Let (X,d) be a metric space. If (x_n) is a sequence in X, then to say that (x_n) is Cauchy means that for each $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ with m, n > N, we have $d(x_m, x_n) < \varepsilon$. It is easy to see that if (x_n) is a convergent sequence in X, then (x_n) is Cauchy. To say that (X,d) is complete (as a metric space) means that each Cauchy sequence in X is convergent in X. Thus in a complete metric space, a sequence is convergent if and only if it is Cauchy.

As we know, each non-empty subset of **R** which is bounded above has a least upper bound in **R**. (This property of **R** is sometimes called *Dedekind completeness*.) Using this fact, we shall soon show that **R** is also complete as a metric space, when we give it its usual metric, namely d(x,y) = |x-y|. For now, you may take it for granted that **R** is complete in this sense.

X4. As a problem X, let X be a non-empty set, let (Y,d) be a metric space, let Z be the set of bounded due 2Th functions from X into Y, and let D be the metric on Z defined by

$$D(f,g) = \sup \{ d(f(x),g(x)) : x \in X \}.$$

Prove that if the metric space (Y, d) is complete, then so is the metric space (Z, D).

Let (X, ρ) and (Y, σ) be metric spaces. An *isometry* from X into Y is a map $f: X \to Y$ such that $\sigma(f(x), f(x')) = \rho(x, x')$ for all $x, x' \in X$. Informally, an isometry is a map that preserves distances between points.

X5. Let (X, d) be a metric space. Give **R** its usual metric. Let Z be the set of bounded functions from $due\ 2Th$ X into **R**. Give Z the metric defined by

$$D(f,g) = \sup \{ |f(\xi) - g(\xi)| : \xi \in X \}.$$

By problem X4, the metric space (Z, D) is complete, because \mathbf{R} with its usual metric is complete as a metric space. Fix $x_0 \in X$. For each $x \in X$, define $f_x \colon X \to \mathbf{R}$ by

$$f_x(\xi) = d(\xi, x) - d(\xi, x_0).$$

- (a) Prove that for each $x \in X$, we have $f_x \in Z$.
- (b) Define $\Phi: X \to Z$ by $\Phi(x) = f_x$. Prove that Φ is an isometry from (X, d) into (Z, D).

Let (X,d) be a metric space and let $X_1 \subseteq X$. Let d_1 be the restriction of d to $X_1 \times X_1$. Then clearly d_1 is a metric on X_1 . We call d_1 the subspace metric that X_1 inherits from (X,d) and we say that the metric space (X_1,d_1) is a subspace of the metric space (X,d).

Remark. The result of problem X5 shows that any metric space is isometric to a subspace of a complete metric space.

Let A and B be sets. To say that A is equinumerous to B means that there is a bijection from A to B. Recall that ω denotes the set $\{0,1,2,\ldots\}$. If $n\in\omega$, then to say that A has n elements means that either n=0 and A is empty or $n\in \mathbb{N}$ and A is equinumerous to $\{1,\ldots,n\}$. To say that A is finite means that there exists $n\in\omega$ such that A has n elements. To say that A is infinite means that A is not finite. To say that A is countably infinite means that A is equinumerous to \mathbb{N} . To say that A is countable means that A is finite or countably infinite. It is easy to show that if B is an infinite subset of \mathbb{N} , then B is equinumerous to \mathbb{N} . It follows that A is countable if and only if A is equinumerous to a subset of \mathbb{N} . To say that A is uncountable means that A is not countable. Cantor (1873) pointed out that the set of rational numbers is countable and proved that the set of real numbers is uncountable.

X6. Let X be a set. Prove that X contains a countably infinite subset if and only if X is equinumerous to a proper subset of itself. (Do not use the axiom of choice.)

 $^{^{1}}$ A bijection from A to B is a one-to-one map from A onto B. Another name for a bijection from A to B is a one-to-one correspondence between A and B.

² Warning: The definition of *countable* that I have given is the one accepted by most mathematicians, but you should watch out for the fact that Rudin uses the term *countable* to mean what I have chosen to call *countably infinite*. So for Rudin, a finite set is not countable. To me, that is just ridiculous, so I will not follow Rudin's use of the term *countable*.