ADDITIONAL WEB SUPPLEMENT TO "SPECTRAL AND MATRIX FACTORIZATION METHODS FOR CONSISTENT COMMUNITY DETECTION IN MULTI-LAYER
 NETWORKS, ANNALS OF STATISTICS, 2020"

By Subhadeep Paul * and Yuguo Chen ${ }^{\dagger}$
The Ohio State University * and University of Illinois at Urbana-Champaign ${ }^{\dagger}$

This additional web supplement contains the derivation of the algorithm for the proposed OLMF method in Section 2.1 of [2].

We start from the objective function

$$
f=\operatorname{minimize} \sum_{m=1}^{M}\left\|A^{(m)}-P \Lambda^{(m)} P^{T}\right\|_{F}^{2}, \quad \text { subject to } P^{T} P=I .
$$

We use the Lagrange method of multipliers and augment the objective function as follows:

$$
\begin{aligned}
O & =\sum_{m=1}^{M} \operatorname{tr}\left(\left(A^{(m)}-P \Lambda^{(m)} P^{T}\right)^{T}\left(A^{(m)}-P \Lambda^{(m)} P^{T}\right)\right)+\operatorname{tr}\left(\Gamma_{P}\left(P^{T} P-I\right)\right), \\
& \equiv \sum_{m=1}^{M} \operatorname{tr}\left(A^{(m)} A^{(m)}-2 \Lambda^{(m)} P^{T} A^{(m)} P+P \Lambda^{(m)} P^{T} P \Lambda^{(m)} P^{T}\right)+\operatorname{tr}\left(\Gamma_{P}\left(P^{T} P-I\right)\right),
\end{aligned}
$$

where Γ_{P} is a symmetric matrix which is the Lagrange multiplier. To find the gradients we will use a number of results on matrix derivative of trace from section 2.4.2 of [3]. The gradient with respect to $\Lambda^{(m)}$ s does not involve Γ_{P} and is given by

$$
\frac{\partial O}{\partial \Lambda^{(m)}}:-2 P^{T} A^{(m)} P+2 P^{T} P \Lambda^{(m)} P^{T} P
$$

The gradients with respect to P and Γ_{P} are given by

$$
\begin{aligned}
& \frac{\partial O}{\partial P}: \sum_{m}\left(-4 A^{(m)} P \Lambda^{(m)}+4 P \Lambda^{(m)} P^{T} P \Lambda^{(m)}\right)+2 P \Gamma_{P} \\
& \frac{\partial O}{\partial \Gamma_{P}}: P^{T} P-I .
\end{aligned}
$$

Setting these to 0 and solving for Γ_{P} we get (note setting the second gradient to 0 is equivalent to saying $P^{T} P=I$),

$$
\Gamma_{P}=2 \sum_{m}\left(P^{T} A^{(m)} P \Lambda^{(m)}-\Lambda^{(m)} \Lambda^{(m)}\right) .
$$

and the gradient with respect to P becomes :

$$
\begin{aligned}
\frac{\partial O}{\partial P} & : \sum_{m}\left(-4 A^{(m)} P \Lambda^{(m)}+4 P \Lambda^{(m)} P^{T} P \Lambda^{(m)}+4 P\left(P^{T} A^{(m)} P \Lambda^{(m)}-\Lambda^{(m)} \Lambda^{(m)}\right)\right) \\
& \equiv-\sum_{m}\left(I-P P^{T}\right) A^{(m)} P \Lambda^{(m)}
\end{aligned}
$$

The same result could be obtained directly by using the formula for gradient of a function in the Grassman manifold in Section 2.5.3 in [1]. First note that P is an $n \times k$ matrix with orthonormal columns (i.e., $P^{T} P=I$) and therefore belongs to the Grassman manifold. In the notation of [1], we have F_{Y} is the derivative of the objective function with respect to P. So,

$$
F_{Y}=\sum_{m}\left(-4 A^{(m)} P \Lambda^{(m)}+4 P \Lambda^{(m)} P^{T} P \Lambda^{(m)}\right)
$$

Then using the formula in [1] and the fact that P is in the grassman manifold (i.e., $P^{T} P=I$), the gradient is

$$
\begin{aligned}
& F_{Y}-Y Y^{T} F_{Y} \\
& =\sum_{m}\left(-4 A^{(m)} P \Lambda^{(m)}+4 P \Lambda^{(m)} P^{T} P \Lambda^{(m)}\right)-P P^{T} \sum_{m}\left(-4 A^{(m)} P \Lambda^{(m)}+4 P \Lambda^{(m)} P^{T} P \Lambda^{(m)}\right) \\
& \equiv-\sum_{m}\left(I-P P^{T}\right) A^{(m)} P \Lambda^{(m)}
\end{aligned}
$$

References.

[1] Edelman, A., Arias, T. A. and Smith, S. T. (1998). The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis and Applications 20 303-353.
[2] Paul, S. and Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. The Annals of Statistics $48230-$ 250.
[3] Petersen, K. B. and Pedersen, M. S. (2012). The Matrix Cookbook. Version 20121115.

Subhadeep Paul
Department of Statistics
The Ohio State University
Columbus, OH 43210
USA
E-MAIL: paul.963@osu.edu

Yuguo Chen
Department of Statistics
University of Illinois at Urbana-Champaign Champaign, IL 61820
USA
E-MAIL: yuguo@illinois.edu

