atin-
lood

the

ev-
sing
con-
n its
are
each

then

jtion
e D
of 1
fains

3.2 Two Fundamental Theorems 59

d € D, the interval (f(d—), f(d+)) contains a rational number g4 (make:
the obvious modification if d is an endpoint of I). If d,d’ € D with d < &',
then f(d+) < f(d'—), so g4 < qa’- Thus the map d — g4 of D into Q is
injective; since Q is countable, it follows that D is countable. |

It is left as one of the exercises at the end of this chapter to show that
for any countable subset S of R there exists an increasing function on R
whose discontinuity set is precisely S.

3.2 Two Fundamental Theorems

The next two theorems are of use in many situations. They will be gener-
alized in a later chapter.

3.14 Theorem. A continuous real-valued function on a closed bounded
interval attains maximum and minimum values.

Proof. Suppose f : J — R is continuous, where J = [a,b] (a < b).
Let M = sup{f(z) : ¢ € J}. If M = +o0, there exists for each n € N
some T, € J such that f(z,) > n. According to the Bolzano—Weierstrass
theorem (Theorem 2.17) there exists a subsequence (x,,) of (z,) which
converges to some c; since a < x, < b for every n, we have a < ¢ < b.
According to Proposition 3.8(e), we have f(c) = lim f(z,,), but this is
impossible since f(z,,) > ng — +00. Thus M < +o00. Now choose, for each
n € N, z, € J such that f(z,) > M —1/n. Since also f(z,) < M, we have
f(zn) — M as n — oo. The sequence (z,) has a convergent subsequence
(yn). Then (f(yn)) is a subsequence of (f(zn)), so f(yn) — M; but if
yn — ¢, Proposition 3.8 assures us that f(y,) — f(c). Thus f(c) = M.
The proof that f attains a minimum value is similar, or can be deduced
from what we have proved by considering the function —f. |

3.15 Theorem. If f is continuous on the interval [a,b], and f(a) < y <
f), or f(a) > y > f(b)), there exists x, with a < x < b, such that

f(@) =y.

Proof. We may assume that f(a) < y < f(b). Let E = {t € [a,}] :
f(t) < y}, so E is a nonempty (a € E) subset of [a,b]. Let = sup E, so
x € [a,b]. For each n there exists z, € E such that z — 1/n < z, < z.
Thus f(z,) < y for every n. Since z,, — x, we have (by Proposition 3.8(e))
lim f(z,) = f(z), so f(z) <y. But f(b) > y implies (since f is continuous
at b) that there exists § > 0 such that f(¢t) >y for all t withb—6 <t <b.
Thus = < b. Hence there exist ¢, € J with = < ¢, and lim¢, = x. Since
tn > T, we have t,, ¢ E, ie., f(tn) > vy, so f(z) = lim f(¢,) > y. Thus
f(@) = v. I




