

Programmable Microdroplet Cascade Reactions: Uncatalyzed Michael Addition for Carbon–Carbon Bond Formation via Plasma–Water Fusion

Alexander J. Grooms, Isabella M. Marcelo, Robert T. Huttner, and Abraham K. Badu-Tawiah* Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210

Introduction

- Carbon-Carbon (C-C) bond forming steps have ubiquitous importance in all fields of chemical science
- C-C bond formation plays a critical role in the formation of bioactive chemicals, pharmaceuticals, biodegradable polymers, natural product and fine chemical synthesis, and agrochemicals
- Michael addition between a 1,3-dicarbonyl Michael donor and electron-deficient Michael acceptor represents a straightforward method for C-C formation
- · Bulk Michael addition methods are limited by strong base catalysis, specialized reagent selection, and aprotic organic solvent - with unfavorable environmental and ecological implications
- Herein: A combination of the reactive environment of plasma discharge with the green medium of charged water microdroplets in a programmable reaction platform for uncatalyzed Michael addition

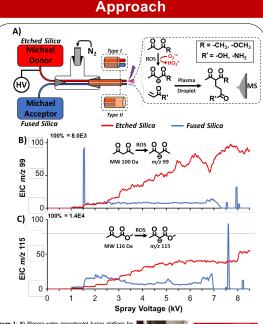
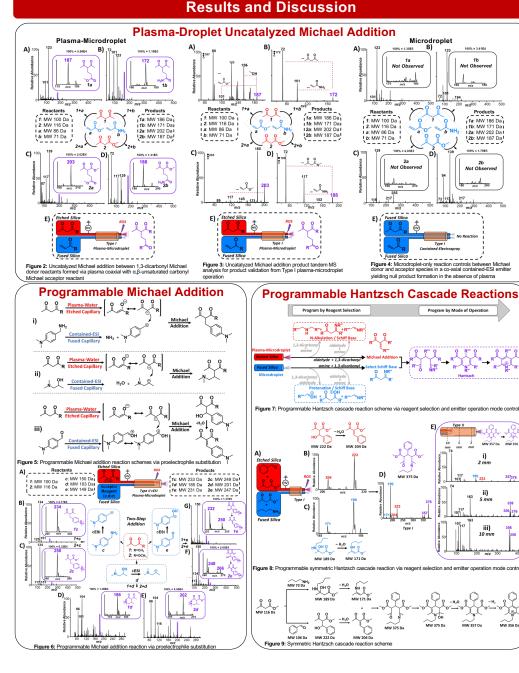



Figure 1: A) Plasma-water microdroplet fusing platform for the online formation of Michael donor reagents via ROS in non-thermal plasma discharge with coaxial introduction of Michael acceptor reagents in a configurable emitter for uncatalyzed C-C bond formation. Extracted ion chromatogram for the formation of the Michael donor species, B) acetylacetone and C) methylacetylacetate via plasmawater microdroplet spray (red line) versus traditiona electrospray (blue line).

	Outer capillary plasma Inner capillary plasma	
Etched Silica		

Summarv

- The contained-ESI source with chemically etched spray capillaries is capable of online plasma-droplet fusing reactions
- · This phenomena is applied here to uncatalyzed Michael addition reactions
- Reaction programmability is achieved via:
- · Reagent selection in etched silica capillaries for plasma generation and fused silica capillaries for microdroplet reactivity
- Emitter operational mode control
- Tandem MS of products generated online yield structural information
- Programmable Hantzsch reaction demonstrated for symmetric product generation

Acknowledgements

The Badu-Tawiah Research Group

· This research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Condensed Phase and Interfacial Molecular Science, under award number DE-SC0016044

References

i) 2 mm

iii)

10 m

