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Abstract

Recently, considerable attention has been given to the study of the arithmetic sum of two
planar sets. We focus on understanding the interior (A + �)◦, when � is a piecewise C2 curve
and A ⊂ R2. To begin, we give an example of a very large (full-measure, dense, Gδ) set A
such that

(
A + S1

)◦ = �, where S1 denotes the unit circle. This suggests that merely the
size of A does not guarantee that

(
A + S1

)◦
��. If, however, we assume that A is a kind

of generalised product of two reasonably large sets, then (A + �)◦ �� whenever � has
non-vanishing curvature. As a byproduct of our method, we prove that the pinned distance
set of C := Cγ × Cγ , γ � 1/3, pinned at any point of C has non-empty interior, where
Cγ (see (1·1)) is the middle 1 − 2γ Cantor set (including the usual middle-third Cantor set,
C1/3). Our proof for the middle-third Cantor set requires a separate method. We also prove
that C + S1 has non-empty interior.

1. Introduction

Given a set A ⊂ R2, we study the set of points which are at a distance 1 from at least
one of the elements of A, where “distance” refers to either the Euclidean distance or some
other natural distance on the plane. This set is A+ S1, where S1 is the unit circle in the given
distance. In fact, we consider piecewise C2 curves � in addition to S1, and we investigate
conditions which guarantee that the interior of A + � is not empty.

This paper is the continuation of our joint paper [19] where we determine the Hausdorff
dimension and the positivity of the Lebesgue measure of the sum set A + �. In particular,
a simple Fourier analytic proof shows that if A ⊂ R2 and dimH(A) > 1, then the measure
of A + � is positive, where � is an arbitrary C2 curve with at least one point of curvature.
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research was supported by the Mathematics Research Institute of the Ohio State University.
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120 KÁROLY SIMON AND KRYSTAL TAYLOR

Under the same hypotheses on �, it is shown in [19] that if dimH A � 1, then dimH(A+�) =
1 + dimH A. When dimH A = 1, we prove that L2(A + �) > 0 if and only if A contains a
regular (rectifiable) set of positive H1-measure. (See [19, theorem 2·1]).

When � = S1, the set A + � is the union of circles of radius one with centers in a set A.
The positivity of the Lebesgue measure of large unions of circles was also investigated by
Marstrand [8] and Wolff [24] (also see Oberlin [12] and Mitsis [11] for a higher dimensional
analogue). Let S(a, r) denote the circle in the plane with center a and radius r , and identify
the set of all such circles with S = R2 × (0, ∞). Given a collection of circles E ⊂ S
with dimension greater than 1, it is reasonable to hypothesize that since a given circle has
dimension 1, then the union over circles in E has dimension 2.

THEOREM 1·1 (Wolff d = 2). Given E ⊂ R2 × R+ satisfying dimH E > 1. Then

L2

⎛⎝ ⋃
(a,ρ)∈E

S(a, ρ)

⎞⎠�0,

where L2(·) denotes the Lebesgue measure.

As far as we know, no non-trivial results are known on the interior of A + S1. In general,
it turns out that even positivity of the Lebesgue measure of A is not enough to guarantee that
A + S1 has non-empty interior (see our counter example in section 2·1·4). In Theorem 2·2,
we provide conditions on A ⊂ R2 which guarantee that the interior of the sum set (A + �)◦

is non-empty, where � is an arbitrary C2 curve with at least one point of curvature.
Our method involves introducing a 1-parameter family of Lipschitz maps {�α}α∈J , where

�α : A → �α, �α is the vertical line at x = α, and J is an interval. This family {�α} is
defined in such a way that:

(i) the �α-images of the set A are each contained in A + �;
(ii) the �α-images of the set A each contain an interval I which is uniform over an interval

worth of αs.

Before we state our main results, we collect some of the most important notation:

Definition 1·2.
(1) Let A ⊂ R2, then A◦ is the interior of A.
(2) A Cantor set is a totally disconnected perfect set (where perfect refers to a compact

set which is identical to its accumulation points).
(3) For γ ∈ (0, 1), a Symmetric Cantor sets Cγ ⊂ [0, 1] (see [10, section 8·1]) is defined

as follows: We iterate the same process that yields the usual middle-third Cantor
set with the difference that we remove the middle-1 − 2γ portion of every interval
throughout the construction:

Cγ =
{

(1 − γ )

∞∑
k=1

akγ
k−1 : ak ∈ {0, 1}

}
. (1·1)

The so-called middle-d Cantor set is C1−2d . In particular C1/3 is the usual middle-
third Cantor set.

(4) We write

C(γ ) := Cγ × Cγ . (1·2)

In particular, C(1/4) is called the four-corner Cantor set.
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Interior of sums of planar sets and curves 121

1·1. Summary of main results

The behavior of A + � may be conspicuously different when the piecewise-C2 curve �

has non-vanishing curvature (this case is considered in Section 2·1) and when � is a polygon
(this case is studied in Section 2·2).

1·1·1. Main results when � has non-vanishing curvature

(1) There exists a set of full L2-measure which is dense in R2 and Gδ (we call it G for
Giant) such that

(
G + S1

)◦ = �. (See Section 2·1·4.)

(2) However, in Theorem 2·2 we prove that (C + �)◦�� if C has a kind of generalised
product structure C = P(A, B) (see (2·1) for the definition of P) of sets A and B
satisfying one of the following properties:
(i) A and B are sets of positive Lebesgue measure;
(ii) A and B are Cantor sets so that τ(A) · τ(B) > 1, where τ(A) and τ(B) stands
for the Newhouse thickness (see section 3·4) of A and B;
(iii) A and B are sets of second category and B is a Baire set;
(iv) There exists a non-degenerate interval J1 such that #(J1 \ A) = ℵ0 and #B = ℵ.

(3) As a byproduct of our proof of the previous Theorem, in Corollary 2·13, we obtain
that for every 1/3 � γ < 1 and for every t ∈ C(γ ), the interior of the pinned distance
set at t, (
t(C(γ ))◦ ��, where C(γ ) was defined in (1·2).

(4) As an extension of item (ii) above, we prove that for the middle-third Cantor set C
we have

(
(C × C) + S1

)◦
�� (Theorem 2·7).

(5) In Theorem 2·6, we prove that (A×B)+S1 contains a neighbourhood of S1. whenever
A, B ⊂ R with L1(A) > 0 and L1(B) > 0.

(6) In Lemma 2·20 we point out that (A + �)◦�� if A ⊂ R2 is a connected set.

1·1·2. Main results when � is a polygon

Let Nθ be the angle θ rotation of the perimeter of [0, 1]2.

(i) For every polygon � we can find a set of full measure A such that (A + �)◦ = �.
(Theorem 2·24.)

(ii) There is set A of positive L2-measure such that simultaneously for all θ we have
(A + Nθ )

◦ = �. (Theorem 2·25.)

2. The statements of our results

2·1. The case when � has non-vanishing curvature

2·1·1. Generalised product structure

Definition 2·1. Let A, B ⊂ R and z ∈ C2(R2). We define the set P(A, B)

P(A, B) := Pz(A, B) := {(x, z(x, y)) : x ∈ A and y ∈ B} , (2·1)

where

zy(x, y)�0 for each (x, y)�(0, 0). (2·2)

Notice that when z(x, y) = y, then P(A, B) = A × B.

The main result in this case is as follows:
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122 KÁROLY SIMON AND KRYSTAL TAYLOR

THEOREM 2·2. Let P(A, B) as in (2·1) where A, B ⊂ R are bounded sets so that at
least one of the following hold:

(i) A and B are sets of positive Lebesgue measure;
(ii) A and B are Cantor sets so that τ(A) · τ(B) > 1, where τ(A) and τ(B) stands for

the Newhouse thickness (see Section 3·4) of A and B;
(iii) A and B are sets of second category and B is a Baire set;
(iv) there exists a non-degenerate interval J1 such that #(J1 \ A) = ℵ0 and #B = ℵ.

Then the interior of the algebraic sum,

(P(A, B) + �)0 ��, (2·3)

is non-empty, where � is a set which contains a C2 sub-curve with non-vanishing curvature.

The proof is given in Section 4. The definition of Newhouse thickness is given in Section
3·4, and a review of Baire sets and sets of second category appears in Section 3·6.

Remark 2·3. This result shows in the simplest case that (A × B) + S1 has non empty
interior if any of the conditions (i)-(iv) hold.

Remark 2·4. More generally, if � = {(x, y) : x p + y p = 1}, then

((A × B) + �)0 ��

provided any of the conditions (i)-(iv) hold.

Remark 2·5. It is easy to see that all the assumptions of Theorem 2·2 imply that (A +
B)◦��. However, there exist A, B ⊂ R, (A + B)◦�� but ((A × B) + S1)◦ = �.
Namely, consider the sets A, B ⊂ R constructed in [3, theorem 5·11]. They satisfy:

dimH A = dimH B = 0 and A + B is an interval. (2·4)

On the other hand A × B is a 1-set (its one-dimensional Hausdorff measure is positive and
finite). Then A × B must be an irregular 1-set (for the definition see [3, section 2]). This
is immediate from (2·4) and [3, corollary 6·14]. It follows from [19, corollary 2·3] that an
irregular 1-set plus S1 has Lebesgue measure zero, so it cannot contain interior points.

In fact, we can say something about the topology of the sum set in the following setting:

THEOREM 2·6. Let A and B be subsets of R of positive Lebesgue measure. Then

(A × B) + S1

contains an annulus of radius 1.

The proof of Theorem 2·6 appears in Section 5·1.
We also prove the following which can be seen as a supplement to Theorem 2·2(ii).

THEOREM 2·7. Let C(1/3) denote the product of the middle third C1/3 with itself (see
(1·2) above). Then (

C(1/3) + S1
)◦

��, (2·5)

where S1 is the unit circle in the plane.

See Section 7 for the proof of Theorem 2·7.

Remark 2·8. What we know about the set C(γ ) + S1 is as follows:
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Interior of sums of planar sets and curves 123

(i) if γ < 1/4 then dimH

(
C(γ ) + S1

) = 1 − 2 log 2/log γ (see [19, theorem 2·1]);
(ii) if γ = 1/4 then dimH

(
C(γ ) + S1

) = 2 but L2
(
C(γ ) + S1

) = 0 [19, corollary 2·3];
(iii) if γ > 1/4 then L2

(
C(γ ) + S1

)
> 0 (see [24, corollary 3] and also see [19, theorem

2·1]);
(iv) if γ � 1/3 then

(
C(γ ) + S1

)◦
�� (Theorem 2·7 ).

We do not know if there are γ ∈ (1/4, 1/3) with
(
C(γ ) + S1

)◦
��.

The proof of Theorem 2·2 relies on verifying the following proposition. Proposition 2·9
is a strengthening of a classic theorem of Steinhaus [21, 22] on the interior of difference
sets. Moreover, Proposition 2·9 improves on a result of Erdős and Oxtoby on more general
difference sets and provides an alternative proof to their main theorem in [2].

PROPOSITION 2·9. Assume that J1, J2 are compact intervals on R, and let � be a para-
meter interval (a non-empty open interval). Let A ⊂ J1 and B ⊂ J2. We assume that the
pair of sets A, B satisfy at least one of the following conditions:

(i) A and B are sets of positive Lebesgue measure;
(ii) A and B are Cantor sets so that τ(A) · τ(B) > 1;
(iii) A and B are sets of second category and B is a Baire set;
(iv) #(J1 \ A) = ℵ0 and #B = ℵ.

Let H(α, x, y) ∈ C2(� × J1 × J2) be an arbitrary function with non-vanishing partial
derivatives in x and y on � × J1 × J2. Then there exists a non-empty open interval I ⊂ �

sharing the same center as � such that the interior(⋂
α∈I

H(α, A, B)

)◦
��.

For proofs and background, see section 3.

Remark 2·10. Only part (ii) of Proposition 2·9 requires the stronger assumption of
H(α, x, y) ∈ C2(� × J1 × J2). Otherwise C1 is enough.

Remark 2·11. In the case that H(α, x, y) = x + y, part (i) of Proposition 2·9 implies the
classic theorem of Steinhaus [21, 22] on the interior of difference sets. When H(α, x, y) =
H(x, y), it implies the result proved by Erdős and Oxtoby in [2].

Remark 2·12. In this paper, we find conditions on E ⊂ R2 which guarantee that E + S1

has non-empty interior. In the case that E has Fourier decay greater than 1/2, then it is
not hard to show that E + S1 supports a measure whose Fourier transform is in L1, and
consequently that the interior of E + S1 is non-empty. More generally, it is an immedi-
ate consequence of the Sobolev embedding theorem that if E + S1 supports a measure in
the Sobolev space L p

s , with s > 2/p, then E + S1 has non-empty interior. (See [4]). The
sets under consideration in this paper, however, do not have significant Fourier decay. In
particular, if E is a Cartesian product, then the product structure destroys decay. Indeed, if
μ × ν is a measure with support in a Cartesian product, then one only need calculate the
Fourier transform of this measure to see that variables separate and hence that there is no
decay along diagonals. If E is a self-similar Cantor set, then the Fourier dimension of E is
zero. Indeed, if for instance, μ is a measure with support in the middle-third-Cantor set, then
μ̂(3) = μ̂(32) = · · · = μ̂(3k).
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124 KÁROLY SIMON AND KRYSTAL TAYLOR

2·1·2. Pinned distance sets

Proposition 2·9 yields an interesting consequence for pinned distance sets. We give a
brief history before stating our result. The celebrated Falconer distance conjecture (see e.g.
[3], [9]) asks how large a subset E of Euclidean space needs to be in order to guarantee that
its distance set, defined by 
(E) = {|x − y| : x, y ∈ E}, has positive Lebesgue measure.
In 1986, Falconer proved dimH E > (d + 1)/2 suffices and that dimH E > d/2 is necessary
where E ⊂ Rd and d � 2. The best known exponent is d/2 + 1/3 and is due to Wolff when
d = 2 [23] and Erdogan [1] for d � 3. In [5], Iosevich, Mourgoglou and Taylor study the
interior of the distance set and prove Falconer’s result for more general notions of distance.

Another interesting variant of the Falconer distance problem is obtained by pinning the
distance set. (For additional reading on this topic, see for instance [6], [15], [18].) Some
consequence of Proposition 2·9 for the interior of pinned distance sets are as follows:

COROLLARY 2·13. Let C ⊂ R be a Cantor set, and let α > 1. We consider the pinned
distance set at t with respect to the α-norm:


(α)
t (C × C) := {‖c − t‖α : c ∈ C × C} ,

where ‖(x, y)‖α = (|x |α + |y|α)1/α . If the thickness τ(C) > 1, then for every t ∈ R2 the
interior (


(α)
t (C × C)

)◦
��.

Moreover there exists a non-empty open parameter interval I centered at α such that, then
for every t ∈ R2, ⎛⎝⋂

β∈I



(β)
t (C × C)

⎞⎠◦

��. (2·6)

Remark 2·14. It is easy to see that whenever 1/3 < γ < 1 the thickness τ(Cγ ) > 1 (Cγ

was Definition 1·2). Hence, by Corollary 2·13, the pinned distance set 
t(C(γ )) contains
an interval for every t, (recall that C(γ ) was defined in Definition 1·2).

Remark 2·15. Note that Corollary 2·13 still holds if K × K is replaced by K1 × K2, where
K1, K2 are Cantor sets of sufficient thickness that is τ(K1) · τ(K2) > 1.

Proof of Corollary 2·13. We fix an arbitrary t = (t1, t2) ∈ R2 and α > 1 and choose a
parameter interval � centered at α such that 1 � �. Let

H(β, x, t) := (x − t1)
β + (y − t2)

β, β ∈ �.

Then (2·6) immediately follows from the second part of Proposition 2·9.

Actually we can prove an analogous theorem for the middle third Cantor set C1/3 with
completely different technique:

THEOREM 2·16. Let C1/3 be the middle-third Cantor set. Then the pinned distance set of
C(1/3) := C1/3 × C1/3,


t(C(1/3)) = {‖c − t‖2 : c ∈ C(1/3)} ,

pinned at an arbitrary t ∈ C(1/3), has non-empty interior.

The proof is presented in Section 6.
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Interior of sums of planar sets and curves 125

Remark 2·17. It is a fairly simple consequence of the Fubini Theorem and of Theorem
2·7 that 
t(C(1/3)), has positive measure for L2 a.a. t ∈ R2 (see [19] for more details on
the connection between sum sets and pinned distance sets). However, Theorem 2·16 yields
that this is true for all t ∈ C(1/3) and further that the interior of the pinned distance set at t
is non-empty.

We remark that in [17] the first author and M. Rams investigated a well-studied family of
random cantor sets, called “Mandelbrot percolation Cantor sets” on the plane. They obtained
that in that family, if the dimension of the attractor is greater than one, then almost surely
the pinned distance set pinned at any points of the plane, contains intervals.

We also remark that in a recent preprint, P. Shmerkin [18] proved that the Hausdorff
dimension of the pinned distance set 
t(E) is equal to 1 for most elements of E (in a
natural sense) if dimH(E) > 1 and the packing and Hausdorff dimensions of E are equal.
(These assumptions clearly hold for C(1/3).)

2·1·3. (A + S1)◦�� for A connected

As a corollary of part (iv) of Theorem 2·2 we can easily obtain that

COROLLARY 2·18. Let K be the Knaster–Kuratowski fan (or Cantor’s teepee), defined
below. Then (

K + S1
)◦

��.

The Knaster–Kuratowski fan was defined in [20, p. 145]

Definition 2·19 (Kastner–Kuratowski fan). Let C be the translated copy of the middle-
third Cantor C1/3 set situated on the interval I := {(1/2, x) : x ∈ [−1/2, 1/2]}. Denote the
set of the elements of C which are deleted interval end points by E . Let F := C \ E . For a
c ∈ C let �c be the line segment which connects the origin with c. That is

�c := {(x, cx) : x ∈ [0, 1]} .

We introduce

KE :=
⋃
c∈E

{(x, y) ∈ �c : x ∈ Q} , and KF :=
⋃
c∈F

{(x, y) ∈ �c : x � Q} .

The set K := KE � KF is called Knaster–Kuratowski fan, Cantor’s teepee.

It was proved in [20, p. 146] that Knaster–Kuratowski fan K satisfies:

(a) K is connected;

(b) K \ (0, 0) is totally disconnected (all connected components are singletons). As a con-
sequence;

(c) K does not contain any paths (continuous image of [0, 1] which is non-constant).

Proof of Corollary 2·18. Observe that KF = P([0, 1]\Q, C), where P is as in (2·1) with
z(x, y) := x · y. Clearly, z(x, y) is not zero if we are off the origin. So, we can apply part
(iv) of Theorem 2·2 for such a part of KF .

We could prove that
(
K + S1

)◦
�� directly from it connectedness and the following

lemma:
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126 KÁROLY SIMON AND KRYSTAL TAYLOR

LEMMA 2·20. Assume that A ⊂ R2 is not totally disconnected, that is A contains a
connected component which is not a singleton. Then(

A + S1
)◦

��. (2·7)

The proof is presented in Section 5·2. It is immediate that for a set A containing a path
(continuous image of [0, 1]), (2·7) holds. However, as the example of Kastner–Kuratowski
fan shows, it is possible that a connected set contains no paths.

2·1·4. The Giant: (A + S1)◦ may be empty for a very big set A

We give a simple construction of a Gδ-set A ⊂ R2 of full two-dimensional Lebesgue
measure so that A + S1 has empty interior.

Set Q2 := Q × Q, and let

A :=
(⋃

v∈Q2

S(v, 1)

)c

, (2·8)

where S(v, 1) denotes the set {x ∈ R2 : |x − v| = 1}. Then Leb2(Ac) = 0, and

(A + S1) � Q2 = �.

We call the set defined in (2·8) the Giant. In particular more is true.

Fact 2·21. Let B ⊂ R2 be arbitrary and S ⊂ R2 be an arbitrary set which is symmetric to
the origin (s ∈ S if and only if −s ∈ S). Then

((B + S)c + S) � B = �.

We obtain the Giant by choice of B := Q2 and S := S1. By the regularity of the Lebesgue
measure, we can choose a compact subset K of the Giant with positive Lebesgue measure.
That is

Fact 2·22. There is a compact K ⊂ R2 with Leb2(K ) > 0 such that
(
K + S1

)◦ = �.

We note that the co-dimension of the Giant (defined in (2·8)) is one. If, on the other hand,
the co-dimension of an arbitrary set A is less than one, then A + S1 = R2:

Fact 2·23. Let S ⊂ R2 which is symmetric to the origin. For an arbitrary set A ⊂ R2, if
codim(A) < dimH(S), then A + S = R2.

Proof. Indeed, if x ∈ R2 then either (x + S) � A = �, or (x + S) � A��. The former
case contradicts the assumption that codim(A) < dimH(S). The later case, combined with
the symmetry of S, implies that x ∈ A + S.

2·2. The case when � is a polygon

In this section we assume that � is a piecewise linear curve. We call it a polygon. We
construct full measure sets in the plane so that the arithmetic sum with � has empty interior.

THEOREM 2·24. Let � be an arbitrary polygon in the plane. Then there exists a full
measure set, A, so that

(A + �)◦ = �.

The proof is given in Section 8.
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Interior of sums of planar sets and curves 127

2·2·1. The case when � is a rotated square

Let � = Nθ denote the angle-θ rotated copy (around the origin in anti-clockwise direc-
tion) of the square which is the perimeter of [−1, 1]2.

THEOREM 2·25. There exists a set A in the plane of positive measure so that for all
θ ∈ [0, π) simultaneously we have

(A + Nθ )
◦ = �. (2·9)

The proof is given in Section 8 and utilises the existence of Besicovitch sets. Besicovitch
proved (see [10, theorem 11·1]) that there exists a compact set B̃ ⊂ R2 such that B̃ contains
a line in every direction but L2(B̃) = 0.

3. History and proof for Proposition 2·9
3·1. History

Proposition 2·9 is a strengthening of the Erdős and Oxtoby Theorem [2] which is an
extension of a classic theorem of Steinhaus [21, 22] on the interior of difference sets.

THEOREM 3·1 (Steinhaus). If A has positive Lebesgue measure, then the difference set

A − A = {x − y : x, y ∈ A}
contains an open neighborhood of the origin.

More generally, if A, B ⊂ R measurable sets of positive Lebesgue measure then their
algebraic sum A + B contains an interval. This theorem is an easy consequence of the
Lebesgue density theorem.

Erdős and Oxtoby [2] provide a significant extension of Steinhaus’ result.

THEOREM 3·2 (Erdős, Oxtoby). Let A ⊂ R and B ⊂ R each with positive Lebesgue
measure. If H : R2 → R is a C1 function on an open set U, with m((A × B) � U ) > 0 so
that the partial derivatives of H are non-vanishing a.e. on U, then the interior of the set

{H(x, y) : x ∈ A, y ∈ B}
is non-empty.

The topological analogue of Steinhaus Theorem was proved by Piccard [16].

THEOREM 3·3 (Piccard). Let A, B ⊂ R be Baire sets of second category. Then A + B
contains an interval.

A nice review of the field and generalizations of the results above are available in [7].

3·2. Preliminaries for the Proof of Proposition 2·9
In Sections 3·3, 3·5, 3·6 and 3·7 we use the notation and Lemmas below.

3·2·1. Introduction of the function gc,α

Let J1, J2 be compact intervals on R and let H(α, x, y) ∈ C2(� × J1 × J2), where �

is a parameter interval. Moreover, we assume that the Hx(α, x, y) and Hy(α, x, y) are not
vanishing on � × J1 × J2. We are also given the points u1 ∈ J1 and u2 ∈ J2. The pur-
pose of this Section 3·2·1 is to construct by the Implicit Function Theorem a function gc,α
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128 KÁROLY SIMON AND KRYSTAL TAYLOR

(see (3·2)) which sends a neighborhood of u1 to a neighbourhood of u2. Moreover, gc,α

satisfies

H(α, x, gc,α(x)) = c,

where α ∈ � and c is from a neighbourhood of H(α, u1, u2).
Without loss of generality we may assume that

Hx(α, x, y)

Hy(α, x, y)
< 0, ∀(α, x, y) ∈ � × J1 × J2. (3·1)

For definiteness, we choose α0 as the center of the interval �. Set c0 := H(α0, u1, u2), and
choose a small δ0 > 0 such that

[α0 − δ0, α0 + δ0] × [u1 − δ0, u1 + δ0] × [u2 − δ0, u2 + δ0] ⊂ (� × J1 × J2)
◦ .

Set

S := [c0 − δ0, c0 + δ0] × [α0 − δ0, α0 + δ0] × [u1 − δ0, u1 + δ0] × [u2 − δ0, u2 + δ0] .

For a (c, α, x, y) ∈ S we define

F(c, α, x, y) := H(α, x, y) − c.

By assumption Fy(c0, α0, u1, u2)�0. Then by Implicit Function Theorem, there exists a
neighbourhood M ⊂ S of (c0, α0, u1, u2) where Fy does not vanish. To abbreviate notation
we write X0 := (c0, α0, u1) and X := (c, α, x). Moreover, also from the Implicit Function
Theorem, we obtain that there exists a neighbourhood N of X0 and a function G ∈ C2(N )

so that:

(i) G(X0) = u2;
(ii) (X, G(X)) ∈ M ;

(iii) F(X, G(X)) = 0 if X ∈ N ;
(iv) G ′(X) =

(
1

Hy (α, x, G(X))
, − Hα (α, x, G(X))

Hy (α, x, G(X))
, − Hx (α, x, G(X))

Hy (α, x, G(X))

)
.

For simplicity we may assume that N is of the form

N = [c0 − δ1, c0 + δ1] × [α0 − δ1, α0 + δ1] × [u1 − δ1, u1 + δ1] ,

for a 0 < δ1 < δ0. For a (c, α) ∈ [c0 − δ1, c0 + δ1] × [α0 − δ1, α0 + δ1], we introduce

gc,α(x) := G(c, α, x). (3·2)

Then by (iv) above, we have

g′
c,α(x) = − Hx (α, x, G(c, α, x))

Hy (α, x, G(c, α, x))
.

Recall that by (3·1), g′
c,α(·) is always positive. By assumption we can choose an η > 0 such

that for all (c, α, x) ∈ N :

η < |Hx (α, x, G(c, α, x)) | <
1

η
, and η < |Hy (α, x, G(c, α, x)) | <

1

η
. (3·3)

Then we have

η2 � g′
c,α(x) � 1

η2
and |g′′

c,α(x)| � 4

η5
. (3·4)
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Interior of sums of planar sets and curves 129

LEMMA 3·4. For all z ∈ [u1 − δ1, u1 + δ1] we have

|gc,α(z) − gc0,α0(z)| �
2

η2
· ‖(c, α) − (c0, α0)‖max.

Proof of the Lemma.

|gc,α(z) − gc0,α0(z)| = |G(c, α, z) − G(c0, α0, z)|
� |G(c, α, z) − G(c0, α, z)| + |G(c0, α, z) − G(c0, α0, z)|
� |Gc (̂c, α, z)||c − c0| + |Gα(c0, α̂, z)| · |α − α0|
� 2

η2
‖(c, α) − (c0, α0)‖max,

where ĉ and α̂ are chosen using the mean value theorem.

LEMMA 3·5. Assume that there exists a ε̂ ∈ (0, δ1) and Ki ⊂ Ji , i = 1, 2 such that

gc,α(K1) � K2�� if ‖(c, α) − (c0, α0)‖max < ε̂. (3·5)

Let J := (c0 − ε̂, c0 + ε̂ ). Then

J ⊂ �α∈(α0−̂ε, α0+̂ε) H(α, K1, K2). (3·6)

Proof. Choose an arbitrary (c, α) ∈ J × (α0 − ε̂, α0 + ε̂). We claim that

c ∈ {H(α, x, y) : x ∈ K1, y ∈ K2} .

By assumption, there exists k1 ∈ K1 and k2 ∈ K2 such that G(c, α, k1) = k2. Then by (iii)

c = H(α, k1, G(c, α, k1)) = H(α, k1, k2).

This completes the proof of the Lemma.

3·3. Proof of Proposition 2·9 (i)

Proof. We use the notation of Section 3·2·1. Let u1 and u2 be Lebesgue density points
of A and B respectively. Let ε0 > 0 be arbitrarily small. Choose 0 < δ̂ < δ1 such that for
J̃1 := [u1 − δ̂, u1 + δ̂] and Ã := J̃1 � A we have

| Ã|
| J̃1|

> 1 − ε0,

where |A| := L(A). Let δ′ > 0 small enough so that for J̃2 := [u2 − δ′, u2 + δ′] and
B̃ := J̃2 � B, we have

|B̃|
| J̃2|

> 1 − ε0. (3·7)

Moreover, we require that δ̂ is small enough so that we can choose an ε̃ such that

‖(c, α) − (c0, α0)‖max < ε̃ (3·8)

implies by Lemma 3·4 that (3·7) holds with the following choice of δ′: letting η > 0 as in
(3·3), we choose

δ′ = δ̂ · 1

η2
+ ‖gc,α − gc0,α0‖max, (3·9)
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130 KÁROLY SIMON AND KRYSTAL TAYLOR

where

‖gc,α − gc0,α0‖max := max
{|gc,α(u) − gc0,α0(u)| : u ∈ [u1 − δ1, u1 + δ1]

}
.

Further we also require that ε̃ > 0 is small enough that (3·8) implies that

‖gc,α − gc0,α0‖max <
1

2
η2δ̂. (3·10)

The purpose of (3·10) is to ensure that

u2 ∈ (
gc,α( J̃1)

)◦
. (3·11)

Namely, (3·10) implies that∣∣gc,α(u1) − gc0,α0(u1)
∣∣ = ∣∣gc,α(u1) − u2

∣∣ <
1

2
η2δ̂. (3·12)

On the other hand, ∣∣gc,α(u1 ± δ̂) − gc,α(u1)
∣∣ > δ̂ · η2. (3·13)

That is gc,α(J1) contains the δ̂ · η2-neighbourhood of gc,α(u1) and 2 is contained in this
neighbourhood, which yields that (3·11) holds.

Now,

|gc,α( Ã)|
|gc,α( J̃1)|

= 1 − |gc,α( J̃1\ Ã)|
|gc,α( J̃1)|

� 1 −
1
η2 ε0| J̃1|
η2| J̃1|

� 1 − ε0

η4
. (3·14)

Next, we obtain a lower bound on |B̃ � gc,α( J̃1)|/|gc,α( J̃1)| using the assumption that u2

is a density point. Fix (c, α) and let gc,α( J̃1) = (u2 − δ2, u2 + δ′
2). Combining (3·4), (3·9)

and (3·10) by the Mean Value Theorem we obtain that 0 < δ2, δ
′
2 � δ′. It follows that

|B̃c � [u2, u2 + δ′
2)| � 2δ′

2ε0,

|B̃c � (u2 − δ2, u2]| � 2δ2ε0,

and so

|B̃c � gc,α( J̃1)| = |B̃c � (u2 − δ2, u2 + δ′
2)| � 2ε0|gc,α( J̃1)|.

Putting this together, we obtain that

|B̃ � gc,α( J̃1)|
|gc,α( J̃1)|

> 1 − 2ε0. (3·15)

Combining (3·14) with (3·15) and choosing (c, α) sufficiently close to (c0, α0), we get

gc,α( Ã) � B̃��.

3·4. A variant of Newhouse thickness

In order to prove part (ii) of Proposition 2·9, we need to introduce a modification of the
well-known Newhouse thickness (see [14]). Namely, we have to tackle the problem that the
Newhouse thickness of a Cantor set can drop significantly if we take a smooth image of a
Cantor set.
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Interior of sums of planar sets and curves 131

Definition 3·6. Let K ⊂ R be a Cantor set. The gaps of K are the connected components
of K c. Let us denote the collection of gaps of K by G := GK . We write �(G) and r(G) for
the left and right endpoints of the gap G correspondingly. Let u ∈ K be an end point of a
gap G. Without loss of generality we may assume that u = r(G). For an ε � 0, we define
the ε-bridge Bε(u) as follows:

Bε(u) := (
u, �(G̃)

)
, (3·16)

where |G̃| � (1 − ε)|G| and, whenever Ĝ ∈ G with Ĝ ⊂ (u, �(G̃)), then |Ĝ| < (1 − ε)|G|.
Now we can define the ε-thickness of K at u by

τε(K , u) := |Bε(u)|
|G| and τε(K ) := inf

u∈U
τε(K , u),

where U is the set of the endpoints of the gaps. Note that the case of ε = 0 is the usual
Newhouse thickness of a Cantor set (see [14, p. 61]).

It is straightforward that

If 0 � ε1 < ε2 then τε1(K ) � τε2(K ). (3·17)

This is so because for every gap endpoint u ∈ U we have Bε1(u) � Bε2(u).

LEMMA 3·7. For every Cantor set C ⊂ R and ε ∈ (0, 1) we have

(1 − ε)2 � τε(C)

τ (C)
� 1.

In particular,

lim
ε→0

τε(C) = τ(C),

where τ is the standard Newhouse thickness (see [14]).

Proof. Let C ⊂ R be a Cantor set. In order to get a contradiction, we assume that there
exists an ε ∈ (0, 1) so that

τε(C) < (1 − ε)2τ(C). (3·18)

Let U be the set of the endpoints of the gaps of C . By definition, we can find u ∈ U so that

τε(C) � τε(C, u) <
1

1 − ε
· τε(C).

Without loss of generality, we may assume that u is the right-end-point of a gap G. Define
Ĝ to be the first gap of C to the right of u so that

(1 − ε)|G| � |Ĝ|.
Define G̃ to be the first gap of C to the right of u so that

|G| � |G̃|. (3·19)

Set ũ := l(G̃), and û := l(Ĝ). Clearly,

Bε(u) = [u, ũ], and B0(u) = [u, û], (3·20)

It follows by assumption (3·18) above that

Bε(u) ⊂ B0(u) and Bε(u)�B0(u). (3·21)
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132 KÁROLY SIMON AND KRYSTAL TAYLOR

As a consequence, we have

(1 − ε)|G| � |Ĝ| < |G| � |G̃|. (3·22)

We claim that

B0(̂u) = [u, û]. (3·23)

On the one hand, B0(̂u) ⊂ [u, û] follows from the second inequality in (3·22). On the
other hand, if B0(̂u)�[u, û], then ∃ a gap G ′ ⊂ (u, û) so that B0(̂u) = [r(G ′), û] and
|G ′| � |Ĝ| � (1 − ε)|G|. The existence of such a G ′ contradicts the definition of Ĝ.

Now we have

τ0(C) � τ0(C, u) = |B0(̂u)|
|Ĝ| � |Bε(u)|

(1 − ε)|G| �
1

(1 − ε)2
· τε(C).

It follows that

(1 − ε)2 · τ0(C) < τε(C),

which contradicts our assumption in (3·18).

LEMMA 3·8. Let K ⊂ R be a Cantor set, and let I be an open interval such that I � K
is a closed nonempty set. Let g ∈ C1(R) satisfying min

x∈I
g′(x) > 0. Moreover, we have

1 − ε � g′(z1)

g′(z2)
� 1 + ε, ∀z1, z2 ∈ I (3·24)

Then

τε2(g(I � K )) � τε(K )(1 − ε). (3·25)

Proof. Clearly, the image of K � I by g is a Cantor set and the gaps of the image g(I �K )

are the images of the gaps of K � I . Now we use the notation of Definition 3·6 in particular
the one in (3·16). We claim that

Bε2(g(u)) ⊃ g(Bε(u)). (3·26)

To see this we fix an arbitrary gap G ′ contained in Bε(u). Using the mean value theorem we
can find z, z′, z̃ such that

|g(G)|
|G| = g′(z),

|g(G ′)|
|G ′| = g′(z′),

|g(G̃)|
|G̃| = g′(̃z) and

|g(Bε(u))|
|Bε(u)| = g′(zε). (3·27)

Observe that
|g(G ′)|
|g(G)| = |G ′|

|G| · |g(z′)|
|g(z)| < (1 − ε)(1 + ε) = 1 − ε2.

This verifies (3·26) by the definition of the ε2-bridge. Using (3·26) we can write

τε2(g(K � I ), g(u)) = |Bε2(g(u))|
|g(G)| � |g(Bε(u))|

|g(G)| = |Bε(u)|
|G| · g′(zε)

g′(z)
.

Using (3·24) and taking the infimum over the gap endpoints of K � I completes the proof
of the Lemma.

3·5. Proof of Proposition 2·9 (ii)

Proof. In order to emphasise that the sets A and B are Cantor sets in this Subsection we
are going to call them K1 and K2 respectively. The smallest intervals containing them are
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J1, J2 respectively. By assumption we know that τ(K1) · τ(K2) > 1. Hence by Lemma 3·7
there exists an ε > 0

τ(K2) · τε(K1) > 1. (3·28)

Throughout this Section we use the notation of Section 3·10. Let G1, G2 be bounded gaps of
K1, K2 respectively and let ui := r(Gi), i = 1, 2. Choose a δ > 0 such that r(G1) + δ ∈ J1

and

δ � min

{
δ1,

ε · η7

8

}
. (3·29)

Let K̃1 := [u1, u1 + δ] � K1. Given a strictly increasing mapping g0 ∈ C1[u1, u1 + δ]
such that g0(u1) = u2, let K̃2 := g0([u1, u1 + δ]) � K2. Now we choose z1, z2 ∈ K̃1 and
v1, v2, v3 ∈ g−1

0 (K̃2) in such a way that

v1 < z1 < v2 < z2 < v3. (3·30)

This is possible because ui are accumulation points of the Cantor sets K̃1 and K̃2. Now we
define 0 < ε̃ < ε such that

ε̃ := 1

3
min

{|g0(zi), g0(v j )| : i = 1, 2, j = 1, 2, 3
}

(3·31)

Now we introduce g ∈ C1[u1, u1 +δ] such that g satisfies (3·24) with I = [u1, u1 +δ] where
‖ · ‖ denotes the supnorm on the interval [u1, u1 + δ].

LEMMA 3·9. Let g ∈ C1[u1, u1 + δ] be a function satisfying (3·24) with I = [u1, u1 + δ]
and

‖g − g0‖ < ε̃. (3·32)

Then
g(K̃1) � K̃2��. (3·33)

Proof. Without loss of generality we may assume that even the following inequality
holds:

τ(K̃2) · τε(K̃1)(1 − ε) > 1. (3·34)

since changing to a smaller ε increases the left-hand side. Then by (3·25) we obtain that
τ(K̃2) · τε2(g(K̃1)) > 1. Using (3·17) we obtain that

τ(K̃2) · τ(g(K̃1)) > 1. (3·35)

Now we use Newhouse gap Lemma [14, p. 63]. This implies that

K2 � g(I � K1)�� (3·36)

since the Cantor sets K2 and g(I � K1) cannot possibly in each others gap. This follows
from the choice of ε̃ and (3·32).

In the next Fact we verify that the condition of Lemma 3·8 holds.

Fact 3·10. Let (c, α) ∈ (c0 − δ1, c0 + δ1) × (α0 − δ1, α0 + δ1). Then whenever ζ1, ζ2 ∈
[u1 − δ, u1 + δ] we have

g′
c,α(ζ1)

g′
c,α(ζ2)

∈ (1 − ε, 1 + ε) , (3·37)

recall that δ was introduced in (3·29).
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Proof of the Fact. Using mean value theorem there exists a ζ3 ∈ (ζ1, ζ2) such that∣∣∣∣g′
c,α(ζ1)

g′
c,α(ζ2)

− 1

∣∣∣∣ =
∣∣∣∣g′

c,α(ζ1) − g′
c,α(ζ2)

g′
c,α(ζ2)

∣∣∣∣ � 1

η2
|g′′

c,α(ζ3)| · |ζ1 − ζ2| � 4

η7
|ζ1 − ζ2| � ε,

where we used first (3·4) and then (3·29).

We now verify the condition of Lemma 3·9.
Fix an arbitrary (c, α) satisfying

‖(c, α) − (c0, α0)‖max <
ε̃ · η2

2
. (3·38)

Then the conditions of Lemma 3·4 hold, so by Lemma 3·4 we obtain that

‖gc,α − gc0,0‖ < ε̃. (3·39)

Thus, by Lemma 3·9, we obtain that

gc,α(K̃1) � K̃2�� if ‖(c, α) − (c0, α0)‖max <
ε̃ · η2

2
. (3·40)

Next we apply Lemma 3·5 with ε̂ = ε̃ · η2/2 and from (3·6) we obtain that the assertion of
Proposition 2·9 (ii) holds.

3·6. Proof Proposition 2·9 (iii)

We write K and (S) for the collection of sets of Baire first (second) category on the line
respectively.

Recall that a set is of second category if it is not a set of first category. Moreover, a set is
of first category if it can be represented as a countable union of nowhere dense sets. A set is
nowhere dense if it is not dense in any balls.

Recall also that the topological analogues of Lebesgue measurable sets are the so-called
Baire sets: We say that A is a Baire set if there exists an open set E and a set of first category
M such that A = E�M .

The steps of the following proof are just a combination of the ones from [7, theorem 4·1,
remark 4·2] but an immediate application of [7, theorem 4·1, remark 4·2] yield only that
H(α, A, B)◦��. However, we need more. Namely, that for a suitable parameter interval
I , we have

⋂
α∈I H(α, A, B)��, and this is what we prove below.

First we state a well-known fact:

Fact 3·11. Let A be a subset of a complete separable metric space (X, �)

RA := {
x ∈ X : ∀δ > 0, B(x, δ) � A is set of second category

}
. (3·41)

Then RA is closed and A \ R◦
A is a set of first category.

We can present B = E2 � M2, where E2 is an open set and M2 ∈ K. By the assumption
of part (iii) of Proposition 2·9 and Fact 3·11, we can choose

u1 ∈ A � R◦
A and u2 ∈ B � E2 � R◦

B (3·42)

We use the notation of Section 3·2. In particular we choose α0, c0 as in Section 3·2. Let

Z := {
(c, α) ∈ (c0 + δ, c0 − δ) × (α0 − δ, α0 + δ) : A � g−1

c,α(B) ∈ S
}
, (3·43)
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The rest of the proof is organised as follows: First we prove that

(c0, α0) ∈ Z . (3·44)

(This will be easy.) Then we verify the much more difficult Lemma:

LEMMA 3·12. Z is open.

Proof of Proposition 2·9 (iii), assuming (3·44) and Lemma 3·12. It follows from (3·44)
and and Lemma 3·12 that the condition (3·5) of Lemma 3·5 holds. Then we apply Lemma
3·5 which completes the proof of Proposition 2·9 (iii).

Below we use several times that by the first part of (3·4), for every (c, α) we have

g−1
c,α(H) ∈ K whenever H ∈ K.

Proof of (3·44).

A � g−1
c0,α0

(B) =A �
(
g−1

c0,α0
(E2) � g−1

c0,α0
(M2)

)
⊃ (

A � g−1
c0,α0

(E2)
) \ g−1

c0,α0
(M2) ∈ S.

The last inclusion follows from the definition of RA and the fact that g−1
c0,α0

(E2) is a neigh-
bourhood of g−1

c0,α0
(u2) = u1 ∈ A � R◦

A.

So, in the rest of this Subsection we prove Lemma 3·12.

Proof of Lemma 3·12. We define

K := A � g−1
c0,α0

(B), and K ′ := K �
(
g−1

c0,α0
(E2) � R◦

A

)
.

It follows from (3·44) that K ∈ S. Clearly,

K \ K ′ ⊂ g−1
c0,α0

(M2) �
(

A \ R◦
A

) ∈ K. (3·45)

That is K ′ ∈ S. Choose an arbitrary y ∈ K ′ � RK ′ . That is

y ∈ K , gc0,α0(y) ∈ E2, and y ∈ R◦
A. (3·46)

In particular G(c0, α0, y) ∈ E2. (Recall G was defined in (3·2).) Hence, we can choose a
neighbourhood V of (c0, α0) and a neighbourhood W of y such that

∀(c, v) ∈ V, we have W ⊂ g−1
c,α(E2) � R◦

A. (3·47)

Now we prove

Fact 3·13.

W � A ∈ S. (3·48)

Proof of Fact 3·13. To get contradiction assume that W � A ∈ K. Then W \ A = W \
(W � A) is a Baire set since W is open and we assumed W � A ∈ K. We know that a set
is Baire if and only if it can be presented as the union of a Gδ-set a set and a set of first
category. If W � A ∈ K then W \ A ∈ S therefore there is a nonepmty Gδ set

G ⊂ W \ A ⊂ R◦
A \ A. (3·49)

As a Gδ set in itself, G is also a Baire set. That is we can find an open set U and F ∈ K such
that

G = U � F. (3·50)
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We obtain from (3·49) and (3·50) that U � R◦
A��. But U \ F ⊂ G ⊂ Ac. Which implies

that U ⊂ Ac � F . We get from this that U � A ⊂ F . That is U � A ∈ K. In particular

(R◦
A � U ) � A ∈ K. (3·51)

On the other hand, using that U � R◦
A�� we can select x ∈ U � R◦

A. Then by the fact that
U is open there exists a δx > 0 such that B(x, δx) ⊂ U � R◦

A. But by the definition of RA

we obtain B(x, δx) � A ∈ S. That is

(R◦
A � U ) � A ∈ S. (3·52)

This contradicts (3·51). This completes the proof of Fact 3·13.

Now we fix an arbitrary (c, α) ∈ V . We prove that

W � A � g−1
c,α(B) = (

W � A
)︸ ︷︷ ︸

∈S

� (W � g−1
c,α(B))︸ ︷︷ ︸

a residual set in W

∈ S. (3·53)

Namely, W � A ∈ S follows from (3·48). The fact that W � g−1
c,α(B) is a residual set in W

since

W \ (W � g−1
c,α(B)) = W \ (g−1

c,α(E2) � g−1
c,α(M2)) ⊂ g−1

c,α(M2) ∈ K,

where the one but last inclusion follows from (3·47). This proves (3·53) which completes
the proof of Lemma 3·12. Which in turn completes the proof of part (iii) of Proposition 2·9.

3·7. Proof Proposition 2·9 (iv)

Proof.
We use again the notation of Section 3·2·1. Let u1 ∈ int(J1 � A) and let u2 ∈ B be a

condensation point (see [13, exercise 27 in section 2]) of B that every neighbourhood of u2

contains uncountably many elements of B. Similarly to the proof of part (i), using Lemma
3·4 we can choose an ε̃ > 0 such that

‖(c, α) − (c0, α0)‖max < ε̃ =⇒ ‖gc,α − gc0,α0‖max <
1

2
η2δ1.

Then, by the first part of (3·4) and the Mean Value Theorem, we obtain that for J̃1 :=
[u1 − δ1, u1 + δ1]

‖(c, α) − (c0, α0)‖max < ε̃ =⇒ u2 ∈ (
gc,α( J̃1)

)◦
. (3·54)

That is
(
gc,α( J̃1)

)◦
is a neighbourhood of u2 hence it contains uncountably many elements

of B:

#
(
B �

(
gc,α( J̃1)

)◦) = ℵ.

Hence, g−1
c,α(B) � J̃1 = ℵ. On the other hand, #( J̃1 \ A) = ℵ0. So we get

‖(c, α) − (c0, α0)‖max < ε̃ =⇒ g−1
c,α(B) � A��.

By Lemma 3·5 this completes the proof.

4. Proof of Theorem 2·2
Proof. Let �̃ ⊂ � such that �̃ is a C2 curve with parametrisation x �→ (x, γ (x)) with

0 � x � a and γ ′′(x)�0.
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Without loss of generality we may assume that

A × B ⊂
(

0,
a

4

]2
. (4·1)

Recall

P(A, B) = {(x, z(x, y)) : x ∈ A and y ∈ B} , (4·2)

where z was defined in (2·2)
Fix α ∈ (a/4, a), and observe that for ã ∈ A, b̃ ∈ B, we have (̃a, z(̃a, b̃)) ∈ P(A, B) and

(α − ã, γ (α − ã)) ∈ �̃, and so

(α, z(̃a, b̃) + γ (α − ã)) ∈ P(A, B) + �̃. (4·3)

Set

H(α, x, y) := z(x, y) + γ (α − x). (4·4)

We verify that H satisfies the hypotheses of Proposition 2·9 in a sufficiently small open
subset of (a/4, a)× (0, a/4]2 . Fix an (u1, u2) ∈ (0, a/4]2 as in the proof of Proposition 2·9.
Using the assumption that the curvature of γ is non-vanishing we can find an α0 ∈ (a/4, a)

such that

zx(u1, u2)�γ ′(α0 − u1).

This and (2·2) together imply that H(α, x, y) ∈ C2(� × J1 × J2) with non-vanishing
partial derivatives in x and y, where � × J1 × J2 is a sufficiently small neighbourhood of
(α0, u1, u2) satisfying � × J1 × J2 ⊂ (a/4, a) × (0, a/4]2.

Observe that we may choose u1, u2 for each of the four parts of Theorem 2·2 and Propos-
ition 2·9 such that if we replace A, B with

Â := J1 � A, B̂ := J2 � B

respectively, then Â, B̂ preserve the same property that A, B were characterised with in the
assumptions of (i)-(iv) of the Theorem 2·2 and Proposition 2·9.

Hence, by Proposition 2·9. Applied with Â, B̂ instead of A, B, we obtain that there exists
an open interval I ⊂ � such that(⋂

α∈I

H(α, Â, B̂)

)0

��.

Combining this result with the observation in (4·3) and the definition of H given in (4·4),
we conclude that

(
P(A, B) + �̃

)◦
��.

5. Proof of Theorem 2·6 and Lemma 2·20

5·1. Proof of Theorem 2·6
Proof of Theorem 2·6. We consider the case when 0 is a density of both A and B, and

we show that (A × B) + S1 contains a neighbourhood of S1. An appropriate shift of A × B
allows us to reduce to this case.

Let ε > 0 and apply the Lebesgue density theorem to choose δ0 > 0 so that if δ0 � δ > 0,
then

L1(A � (−δ, 0)) > δ · (1 − ε) and L1(A � (0, δ)) > δ · (1 − ε). (5·1)
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Also, choose δ′
0 > 0 so that if δ′

0 � δ′ > 0, then

L1(B � (−δ′, 0)) > δ′ · (1 − ε) and L1(B � (0, δ′)) > δ′ · (1 − ε). (5·2)

Fix δ > 0 so that (5·1) holds and (5·2) holds with the choice δ′ = 1 − γ (δ), where
γ (x) = √

1 − x2. Observe by Taylor’s theorem that δ′ ∼ δ2.
For α ∈ [−δ, δ], consider gc,α(x) = c − γ (α − x) and hc,α(x) = c + γ (α − x).

LEMMA 5·1. For each α ∈ [−δ, δ], there exists a neighbourhood of γ (α), call it
N (γ (α)), so that if c ∈ N (γ (α)), then

gc,α(A) � B��. (5·3)

Further, the length of N (γ (α)) is bounded below away from zero uniformly over α ∈ [0, δ].
The lemma also holds when gc,α is replaced by hc,α .

COROLLARY 5·2. For α ∈ [−δ, δ], it is a simple consequence of the lemma that the set

{(α, c) : c ∈ N (γ (α))} ⊂ (A × B) + S1.

Moreover, replacing gc,α by hc,α in Lemma 5·1 yields that {(α, c) : c ∈ N (−γ (α))} ⊂
(A × B) + S1.

To prove the Corollary, we observe that for each |α| < 1, for each a ∈ A, and for each
b ∈ B,

(α, b ± γ (α − a)) ∈ (
(A × B) + S1

)
� �α,

where �α := {(x, y) : x = α}.
We now prove Lemma 5·1. We consider the case when α ∈ [0, δ] (the case when α ∈

[−δ, 0] follows by a similar argument). The plan is to get a lower bound on

L1
(
J α

2 � gc,α

(
A � J α

1

))
L1

(
J α

2

) , (5·4)

where J α
1 ⊂ [−δ, δ] and J α

2 ⊂ [−δ′, δ′] are small intervals to be decided on below.
We already have by (5·2) that, for any interval J α

2 ⊂ [−δ′, δ′] which contains 0,

L1
(
J α

2 � B
)

L1
(
J α

2

) > 1 − ε. (5·5)

The conclusion of the Lemma will follow provided that the sum of the lower bound on
(5·4) and the lower bound on (5·5) is greater than 1.

We consider the following cases separately:
Case 1a. α ∈ [0, δ] and c = γ (α);
Case 1b. α ∈ [0, δ] and c = γ (α) + e for each |e| < δ2/4; and
Case 2. δ � α < 1 and c = γ (α) + e for each |e| < δ2/4.

Case 1a. α ∈ [0, δ], c = γ (α).
Let α ∈ [0, δ], set c = γ (α), and set

J α
1 = [−δ + α, α] ⊂ [−δ, δ].

Now

gγ (α),α(x) = γ (α) − γ (α − x)
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is strictly decreasing on J α
1 . Note that gγ (α),α(0) = 0 and so the graph of gγ (α),α passes

through zero.
Set

J α
2 = gγ (α),α

(
J α

1

) = [γ (α) − 1, γ (α) − γ (δ)] ⊂ [γ (δ) − 1, 1 − γ (δ)].

Since the length of J α
1 is δ and J α

1 ⊂ [−δ, δ], it follows by (5·1) that L1
(

Ac � J α
1

)
< δ ·ε.

Also,
∣∣g′

γ (α),α(x)
∣∣ < 3δ for x ∈ [−δ, δ]. Thus

L1
(
gγ (α),α

(
Ac � J α

1

)) =
∣∣∣∣∣
∫

Ac�Jα
1

g′
γ (α),α(x)dx

∣∣∣∣∣ � 3εδ2. (5·6)

Next, we use Taylor’s theorem to obtain a uniform lower bound on the length of J α
2 .

L1
(
J α

2

) = 1 − γ (δ) � 1

2
δ2. (5·7)

Now, we can write

J α
2 = gγ (α),α

(
J α

1

) = gγ (α),α

(
A � J α

1

) + gγ (α),α

(
Ac � J α

1

)
. (5·8)

Putting (5·6), (5·7) and (5·8) together, we see that

L1
(
gγ (α),α(A � J α

1 )
)

L1
(
J α

2

) > 1 − 6ε.

Combining this and (5·5) we obtain that (5·3) holds.
Case 1b. α ∈ [0, δ], c = γ (α) + e, for each |e| < δ2/4.

Next, if c = γ (α) + e, for some |e| < δ2/4, then

gc,α

(
J α

1

) = J α
2 + e.

It follows that

J α
2 = (

J α
2 � gc,α

(
J α

1

)) ⋃ (
J α

2 \ (J α
2 + e

))
= (

J α
2 � gc,α

(
A � J α

1

)) ⋃ (
J α

2 � gc,α

(
Ac � J α

1

)) ⋃ (
J α

2 \ (J α
2 + e

))
.

Putting this together with (5·6) and (5·7), we see that

L1
(
J α

2 � gc,α

(
A � J α

1

))
L1

(
J α

2

) > 1 − 6ε − e
1
2δ

2
. (5·9)

We combine this with the observation that, by (5·2),

L1
(
J α

2 � B
)

L1
(
J α

2

) > 1 − ε.

Thus, gc,α (A) � B�� holds for α ∈ [0, δ] and c = γ (α) + e provided that |e| <

δ2(1 − 7ε)/2. Set e0 = δ2(1 − 7ε)/2 and

N (γ (α)) = (γ (α) − e0, γ (α) + e0)

to complete the proof of the Lemma 5·1 in Case (1b).
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COROLLARY 5·3. For α ∈ [−δ, δ], a simple modification of the proof of the Lemma 5·1
(mainly, reversing the roles of the sets A and B ) implies that the set

{(c, α) : c ∈ N (±γ (α))} ⊂ (A × B) + S1.

Moreover, replacing gc,α by hc,α and reversing the roles of A and B in the proof of Lemma
5·1 yields that {(c, α) : c ∈ N (−γ (α))} ⊂ (A × B) + S1

Gathering the results of Corollaries 5·2 and 5·3, we conclude that (A × B) + S1 contains
an open ball about each of the poles of S1: (1, 0), (0, 1), (−1, 0), (0, −1).

Case 2. δ � α < 1, for each |e| < δ2/4.
The previous case relied on an obtaining an upper bound on L1

(
gγ (α),α

(
Ac � J α

1

))
(see

(5·6) above) and a lower bound on L1
(
J α

2

)
(see (5·7) above). To handle α away from zero,

δ � α < 1, we perform a similar argument where the mean value theorem takes the role of
Taylor’s theorem above. Here are the details:

For δ � α � 1, set J1 = [0, δ/2] and J α
2 = [γ (α) − γ (α − δ/2), 0] ⊂

[γ (1) − γ (1 − δ/2), 0].
The upper bound in (5·6) still holds when J1 = [0, δ/2]. Next, we have by the mean value

theorem that there exists α̂ ∈ (α − δ/2, α) so that

L1
(
J α

2

) = γ

(
α − δ

2

)
− γ (α) = − δ

2
· γ ′(̂α). (5·10)

Since the derivative γ ′ is strictly increasing on (0, 1) and α̂ ∈ (α − δ/2, α) ⊂ (δ/2, 1), then

L1
(
J α

2

)
> − δ

2
· γ ′

(
δ

2

)
∼ δ2. (5·11)

The proof proceeds as before.

5·2. Proof of Lemma 2·20

Proof of Lemma 2·20. We may assume that A is not a singleton and that A is connected
(that is we cannot find G1, G2 open sets such that Gi � A��, i = 1, 2 and A = (G1 �
A) � (G2 � A)). Otherwise we change to one of its connected component which is not a
singleton. Let

Â := {
x ∈ R2 : ∃a1, a2 ∈ A : ‖x − a1‖ < 1, ‖x − a2‖ > 1

}
.

It is immediate form the definition that Â is open and using #A�1 we obtain that Â��.
Hence, to verify the Lemma, it is enough to check that

Â ⊂ A + S1. (5·12)

To get contradiction, assume that there exists x ∈ Â such that x � A + S1. Then ∀a ∈ A,

a � x + S1. That is

A � (x + S)1 = �. (5·13)

Let

G1 := {
y ∈ R2 : ‖y − x‖ < 1

}
, G2 := {

y ∈ R2 : ‖y − x‖ > 1
}
.

Clearly, G1, G2 are open, and it follows from x ∈ Â that G1
⋂

A��, G2
⋂

A��. But by
(5·13) we have

A = (G1 � A) � (G2 � A)
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which contradicts to the assumption that A is connected. This shows that (5·12) holds and
the fact that Â is a non-empty open set yields that (2·7) holds.

6. Proof Theorem 2·16

Let t = (t1, t2) ∈ C(1/3) := C1/3 × C1/3. We show that 
t(C(1/3)) contains an interval.
Let v > 0, and define

gv (x) = t2 +
√

v2 − (x − t1)2.

Observe that if

gv (x) = y for some x, y ∈ C1/3,

then v ∈ 
(t1,t2) (C(1/3)) .

We verify that there exists a non-empty open interval I , in the domain of gv , with I �
C1/3�� and a non-empty open interval V such that

gv (I � C1/3) � C1/3��, ∀v ∈ V . (6·1)

The idea behind the proof of (6·1) is to use a modification of the proof of the Newhouse
gap lemma which is presented in Palis and Takens [14]. Given a set K , we refer to the con-
nected components of the complement of K as gaps. The Newhouse gap lemma states that
two Cantor sets K and L intersect one another provided that the product of their “thick-
nesses” (see Section 3·6) is greater than one, K is not contained in a gap of L , and L is not
contained in a gap of K .

Since the thickness of C1/3 is one and the thickness of gv (C) is smaller than one, New-
house gap Lemma cannot be applied directly but we find inspiration in its proof. The aim
now is to construct the intervals I and V .

By symmetry of the middle-third Cantor set, we need only show that 
t(C(1/3)) contains
an interval for t = (t1, t2) ∈ C̃ × C̃ , where C̃ := [0, 1/3] � C(1/3). Fix such a (t1, t2)

throughout.
Define the set of left and right gap endpoints of C1/3:

CL = {x ∈ C1/3 : x is a left-end-point of a finite gap of C1/3}, (6·2)

CR = {x ∈ C1/3 : x is a right-end-point of a finite gap of C1/3}. (6·3)

Clearly, CL and CR are dense in C1/3.

LEMMA 6·1. For sufficiently small ε > 0, there exists (u1, u2) ∈ C1/3 ×C1/3 with u1 > t1

and u2 > t2 satisfying:
(i) u1 ∈ CL and u2 ∈ CR; and
(ii)

∣∣g′
v0
(u1)

∣∣ ∈ [1 + 2ε, 3 − 2ε], where v0 = √
(u1 − t1)2 + (u2 − t2)2;

(iii) g′
v0
(u1) < 0.

Proof of Lemma 6·1. Let Rε
(t1,t2)

be the union of the set of half-lines starting (t1, t2) with
slope contained [1/3 + 2ε, 1 − 2ε] for a small ε > 0.

It follows from elementary geometry that we can find an ε > 0 so that the set Rε
(t1,t2)

contains an open neighbourhood of a point in C1/3 × C1/3. Using that both CL and CR are
dense in C1/3, we obtain that

∃ (u1, u2) ∈ CL × CR such that t1 < u1, t2 < u2,
u1 − t1

u2 − t2
∈ [1 + 2ε, 3 − 2ε] . (6·4)
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142 KÁROLY SIMON AND KRYSTAL TAYLOR

Let

v0 :=
√

(u1 − t1)2 + (u2 − t2)2. (6·5)

It is straight forward to verify that g′
v0
(u1) < 0 and

|g′
v0
(u1)| = |u1 − t1|

|u2 − t2| ∈ [1 + 2ε, 3 − 2ε] . (6·6)

For the rest of the proof of Theorem 2·16, fix ε > 0, the pair (u1, u2) ∈ CL × CR , and the
corresponding v0 from Lemma 6·1.

LEMMA 6·2. There exists δ > 0 so that
(i) ∣∣g′

v (x)
∣∣ ∈ [1 + ε, 3 − ε] if |x − u1| < δ and |v − v0| < δ.

Moreover, there exists δ′ > 0 so that if v0 � v < v0 + δ′, then
(ii) gv ([u1 − δ, u1] � C1/3) is not contained in a gap of C1/3 and C1/3 is not contained in

a gap of gv ([u1 − δ, u1] � C1/3).

Proof of Lemma 6·2. Item (i) is an immediate consequence of the continuity of the de-
rivative of the function (u, v) �→ gv (x) at the point (u1, v0). Item (ii) holds when v = v0

because u2 = gv0(u1). Now we consider the case when v ∈ (v0, v0 + δ).
If v > v0, then gv0(u1) < gv (u1). Choose v > v0 small enough that

gv0(u1) < gv (u1) < gv0(u1) + δ. (6·7)

In particular, choose 0 < δ′ � δ so that if v0 � v < v0 +δ′, then (6·7) holds. Combining this
with the observation that, by the lower bound on the derivative from (i), gv (u1−δ)−gv (u1) >

δ, we have

u2 = gv0(u1) < gv (u1) < u2 + δ < gv (u1 − δ).

We now argue that δ > 0 can be chosen apriori in such a way that both u1 − δ and u2 + δ

are in C1/3 by setting δ = 1/3N for N sufficiently large. The choice (u1, u2) ∈ CL × CR

implies that both
[
u1 − 1/3N , u1

]
and

[
u2, u2 + 1/3N

]
are cylinder intervals of C1/3 if N is

sufficiently large.

We fix δ, δ′ > 0 which satisfy Lemma 6·2 and we define:

I := (u1 − δ, u1) , V := (v, v + δ′), and C := I � C1/3. (6·8)

Further we fix an arbitrary v ∈ V and we define

g : C −→ R, g(x) := gv (x).

As we discussed above (see (6·1)), to prove the theorem it is enough to prove that

g(C) � C1/3��. (6·9)

Definition 6·3.
(a) Let U be a gap of C1/3. We define the right-bridge of U as the minimal distance

between Ur and the left-end-point of another gap U ′, so that U ′
l > Ur and |U ′| � |U |.

The left-bridge of U is defined analogously.
(b) Let U be a bounded gap of C1/3 and U ′ be a bounded gap of C . We call (U, g(U ′))

a gap pair if U contains exactly one end-point of g(U ′), and g(U ′) contains exactly
one end-point of U .
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Fig. 1. (Colour online) |Ũ | < |U | and we can replace (U, g(U ′)) with (Ũ , g(U ′)) since (Ũ , g(U ′)) is also
a gap pair

It is an easy exercise to check that the following Fact holds:

Fact 6·4. The bridges of g(C) are the g-images of the bridges of the Cantor set C .

The following plays a central role in the proof of our theorem:

LEMMA 6·5. Let (U, g(U ′)) be an arbitrary gap pair. The right-end-point of U, is de-
noted by Ur an d the left-end-point of U, denoted by Ul. Let Br denote the right-bridge of
U and Bl denote the left-bridge. Let Bg

r denote the right-bridge of g(U ′) and Bg
l denote the

left-bridge of g(U ′). Then at least one of the following hold:
(a) Ur , is contained in g(U ′), and |Br | � |g(U ′)|;
(b) Ur , is contained in g(U ′), and |U | � |Bg

l |;
(a) Ul, is contained in g(U ′), and |Bl | � |g(U ′)|;
(b) Ul, is contained in g(U ′), and |U | � |Bg

r |.
Observe that Lemma 6·2 guarantees the existence of a gap U ′ of C and a gap U of C1/3 such
that (U, g(U ′)) form a gap pair.

Proof of Lemma 6·5. For symmetry, without loss of generality we may assume that Ur ∈
g(U ′). It is immediate from the construction of the middle-third Cantor set that |Bl | =
|U | and |Br | = |U |. Observe that

(i) If |U ′| < |U |, then |U ′| � |U |/3 and so, by the Mean Value Theorem and (6·6) we
have |g(U ′)| < |U |.

(ii) If |U ′| � |U |, then |Bg
l | > |U | and |Bg

r | > |U |. To see this, remember that the
bridges of g(C) are the g-images of the bridges of C and the bridges in C adjacent
to U ′ have the same length as U ′. We apply g for the bridges adjacent to U ′ to get
the bridges Bg

l and Bg
r . Now we use the Mean Value Theorem and (6·6) to verify the

assertion above.
It is immediate that (i) implies that (a) holds and (ii) implies that (b) holds.

Now we can finish the proof of Theorem 2·16 as follows: from now we proceed as the
proof of the Gap Lemma in [14]. Namely, Lemma 6·4 guarantees that for any gap pair
(U, g(U ′)) we can replace either U with a shorter gap U1 of C1/3 or we can find a gap U ′

1 of
C such that |g(U ′

1)| < |g(U ′)|. Since the total length of all gaps is summable, after an infinite
sequence of these replacements we get a sequence of gaps with length convergent to zero.
Since the closure of these gaps contains points from both of C1/3 and g(C) we obtain by a
usual compactness argument that (6·9) holds and this completes the proof of the theorem.

7. proof of Theorem 2·7
Proof. Recall that we set C(1/3) := C1/3 × C1/3 and γ (x) = √

1 − x2. As in the proof
of Theorem 2·2, we fix α ∈ (0, 1) and reduce matters to showing that{

y − γ (α − x) : x, y ∈ C1/3 and |α − x | � 1
}

(7·1)
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contains a non-empty open interval. Namely, if t = y − γ (x − α) for some x, y ∈ C1/3 then

(α, t) ∈ C(1/3) + S1. (7·2)

Therefore to verify that
(
C(1/3) + S1

)◦
�� it is enough to show that there exists an interval

� of αs so that ⋂
α∈�

{
y − γ (α − x) : x, y ∈ C1/3 and |α − x | � 1

}
(7·3)

contains a non-degenerate interval. The conclusion of the theorem follows immediately upon
establishing that the set in (7·3) contains a non-empty open interval; the details of this re-
duction are explained in the proof of Theorem 2·2.

The remainder of the proof is dedicated to establishing that the set in (7·3) contains a
non-empty open interval. The proof follows a similar outline to that of Theorem 2·16 where
we study pinned distance sets of C(1/3).

Fix α ∈ (0, 1) and a scalar t . Set

ht,α(x) = t − γ (α − x).

As explained above, we need to prove that there exists an interval of αs and ts such that

ht,α(C
′
1/3) � C1/3��, (7·4)

where C ′
1/3 is a suitable restriction of C1/3 to the domain of ht,α .

Let CL be as in (6·2) respectively. Recall that CL is dense in C1/3.

LEMMA 7·1. For sufficiently small ε > 0, there exists a scalar α0, a point pair (u1, u2) ∈
C1/3 × C1/3 with |u1 − α| < 1, a scalar t0, and an N ∈ N satisfying:

(i) u1 ∈ CL and u2 ∈ CL;
(ii) h′

t0,α0
(u1) ∈ [1 + 2ε, 3 − 2ε]; and

(iii) h′
t,α(x) ∈ [1 + ε, 3 − ε] whenever max{|x − u1|, |α − α0|, |t − t0|} � 1/3N .

Proof. Observe that for t arbitrary,

h′
t,α(x) = γ ′(α − x) = (x − α)√

1 − (x − α)2

is a bijection from (α, α + 1) to (0, ∞). Let Iα ⊂ (α, α + 1) denote the open set of x so that
h′

t,α(x) ∈ (1 + 2ε, 3 − 2ε). Observe that the length of Iα is independent of α.
Choose α0 so that Iα0 intersects C1/3. Choose u1 ∈ Iα0 � CL . Next, choose t0 so that

u2 := ht0,α0(u1) ∈ CL .

It follows by the continuity of H(t, α, x) := h′
t,α(x) at (t0, α0, u1), that there exists a non-

empty open neighbourhood of (t0, α0, u1) on which h′
t,α(x) ∈ (1 + ε, 3 − ε). Choose N ∈ N

so that 1/3N is strictly less than the radius of this interval.

Fix the points u1, u2, α0, t0 and δ > 0 as in Lemma 7·1.

LEMMA 7·2. There exists δ′ > 0 and M ∈ N so that if α0 < α < α0 + δ′ and t0 − δ′ <

t < t0, then ht,α([u1 − 1/3M , u1] � C1/3) is not contained in a gap of C1/3 and C1/3 is not
contained in a gap of ht,α([u1 − 1/3M , u1] � C1/3).
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Proof. Let M ∈ N to be determined. Use the continuity of H(t, α) := ht,α(u1) at (t0, α0)

to choose δ′ > 0 (δ′ � δ, where δ is as in Lemma 7·1) so that if max{|α − α0|, |t − t0|} < δ′,
then

u2 − 1

3M
< ht,α(u1) < u2,

where u2 = ht0,α0(u1). Next, use the derivative assumption proved in the previous lemma
to prove that whenever max {|α − α0|, |t − t0|} < 1/3M and M � N (see Lemma 7·1 part
(iii)), then

ht,α(u1) − ht,α

(
u1 − 1

3M

)
>

1

3M
.

It follows that if max{|α − α0|, |t − t0|} < 1/3M and 1/3M � δ′, then

ht,α

(
u1 − 1

3M

)
< u2 − 1

3M
< ht,α(u1) < u2.

The choice (u1, u2) ∈ CL × CL implies that both
[
u1 − 1/3M , u1

]
and

[
u2 − 1/3M , u2

]
are

cylinder intervals of C1/3 if M is chosen sufficiently large. Choosing such an M completes
the proof of the lemma.

Lemma 7·2 guarantees the existence of gap pairs for ht,α([u1 − 1/3M , u1] � C1/3) and C1/3

whenever α0 < α < α0 + δ′, t0 − δ′ < t < t0, and δ = 1/3M for M sufficiently large.
The proof of the Theorem now proceeds exactly as in Theorem 2·16 where it was es-

tablished that the existence of a gap pair between two sets guarantees their intersection.
In particular, see the proof of Theorem 2·16 from equation (6·9) onward where we set
g(x) := ht,α(x).

8. Proof of Theorems 2·24 and 2·25

Throughout this Section we use the following notation:

Definition 8·1. Let � be a polygon of n sides. Then

� =
n⋃

i=1

Ii , (8·1)

where Ii is a straight line segment. We write �̃i to denote the straight line which contains Ii ,
and �i for the straight line through the origin which is parallel to �̃i . Let αi denote the angle
between �i and the x−axis.

For each i ∈ {1, . . . , n}, choose ui ∈ R such that

�̃i = ui · eα⊥
i

+ �i , (8·2)

where eα ∈ S1 denotes the unit vector of angle α and < eα, eα⊥ >= 0.
We now introduce a dense family of parallel lines. Let G ⊂ R and set

Pi (G) :=
⋃
g∈G

(
g · eα⊥

i
+ �i

)
and P̃i (G) := Pi (G + ui) = Pi (G) + ui eα⊥

i
. (8·3)

Using that �i + �i = �i we obtain that

Pi (G) + �̃i = P̃i (G) and Pi (G)c + �̃i = P̃i (G)c. (8·4)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004118000580
Downloaded from https://www.cambridge.org/core. Children's Hospital of Columbus, on 27 May 2020 at 15:19:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000580
https://www.cambridge.org/core
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Proof of Theorem 2·24. Let � be a polygon of n sides. We use the notation of definition
8·1. Fix a G ⊂ R which is a dense Gδ set with L1(G) = 0. With this choice of G, both
Pi(G) and P̃i(G) defined in (8·3) are dense Gδ subsets of R2 of zero L2-measure for every
i = 1, . . . , n. We define

A :=
n⋂

k=1

(Pk(G))c .

Observe that A is of full measure.
By the definition of �̃i we have

A + � ⊂ A +
n⋃

i=1

�̃i =
n⋃

i=1

(
A + �̃i

)
.

It remains to verify that

(
n⋃

i=1

(
A + �̃i

))◦
= �. This is so because, by (8·4) and the definition

of A, we have that for each i :

A + �̃i ⊂ (
P̃i(G)

)c
, (8·5)

which implies that
n⋃

i=1

(
A + l̃i

) ⊂
n⋃

i=1

(
P̃i (G)

)c
. (8·6)

That is,

(A + �)c ⊃
n⋂

i=1

P̃i (G). (8·7)

The set on the right-hand side is dense since it is a finite intersection of dense Gδ sets (see
the Baire category theorem). This proves that A + � is disjoint from a dense set, and so its
interior must be empty.

Proof of Theorem 2·25. Besicovitch proved (see [10, theorem 11·1]) that there exists a
Borel set B̃ ⊂ R2 such that B̃ contains a line in every direction but L2(B̃) = 0. Following
Mattila [10] we define

B :=
⋃

r∈Q×Q

(r + B̃). (8·8)

Then L2(B) = 0 and in every direction there is a dense set of lines contained in B. Now let

A := D � Bc, (8·9)

where D is the open unit disc D := {
(x, y) : x2 + y2 < 1

}
. Then A is a set full Lebesgue

measure in D but in every direction there is a dense set of straight lines which do not intersect
A.

Fix an arbitrary θ ∈ [0, π). Let N be the perimeter of [−1, 1]2. Recall that we defined Nθ

as the rotated (with angle θ in anti-clockwise direction around the origin ) image of N . Let
N N

θ , N W
θ , N S

θ , N E
θ be the rotated (with the same rotation as above) image of the Northern,

Western, Southern and Eastern wall of [−1, 1]2 respectively. Let

Aθ := projθ (A).
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Then using that A is contained in the unit disk we obtain that

((Aθ + 1) × �⊥
θ ) � ((Aθ − 1) × �⊥

θ ) = �. (8·10)

Here we considered Aθ ±1 as subsets of �θ and the product is meant in the �θ , �θ⊥ coordinate
system. By the definition we have

(Aθ + 1)◦ = � and (Aθ − 1)◦ = �. (8·11)

Putting together (8·10), (8·11) and the fact that

A + N E
θ ⊂ (Aθ + 1) × �⊥

θ and A + N W
θ ⊂ (Aθ − 1) × �⊥

θ , (8·12)

we obtain that there is a dense set of lines parallel to �θ⊥ which is in the complement of(
A + N E

θ

)
�
(

A + N W
θ

)
.

Exactly in the same way one can verify that there is a dense set of lines parallel to �θ which
is in the complement of (

A + N S
θ

)
�
(

A + N N
θ

)
Observe that the intersection of the two dense families of lines mentioned above (one parallel
to �θ the other one is parallel to �⊥

θ ) intersect each other in a dense set E . Clearly (A + Nθ )�
E = � which completes the proof of the theorem.
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