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Distance problems are incredibly simple to describe, and yet their study quickly
opens up a world of mathematical ideas and questions for further research. This makes
the study of distance problems an excellent entry point for students interested in start-
ing research in mathematics, as well as a launching point for experienced mathemati-
cians interested in learning more about the connections between combinatorics, num-
ber theory, harmonic analysis, and geometric measure theory. Dave Covert’s book,
The Finite Field Distance Problem, offers a well-written introduction to finite field
analogues of some classic Euclidean problems. Before diving into the details in the
setting of finite fields, we consider the classic Erdős distance problem.

This infamous problem inquires about the minimal number of distances generated
by n points in the plane. The aim here is to arrange points in such a way as to maximize
repeated distances and, in turn, minimize distinct distances. For example, if you were
to draw three points at random on a sheet of paper and to record the distances between
them, chances are that you would end up with three distinct values. It is possible, how-
ever, to choose three points in such a way that one records only one value; namely, take
the vertices of an equilateral triangle. More generally, if f (n) denotes the minimum
number of distinct distances generated by n points in the plane, then f (4) = 2 (con-
sider the vertices of a square), f (5) = 2 (consider the vertices of a regular pentagon),
and so on. However, as one starts to try examples it becomes clear that the complexity
of computing f (n) increases rapidly even for small values of n. The Erdős distance
conjecture, which was solved up to a log factor by Guth and Katz in [12], states that
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f (n) = �(n/
√

log n). As we will see, one can ask variants of this distance problem
in both a continuous setting and in finite fields, many of which remain open.

A related problem, and one of the leading open questions in discrete geometry, is
that of the Erdős unit-distance problem. Among sets of n points in the plane, it asks
for the maximal number of pairs of points at a distance 1 apart. More formally, define

g(n) = max
E⊂R2, |E|=n

|{(x, y) ∈ E × E : ‖x − y‖ = 1}|,

where | · | is used to denote cardinality. Despite many years of effort, the best upper and
lower bounds on g(n) are still very far apart. In 1946, Erdős constructed an example
of a configuration of n points generating n1+c/ log log n distances for some constant c

[5]. Over 75 years later, this remains the current best lower bound for g(n). The best
upper bound on g(n) known to date is due to Spencer, Szemeredi, and Trotter and uses
an interesting combinatorial proof based on incidences between points and circles. It
establishes that g(n) = O(n4/3) [18]. In summary, for some constants C, c > 0, we
have

n1+c/ log log n ≤ g(n) ≤ Cn4/3.

Further progress to close the gap between the upper and lower bounds would indeed
be an achievement and, at the moment, remains an open problem. Note that variants
of Erdős’ unit distance problem, including generalizations to higher dimensions and
analogues for chains of distances, have been investigated by a number of authors (see,
for instance, [8, 17] and the references therein).

Upper bounds for the Erdős unit-distance problem immediately yield lower bounds
for the Erdős (distinct) distance problem. The basic idea here is that if no single dis-
tance occurs too often, then many distinct distances are guaranteed. In particular, given
a set E consisting of n points in the plane, define the distance set of E by

�(E) = {‖x − y‖ : x, y ∈ E}.
Partitioning the pairs of points in E × E according to the distance between them, we
can write

E × E =
⋃

t∈�(E)

{(x, y) ∈ E × E : ‖x − y‖ = t}. (1)

Since E × E consists of n2 points, it follows by considering the cardinality of both
sides of (1) that

n2 =
∑

t∈�(E)

|{(x, y) ∈ E × E : ‖x − y‖ = t}| .

If one were to prove, say, that the maximal number of pairs of points at a distance t

apart was bounded by Cn1+ε for some ε > 0, re-arranging the equation above would
immediately yield that

n1−ε ≤ C |�(E)| .
What happens if we ask similar questions, except instead of considering n points

we consider infinitely many points? For example, how large does a set need to be

696 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 129



to guarantee that it generates many distinct distances? While the words “large” and
“many” are open to interpretation, Hausdorff dimension and Lebesgue measure are
useful notions of size and structure. Roughly speaking, Lebesgue measure formalizes
our notions of length, area, and volume, while Hausdorff dimension extends the usual
understanding of dimension to a fractal setting.

With this in mind, the celebrated Falconer Distance Conjecture provides a version of
the Erdős distance problem in the infinite setting. It states that if E ⊂ R

d is a compact
set of Hausdorff dimension exceeding d

2 , then the distance set of E, defined by �(E) =
{‖x − y‖ : x, y ∈ E} has positive Lebesgue measure. Falconer proved that d+1

2 suffices
and provided a lattice-like example to demonstrate that d

2 is necessary [6]. His proof
for d+1

2 essentially comes down to recasting the ideas following the partition in (1)
above in a measure-theoretic sense. Since the appearance of Falconer’s result in 1985,
there has been a flurry of activity around this problem using a variety of techniques.
The cutting edge result for the Falconer conjecture in the plane utilizes the decoupling
theorem and is due to Guth, Iosevich, Ou, and Wang [11]. They prove that if E ⊂
R

2 is a compact set of Hausdorff dimension greater than 5/4, then the distance set,
�(E), has positive Lebesgue measure. Their paper also includes a summary of other
benchmark results along with a report on what is known in higher dimensions. There
is still much progress to be made, and it seems that new methods will be needed to
push the threshold to d

2 .

With a little creativity, we can find a multitude of further research questions inspired
by those considered thus far. In the spirit of the Erdős unit distance conjecture, rather
than considering pairs of points a fixed distance apart, one might investigate the exis-
tence of triples of points forming the vertices of an equilateral triangle. This is the
focus of Iosevich and Liu’s work [13], in which the authors find sufficient conditions
on a subset of Rd to guarantee that it contains the vertices of an equilateral triangle. It
is a very active area of research to investigate minimal size conditions required of a set
E which guarantee that E contains an affine copy of some fixed k point configuration.

In another direction, in addition to considering properties of the distance set, �(E),
such as its Lebesgue measure or interior, one may study properties of k-chains or paths
of distances within E:

�k(E) = {(|x1 − x2|, |x2 − x3|, . . . , |xk−1 − xk|) : xi ∈ E are distinct }.
In [1], the authors use Fourier analytic methods to show that if E ⊂ R

d with Haus-
dorff dimension greater than d+1

2 , then �k(E) has nonempty interior. A similar result,
in which the Hausdorff dimension is replaced by an alternative notion of size with
roots in dynamics known as Newhouse thickness, is attained in [15]. Further, in [16],
the authors find sufficient conditions on a set E ⊂ R

d to guarantee that the triangle-
distance set, {|x − y|, |y − z|, |x − z| : x, y, z ∈ E}, has nonempty interior. See also
[9] and [10], where the authors consider the interior of distance sets corresponding to
more general configuration sets.

In his new book, The Finite Field Distance Problem, David Covert explores prob-
lems analogous to those we have been discussing, but changes the setting to vector
spaces over finite fields. As Covert explains, “finite fields have long been used as an
uncomplicated setting in which one can play with Euclidean problems in an environ-
ment with fewer technical difficulties.” The core problem is this: Let q be a prime or
a power of an odd prime, and let Fd

q denote the d-dimensional vector space over the
finite field with q elements. For x = (x1, x2, . . . , xd) ∈ F

d
q , set ‖x‖ = x2

1 + x2
2 + · · ·

+ xd
d ∈ Fq . For different sets E ⊂ Fq , we are then interested in computing the size of

the distance set of E, defined by
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�(E) = {‖x − y‖ : x, y ∈ E} ⊂ Fq .

When d ≥ 4 is even, it is conjectured that there exists a constant C > 0 independent
of q so that, if E ⊂ F

d
q satisfies |E| ≥ Cqd/2, then �(E) = Fq . When d = 2, it is

conjectured that there exists a constant c ∈ (0, 1] independent of q so that, if E ⊂ F
2
q

satisfies |E| ≥ Cq, then |�(E)| ≥ cq.
One must be careful in the finite field setting, however, as seemingly paradoxi-

cal things can happen. For instance, an example found in Covert’s book points out
that if q ≡ 1 (mod 4), then there exists an element i ∈ Fq such that i2 = −1. Set-
ting E = {(x, ix) : x ∈ Fq}, we have constructed a set E ⊂F

2
q satisfying |E| = q and

�(E) ={0}. This example points out the necessity of the large constant C in the
assumption of the conjecture when d = 2, and demonstrates that the conjecture fails if
C = 1.

The finite fields distance problem is fairly new. While progress has been made, the
conjecture remains tantalizingly unproven. The first result on the finite fields distance
conjecture appeared in 2004 and is due to Bourgain, Katz, and Tao [2]. The best known
result to date is due to Iosevich and Rudnev [14], who show that |E| > 2q

d+1
2 suffices

to guarantee that |�(E)| = Fq . Covert’s book delves deeper into what is known, and
it includes a self-contained proof of Iosevich and Rudnev’s result along with a simpler
warm-up proof, examples, further developments, and a discussion of the intertwining
between classic results in the Euclidean setting and finite field analogues.

In addition to offering an in-depth discussion of these and other distance problems,
The Finite Field Distance Problem includes formulations of related important prob-
lems in combinatorics and number theory. Among my favorite parts of the book, the
final chapter opens up a discussion of the sum-product problem and the Kakeya con-
jecture with a focus on finite fields.

In brief, the sum-product conjecture says that either the sum or the product of a
finite set of integers is large. More formally, for A ⊂ Z, define the sum and product
sets respectively by

A + A = {a + b : a, b ∈ A} and A · A = {a · b : a, b ∈ A}.

Formally, the sum-product conjecture, posed by Erdős and Szemeredi [4], states that
if A ⊂ Z with |A| = k, then for all ε > 0,

max{|A + A|, |A · A|} ≥ c(ε)k2−ε .

While the original conjecture was posed over the integers, it is also believed to hold
over real numbers, where the conjecture states: For any set A ⊂ R,

max{|A + A|, |A · A|} ≥ |A|2−o(1).

As examples, if A = {a, a + d, . . . , a + (k − 1)d)} is an arithmetic progression of
length k, then it is known that |A · A| is of order k2 and it is not hard to see that
|A + A| = 2k − 1. On the other hand, if A = {a, ar, ar2, . . . , ark−1} is a geometric
progression, then |A · A| = 2k − 1, while |A + A| = (

k+1
2

)
. In either example, either

the sum or product is large. Through an unexpectedly simple proof utilizing number
theory and incidence geometry, Elekes [3] proved that if A ⊂ R with |A| = k, then
|A + A||A · A| 	 k5/2, from which it follows that max{|A + A|, |A · A|} 	 k5/4. His
proof makes clever use of the work of Szemeredi and Trotter, mentioned above, on

698 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 129



the number of incidences between points and lines. Further improvements on the sum-
product conjecture have relied on incidence theory ever since. As discussed in Covert’s
book, the sum-product conjecture in finite fields possesses some idiosyncrasies not
present in the Euclidean setting. For instance, if A ⊂ Fq is a subring, then A + A =
A · A = A. There are several methods, such as imposing conditions on the cardinality
of A, to avoid the situation when A is a subring.

The Kakeya needle problem is one of the outstanding problems in analysis and
geometric measure theory. It has roots in the study of Riemann integration and its
related constructions have served as important counterexamples in harmonic analysis.
The problem itself has an interesting history [7]. In 1919, Besicovitch constructed a
compact subset of R2 with planar Lebesgue measure zero containing a unit line seg-
ment in every direction. Such a set came to be known as a Besicovitch set. Around
the same time, Kakeya posed the problem of finding the area of the smallest con-
vex set in which a unit line segment could be rotated 180◦ using continuous motions.
It turned out that Besicovitch’s construction could be modified to resolve Kakeya’s
problem. This, however, was far from the end of the story. The Kakeya set conjecture
claims that a Besicovitch set in R

n must have Hausdorff dimension n. In 1971, Davies
affirmed the conjecture for n = 2. While some breakthrough progress has been made,
the conjecture remains open in dimensions 3 and higher. Interestingly, there is also a
finite field analogue of the Kakeya conjecture, which was posed by Wolff in 1999 and,
as discussed in Covert’s book, solved by Dvir in 2009. It is not clear, however, if the
techniques used for solving the conjecture in the finite field setting can be carried over
to the Euclidean case. Annotated details of Dvir’s proof can be found in Covert’s book,
along with the challenge to think more deeply about the connection between the finite
field and Euclidean versions of the Kakeya set conjecture.

Through a deeper investigation of the problems described above, The Finite Field
Distance Problem serves as an invitation to students and mathematicians alike inter-
ested in gaining a deeper understanding of distance problems in research mathematics.
While the playful narrative and self-contained background make the book accessible
to advanced undergraduates and graduate students, this book has plenty to offer pro-
fessional mathematicians. The book serves as an excellent reference of breakthroughs
in the field and includes many informative examples. Difficult material is made acces-
sible with intuitive descriptions, well-illustrated figures, and curated equations.

In my experience of working with graduate students and advanced undergraduates,
I’ve often heard the question of how exactly one gets started in the ocean of mathemat-
ical research. There can be a disconnect between what is learned in the classroom and
the process of posing questions and navigating new directions. While there is plenty
of general advice one can give, such as finding a mentor or reading seminal papers in a
chosen field, each mathematician finds their own path. To that end, Covert’s book pro-
vides an excellent aid in understanding the process of getting started in mathematical
research and serves as a guide to the intriguing world of distance problems.
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

A mathematical meeting and dinner in honor of Professor Charlotte Angas
Scott, on the completion of her thirty-seventh year as head of the Department of
Mathematics in Bryn Mawr College, was held April 18, 1922, by Professor Scott’s
former students. The exercises consisted of an address of welcome by President
M. Carey Thomas, an introductory address by Miss Marion Reilly, 1901, and
a lecture by Professor A. N. Whitehead, professor of applied mathematics in
the Imperial College of Science, South Kensington, on “Relativity and gravitation,
Group tensors and their application to the formulation of physical laws.” After the
lecture a tea was served at the deanery to about 200 guests.

At the dinner there were present former students, members of the American Math-
ematical Society, and members of the Bryn Mawr College faculty. [. . . ] In regard to
Professor Scott’s service to Bryn Mawr College, Professor Bascom said in part, “It
is this wisdom impartial, rational, creative, articulate, that Dr. Scott possesses in a
marked degree. This is the quality which makes her judgment the one sought on all
important faculty matters.”

—Excerpted from “Notes and News” (1922). 29(7): 275–280.
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