cantor set. Moreover, the pinned distance set of an irregular 1-set has 1-dimensional Lebesgue measure equal to zero at almost every pin $t \in \mathbb{R}^2$.

MSC 2020

28A75 (primary), 28A80, 42B10 (secondary)

