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Figure 1: A) Plasma-water microdroplet fusing platform for 
the online formation of Michael donor reagents via ROS in 
non-thermal plasma discharge with coaxial introduction of 
Michael acceptor reagents in a configurable emitter for 
uncatalyzed C-C bond formation.  Extracted ion 
chromatogram for the formation of the Michael donor species, 
B) acetylacetone and C) methylacetylacetate via plasma-
water microdroplet spray (red line) versus traditional 
electrospray (blue line). 

Approach

Plasma-Droplet Uncatalyzed Michael Addition• Carbon–Carbon (C–C) bond forming steps have 
ubiquitous importance in all fields of chemical science

• C–C bond formation plays a critical role in the formation 
of bioactive chemicals, pharmaceuticals, biodegradable 
polymers, natural product and fine chemical synthesis, 
and agrochemicals

• Michael addition between a 1,3-dicarbonyl Michael donor 
and electron-deficient Michael acceptor represents a 
straightforward method for C–C formation

• Bulk Michael addition methods are limited by strong base 
catalysis, specialized reagent selection, and aprotic 
organic solvent – with unfavorable environmental and 
ecological implications

• Herein: A combination of the reactive environment of 
plasma discharge with the green medium of charged 
water microdroplets in a programmable reaction platform 
for uncatalyzed Michael addition 

• The contained-ESI source with
chemically etched spray capillaries is
capable of online plasma-droplet fusing
reactions

• This phenomena is applied here to
uncatalyzed Michael addition reactions

• Reaction programmability is achieved
via: 
• Reagent selection in etched silica

capillaries for plasma generation and
fused silica capillaries for microdroplet
reactivity

• Emitter operational mode control
• Tandem MS of products generated

online yield structural information
• Programmable Hantzsch reaction

demonstrated for symmetric product
generation 
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Figure 3: Uncatalyzed Michael addition product tandem MS 
analysis for product validation from Type I plasma-microdroplet 
operation
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Figure 2: Uncatalyzed Michael addition between 1,3-dicarbonyl Michael 
donor reactants formed via plasma coaxial with α,β-unsaturated carbonyl 
Michael acceptor reactant

Figure 4: Microdroplet-only reaction controls between Michael 
donor and acceptor species in a co-axial contained-ESI emitter 
yielding null product formation in the absence of plasma

Programmable Hantzsch Cascade Reactions

Figure 7: Programmable Hantzsch cascade reaction scheme via reagent selection and emitter operation mode control

Figure 5: Programmable Michael addition reaction schemes via proelectrophile substitution

Figure 6: Programmable Michael addition reaction via proelectrophile substitution

Figure 8: Programmable symmetric Hantzsch cascade reaction via reagent selection and emitter operation mode control

Figure 9: Symmetric Hantzsch cascade reaction scheme


