STEP Reflection – Emotion Regulation in The Vasey Lab

My name is Zaneb Mansha and I am a senior in the psychology department. My STEP signature project was conducting research under Dr. Michael Vasey and his graduate student, Gina Gerardo, in The Vasey Lab at The Ohio State University. 

The main responsibility that I initially had as a research assistant was to recruit participants for our study and conduct REP experiment sessions for students taking the intro to psychology course at Ohio State. The study aimed to examine emotion regulation and its relationship with physiological measures such as heart rate and blood pressure. Our target sample for research was college-aged students. 

This STEP project was transformational for me as a person of color because we looked at racial differences in health psychology and in the medical field. One of the graduate students I worked under was writing her dissertation on the cardiovascular health of African American people versus white people. As research assistants, we got to help her with her meta-analysis which she recently got published. It was really cool for me to see the research and publication process directly from a mentor. This actually helped me decide whether I wanted to continue down the research path in the future…

 

The first step of the research process was to schedule experiment postings on the Ohio State REP portal. The following were posted as the requirements for the study: Individuals with allergies to electrode adhesive are not eligible to participate. We ask that you do not smoke, undergo rigorous exercise, or drink any caffeine 4 hours prior to the experiment. You must be 18 or older to participate. 

As I mentioned earlier, the purpose of this study was to examine the relationship between emotion regulation and cardiovascular activity. In particular, heart rate and blood pressure were examined in relation to an emotion regulation task. After bringing the participant into the data collection room, they were given an informed written consent form to complete before beginning the experiment. They were asked to sign and date the form and given a copy to take with them for their records. Next, we took some quick measurements including age, biological sex, height, weight, and waist circumference. 

 

Shown above is the required placement of electrodes in order to accurately monitor heart activity. The participant’s heart rate was monitored throughout the study using surface (non-invasive) electrocardiogram (EKG) electrodes. 

 

Then, the blood pressure monitor was set up. We used a computer software called Beatscope in order to keep track of variances in blood pressure. Shown here is an example of what that looked like if set up properly. 

 

To monitor the heart rate variability, we used another software called BioLab which is shown above.

 

After everything was set up and the participant had taken a few minutes to relax, we asked the participant to complete surveys related to mood and coping strategies, as well as a task that required them to recall particular situations they have experienced in their life. At the end, the participant was given a debriefing form and contact information should they have any questions after they leave. Overall, the entire process took 45 minutes to an hour to complete for each individual participant. 

So plot twist, I decided to change my career pathway! I mentioned earlier that I was hoping to apply to PhD graduate programs for psychological research. However, I am now attending the Fisher College of Business in the upcoming fall to complete my Master in Human Resource Management Degree. You may be wondering what caused the sudden change in interest… Honestly, I really enjoyed my time participating in research for the past year and a half, but I also learned that I’m not passionate enough about it to dedicate my life to it. This was a wonderful experience for me regardless and I am confident that the skills I have obtained as a research assistant will be beneficial to me wherever I end up. 

STEP Reflection – Undergraduate Research

Gantt_STEP_Image1

Gantt_STEP_Image2

Over the past couple months, I have been conducting both remote and in-person undergraduate research relating to the intervertebral discs of the spine. The goal of the lab I am a part of is to improve low back pain and restore a diseased disc to its healthy state. One of the main tasks I have been working on is composing a review of current literature regarding annulus fibrosus (AF) cell culture techniques, more specifically pertaining to specific components of the culture and how the cells react to them. I then performed an in-depth analysis of the results that I constructed in my preparatory tasks of compiling summaries of the literature sources I found. I created a few schematics as well, demonstrating what the AF and its cells look like.

To accompany the tasks associated with the literature review, I have been assisting my lab supervisors and mentors in ongoing projects within the lab, focusing on the IVD’s nucleus pulposus (NP), AF, and cartilage end plates. (CEP) We all got along very well and developed strong relationships over the course of my STEP Signature Project.

While completing my STEP Signature Project, I came to realize that I am capable of overcoming many obstacles in life, while remaining focused on my work and studies. Every person has their ups and downs, and I find it inspiring to watch people continue to excel at what they love to do while battling adversity. Throughout my STEP project, I had things attempt to draw my attention away from my tasks, but I did not let them hinder my progress or quality of work. I think that this is a great skill to possess in life as we all know how unpredictable life can be.

Another understanding of myself that I came to realize was how passionate I am about the musculoskeletal system and the human body in general. One day, it is my dream to have a profession in the field of medicine. I aspire to apply my love for medicine to help the people around me in my everyday life, and that is one of the many reasons that I want to attend medical school and become a physician. Conducting undergraduate research over the past year and a half has only reinforced my love for the human body, and more specifically the musculoskeletal system. It is truly unbelievable how many mechanisms and pathways there are for just the intervertebral discs in the spine, and it truly sparks my curiosity and passion to be a part of trying to solve the large puzzle that is the human body.

There were many things that led to the transformations I mentioned above. One of the most important aspects is the strong relationships I have with my principal investigator (PI) and lab members. Throughout my project they were very supportive of me and my work. This support and encouragement that they provided me with helped me to the realize how much I enjoy being a part of the research community, and more specifically a member of their lab. In addition, my PI and lab members taught me how to stay on top of my work and effectively perform quality research activities. With their support, I was able to realize my full potential as a student and researcher, as well as know that I am capable of overcoming many difficult obstacles.

The multiple lab meetings that I partook in each week taught me how to successfully present my work and research-related findings in a professional environment. Knowing that presenting and public speaking was one of my biggest weaknesses, it was very relieving to know that I was able to overcome this obstacle with the help of my STEP Signature Project. Also, from composing my literature review, I learned about the time and effort that goes into composing a scientific publication. It is a long process that incorporates the use of many key characteristics one should possess in life including persistence, patience, and commitment.

Partaking in the various procedures and protocols with my lab group led me to realize that I really like to perform hands-on tasks. The members of my lab have taught me how important it is to focus on attention to detail and exercise the saying “quality over quantity”. Through exposing myself to all the different literature and discovering all that the current research community has to offer on the intervertebral disc, it made me realize how a person can be great at what they do if they have a passion for it. My PI is an inspiration to me as she completes every task with so much enthusiasm and happiness due to the fact that she loves the everyday tasks associated with her profession and has a passion for the research she is a part of.

To accompany my PI, I found from my literature review that some research investigators have many publications within their area of study. This proved to me how important it is to be great at something specific you are very passionate about, and not average at a wide variety of things.

After reflecting on my project, I found the significance of the transformation that this project had on me. I tried to come to the conclusion of where I currently stand with what I want to do for the rest of my life. Upon the completion of my STEP project, I realized that I really am passionate about helping people and studying the human body, more specifically the musculoskeletal system. Putting these things together, I think that I am leaning towards becoming a surgeon. With this profession, I would be able to greatly improve the lives of people, as well as practice and study what I am passionate about.

STEP Reflection– Undergraduate Research

Over the past couple of months, I have volunteered in a research lab studying gene therapy on Charcot Marie Tooth. My role in the lab required me to take over a large array of responsibilities such as PCR, autoclaving, Image J and animal handling. The purpose of my experiment was to see if gene therapy could pose as a potential treatment for CMT, a form of muscular atrophy. Although this experiment is continuing forward, there is still much more for me to learn.

I had already worked in the Anthony Brown Research lab since the end of my freshman year. Until a few months ago, my role in the lab was still small. I did simple tasks such as genotyping and making buffer solution. I never understood how these smaller tasks held weight in the experiments until now.

Even after understanding these smaller tasks, I learned new techniques that will come in handy in the future. For one, I learned how to use the software Image J. This is used to trace the myelin thickness around an axon. In CMT, myelin is hardly present, if any at all. The application of this software finally showed me the clinical ties that I can see in my future. I also learned animal handling skills such as taking tail samples and tattooing the mice to later identify them in the experiment.

This project was transformative because I discovered laboratory work is far more complex than I initially thought. I had this idea in my mind that I would just be running DNA samples in agarose the whole time, but it was much more than that. It is a multidisciplinary task that incorporates studies from all sciences to produce accurate results. It is important to be knowledgeable of all aspects, not just one.

The people I worked with in my lab have also made this a transformative experience. They pushed me to do things that I do not want to do because I must do them in order to do the things I do want to do. An example of this was animal testing. Although I did not think I would have a hard time with it, it was a challenge I ended up having to overcome. In the end, animal testing could help research determine the mechanism to put an end to muscular atrophy and I got to be apart of it.

During the pandemic, it was difficult to come into lab which made this process particularly hard. Although this made time management difficult and I have yet to finish this experiment, it did provide me with some useful skills. Image J became particularly useful because I found a way to research remotely and still help to get definitive results.

Research showed me who I was in more ways than none. This experience ended up being transformative for me because I realized it might not be my calling. Although I enjoyed this experience, I would like to have more outside interaction in the future. My role in the lab is important; I would additionally like to see it carried over in the clinical setting. Overall, I learned many useful techniques such as animal tattooing that I would like to continue using. However, it made me question where I truly see myself in the future and I will forever appreciate that.

STEP reflection

 

  1. Please provide a brief description of your STEP Signature Project.

My STEP project consists of a research initiative that explores the connection between the vitality of retinal ganglion cells and the extent of injury sustained in traumatic brain injuries or TBIs. I was tasked with the immunohistochemistry work on a specific cell type in the retina: Intrinsically Photosensitive Retinal Ganglion Cells or ipRGCs.

  1. What about your understanding of yourself, your assumptions, or your view of the

world changed/transformed while completing your STEP Signature Project?

Before my project truly began in earnest, I had an idealistic point of view in regard to the research process and the world in general. When I previously thought about how research was conducted, I imagined a brand-new high-tech lab equipped with all white, perfectly cleaned receptacles and tools. Inside this lab there would be a scientist who would discover everything they sought to know within one or two experiments. This far from the case. Research is messy, it’s slow and sometimes tedious, but it’s also amazing at the exact same time. Through the process of participating in research, I was reminded of the reason that I fell in love with science in the first place. Everyday working in the lab, I was confronted with the reality of how little we know about the world that we live in and how much we still have to discover. And every day still I got to participate in the chipping away toward a new revelation.

  1. What events, interactions, relationships, or activities during your STEP Signature

Project led to the change/transformation that you discussed in #2, and how did those

affect you?

Overall, one of the biggest catalysts in my transformation of thought was the personal responsibility that I was tasked with throughout this process. Throughout the research process, I had a certain number of tasks that I had to complete. If I were to not complete them, no one else would and the project would suffer as a whole, not just my own personal grade or result as it is with many of my academic classes. It was through this responsibility that I was able to fully curate a level of scientific comfort on my own and truly engage in the scientific process. This enabled me to truly experience what science is at its very roots: a process of trial and error conducted to know just a little bit more about the world.

Additionally, another integral part of my development throughout this process was the scientific freedom that I was allotted by my faculty member. During my time, I was constantly left to my own devices with a task to complete that was vital to the quality, success and overall progression of the project. While initially this was daunting, my faculty member was always available to help me if I needed it and eventually, I gained a fair amount of confidence and comfort working on my own and pondering what it was exactly that I was studying, which cemented the reality and weight of my work.

Overall, I believe that this experience has been an essential part of my development as a student here at Ohio State. Through the responsibility that was bestowed upon me and the scientific freedom that I was granted, I was truly able to gain a deeper understanding of the scientific world. Additionally, I feel as though I was even able to apply many of the concepts that I have learned in the numerous lab classes that I have been enrolled in throughout my 3 years here at Ohio State.

  1. Why is this change/transformation significant or valuable for your life?

This development is very important to me both academically and personally. As of now, I intend on applying to medical school in the near future. This experience is not only very important for admission to medical school, but my success in medical school and even much later on as a medical professional. This is because it has strengthened my understanding of the scientific world and improved my comfort level with the unknown aspect of science, which are both very vital.

Astronomy Research STEP Reflection

My STEP project involved learning about quasars and working to understand a program which analyses quasars. The physical properties of quasars are not well understood, therefore my advisor and his collaborators created a program named SimBAL to estimate the physical properties of quasars. My involvement in the research is mainly in a computer science aspect. I have learned about quasars and studied the program so that we can optimize its use and cut down the time it takes to run it.

Being involved in the research project improved my programming skills greatly. I am relatively fluent in Java but this project involved programming in Python, the language which is becoming the most commonly used programming language in a variety of fields. SimBAL is a data analysis program in that it takes in data, spectra from quasars, and analyses them to produce a result, the physical parameters of the quasar. Thus, I have gained further knowledge about data analysis and how programs work to produce the desired results. Since my involvement in the project focuses on speeding up the program I have gained skills in algorithmic analysis, finding the components of a program which slow it down.

The biggest transformation came in the form of my confidence though. Just being asked to join this project increased my confidence in my astronomy and computer science skills. Then, through working on the project, I have gained confidence in my ability to explain my research, and greater confidence in my understanding of astronomy and computer science.

My advisor was the one who reached out to me about this project. He thought of me because he remembered my interest in computer science and desire to go into data analytics. Simply the fact that I was the person he thought of for this project made me more confident because it showed that I stood out to him and he remembered where my interests were. Our weekly meetings helped me feel more confident in talking about and explaining my research as we spent some time just learning about quasars so I had a strong scientific understanding of the objects we are analyzing.

I also gained confidence in asking questions between our weekly meetings and the information and tasks I was sent. Without asking questions I would have gotten stuck many times, so I had to increase my confidence in asking questions in order to complete the tasks I was given and to better understand both the program and science behind the program. Since most of my tasks involved manipulating the program to produce different plots and diagrams I developed computer science skills. Perhaps one of my proudest moments was when I was able to create a filled contour plot using some of our data, mostly because the result was a pretty graph.

Concurrently with my research this past semester, I was in a CSE class about algorithmic analysis. This class along with my research provided me with a better understanding of what makes a good program and the changes that can be made to optimize a program. In my research we looked at several aspects of SimBAL that can be changed to decrease the running time. These solutions include things from writing it in a different programming language to running it on graphical processing units instead of central processing units. These changes would change nothing about how the program works, they would just speed it up, and we thought of these changes through algorithmic analysis.

Confidence is helpful in every aspect of life. This past semester I found it easier to contact professors when I ran into issues and I have found that I do not have as much anxiety around making phone calls anymore. These skills are both communication based and communication is important in any career, so increased confidence in communication definitely gives me a boost.

My desire is to go into the field of data analytics after graduating so all the programming, data analysis, and algorithmic analysis skills I have built during this project will certainly help in a potential career in data analytics. My project is similar to what I would be doing as a data analyst, just with astronomy data.

This image shows the spectrum of a quasar along with two spectra created by SimBAL which estimate the physical properties of the quasar.

This image shows the spectrum of a quasar along with two spectra created by SimBAL which estimate the physical properties of the quasar.

This image shows a color contour plot describing properties of a quasar.

STEP Project Reflection

For the duration of the semester, I have been collaborating with the Weinberg Computational Lab to learn and conduct experiments in regard to the electrophysiology of the cardiac ventricular cell. Initially this was through studying the effects of ion concentration on the arrhythmogenicity of a guinea pig cell model; however, as the study progressed the course of the long-term project has been refined to study human ventricular cells.

This project has been undeniably insightful in the experience I garnered conducting research as part of an established biomedical engineering laboratory. For the last few months, I have gotten firsthand exposure into how research is conducted as well as a view of what it would look like to hold a position as a research conducting faculty member at a university. The last few months I have worked very diligently on my own research project; however, what I have found are several setbacks on my progress. Initially starting with a project using a guinea pig model, I spent the first couple of months learning how to setup the computational experiments as well as compute different values used to evaluate results. I was able to make some progress that resulted in verifying the model I was using as well as had the opportunity to give a research update to the lab which is typical for researchers to do when coordinating with a group. Unfortunately, shortly after this point I was given an updated objective to begin using a human ventricular model. Having the shift in my research progress was frustrating yet was insightful. Prior to beginning my project, I was familiar with research progress generally being slow. After having my project change scope and in essence having to restart was telling of the different setbacks that can be faced.

Although I faced challenges with the progress, I had some great experiences working on my project. The excitement of problem-solving some of the more complicated issues felt like very rewarding work. Furthermore, being able to connect my results with not only previously established work, but also with clinical manifestations was exhilarating in a way because it validated the time I spent on the project. Having results that connect with real world applications had given me a more concrete understanding of how basic research may be related and applied in an industrial or clinical setting. During the same time that I was working on this project, I was working on a capstone project with a clinical mentor creating an assistive device for patients on dialysis. In a meeting with this mentor, we went over the importance of dialysis as a replacement for kidney function. One example used by the mentor was that if dialysis is missed, the potassium level in the body may get too high and cause an arrhythmia in the patient. During my research, a specific result I had seen is the impact of abnormally low potassium levels on cardiac function. If K+ is too low, then the single cardiomyocyte will enter an arhythmic state; however, if it is too high, I saw no such problem – a result which was unexpected based on what the mentor had spoken to me about what was actually seen clinically. Because of this conversation, I spent time looking into previously published papers that studied both single cardiac cells and cardiac tissue. Looking at both, I was able to distinguish specific issues that arise due to cell-cell communication. If an issue arises in a 2D or 3D model, but not in a single cell model, then the issue is due to the cell communication. As a result, I found a previously published study that showed evidence of increased potassium levels as causing something known as a conduction block, a situation which was indeed due to communication problems between cells. Having made the connection, I was able to verify the results I was able to provide credible reasoning for why I did not see the issue in my single cell model that was seen clinically.

During the course of my project, I was given the opportunity to present my research to the lab group as an update to my progress. This event provided me with practice presenting research which is a typical event for researchers and academic faculty alike. I was given the opportunity to prepare my research in whatever formatting I liked and ended up speaking on the guinea pig model I had initially been working with. Although not an exciting event, the mundane part gave insight into what may be a regular event in a research environment. The ability to communicate with fellow researchers is a must for individuals in that field. Especially when presenting to professional colleagues who have a significant understanding of your research, their feedback can provide significant improvement to the research being conducted. Peers have the ability to see both flaws in current methodology and result interpretation, as well as provide suggestions for improving research and ideas for creative new approaches to solving problems and obstacles in the research process.

A significant portion of my project involved working independently. Because of this the project stressed the ability to be self-sufficient in my work – a concept that goes hand-in-hand with knowing when it is important to reach out to the graduate student I was working with, or even to my PI who is the expect on the field to answer questions. Finding the balance between solving problems on my own in order to have a better understanding and learn more and reaching out to others to answer my questions in order to save time and ensure I am doing things efficiently and correctly is a significant skill I have been able to sharpen throughout the course of this project. The relationship I have built with my project supervisor and the graduate student who I worked closely with on my project has been fundamental to my success. As I mentioned previously, learning to concisely communicate has been a significantly helpful skill that I have developed throughout the course of this project. Through communicating with my graduate mentor, I have been able to learn about forming concise emails, the extent of work I should expect to be motivating myself to complete, as well as the expectations that I would be held to by a more senior member of the research team.

These transformational experiences I have had in the last few months during my STEP project have been greatly insightful into developing my plans for the future. I went into this project hoping to gain experience on what it is like to pursue a career in academia with a heavy dedication on research. My biggest takeaway from this project has been the slow pace that research is carried out at. I saw a number of setbacks in my project specifically, and I see similar pace for my fellow researchers in the lab. This led me to takeaway that I enjoy and want to do research in the future, but I would not want that to be the core of my career. As a result, I look to turn my head toward pursuing a career in medicine – but only after continuing to grow my education as a biomedical engineer by pursuing a master’s degree here at Ohio State (currently with acceptance in the fall). Following my master’s degree, I will be applying for MD/PhD programs. Doing one of these programs will allow me to have a career in medicine, centered around patient care, while opening the door to work on research as a side project throughout my career.

 

Research Reflection

My STEP Signature Project was a research project that I lead in the lab of Dr. Long-Sheng Chang. My research focused on testing the efficacy of a drug on osteosarcoma cells. I performed various experiments, such as western blots, to determine the cells’ protein content after drug treatment.

As a pre-medical student, I had known that I enjoyed interacting with patients; however, I was unsure whether or not I would enjoy the research process as it lacked the patient interaction that I treasured. Yet, during my semester researching, I attended various conferences and heard the stories of how other researchers were making an impact on patients worldwide without actually helping them directly. The initial mindset that I had was that I would not enjoy it as there was no patient interaction. Although I did not have any patient interaction during my time researching, I did learn about the process that it takes for drugs to be approved and how there is a comprehensive approach to ensure the safety of the patients. With this, I had developed a greater appreciation for the works of researchers.

During my time researching, I had the chance to work closely with my Principal investigator, who has been researching for over 30 years. I would come in every weekday at noon and leave around 6 PM or so. On the days that I would arrive early to complete an experiment, I would see my PI already here at the lab. Likewise, on the occasion where I stay late until probably 11 PM or midnight, he is there as well. I realized that he was dedicated to fighting cancer and that he was driven to succeed. This dedication was exceptional and helped me develop a further appreciation for research as it requires a sacrifice to benefit society.

As I spent the semester researching osteosarcoma, I had the unique opportunity to lead my project with the guidance of my PI and the Ph.D. in the lab. I had always known that research was a field that required time and dedication; however, over the course of the semester, I had the chance to experience the required dedication and commitment. As I was performing treating the cells with the drug, somewhere along the way, there was an uneven division of cells that practically threw off the entire experiment. I had no idea until it was near the end of that experiment. Because of something as small as an uneven split of cells, two weeks’ worth of work had gone down the drain. Every step had to be taken with precision and care as even loading a couple of microliters more would result in a result that was not truly reflective of the experiment.

Although there was no patient interaction while researching, I had the opportunity to attend the tumor board meetings where physicians discussed their patients’ treatment courses. During this time, I had the chance to see how the research was directly impacting the patients. The analysis provided the data on what course of treatment should be pursued. Seeing the physicians consider the prior study was an eye-opening experience for me as I was able to see the connection between patient care and research, which I was not actively aware of before this experience.

This experience researching in the lab of Dr. Chang has taught me always to keep an open mind. Although on the surface it may not seem that research would have the same satisfaction of working with patients first hand, this experience has been just as rewarding knowing that I was contributing to the patient care of countless numbers of future patients. I had the chance to learn about how research helps to guide physicians’ choices to achieve the best outcome and care. The mentality will be something that I will take with me as I continue to pursue a medical degree. In the medical field, it is essential always to have an open mind when it comes to listening to the patient and creating a treatment plan. Without an open mind, patient care has been shown to decrease since every person is unique drastically 

Although there was no patient interaction while researching, I had the opportunity to attend the tumor board meetings where physicians discussed the courses of treatment for their patient. It was during this time where I had the chance to see how the research was directly impacting the patients. The research provided the data on what course of treatment should be pursued. Seeing the physicians take into account the prior research was an eye opening experience for me as I was able to see the connection between patient care and research, which was something that I was not actively aware of prior to this experience.

 

User Experience Research for Fluid Earth Viewer

During my STEP project, I was a research assistant in the Virtual Environment, Communication Technology, and Online Research (VECTOR) Lab, within the Ohio State School of Communication. This research assessed the user experience of an interactive website called Fluid Earth Viewer, which displays the planet’s atmosphere and weather patterns in real time. Some of my responsibilities included watching videos of participants interacting with the website, recording my observations, and determine what areas of the site required improvements in usability.

This project was extremely influential in the development of both my career goals as well as my overall global outlook. It exposed me to critical societal problems and forced me to contemplate certain global situations that I had previously been sheltered from. For example, I now hold a greater awareness and understanding of the chilling reality of global climate change; I always believed that climate change is a serious threat to our world, but this experience added urgency to my concerns by showing me all the specific pollutants that plague our air and atmosphere. This project has been part of my inspiration to pursue a career that will hopefully allow me to address climate concerns within my own community—I am certainly not able to immediately institute largescale global climate improvements, but by focusing on bettering my own community, I can promote bottom-up environmental protection and sustainability.

Furthermore, I have gained a greater awareness and appreciation for promoting accessibility in everyday life. I was able to directly observe the frustrations that arise when technology is lacking in usability and accessibility. I now apply the critical thinking I practiced in the VECTOR lab to everyday devices and situations, considering whether something is truly accessible and usable for all people, regardless of ability. Creating a more accessible world leads to a more satisfied and unified community. Lastly, this project was critical in the development of my career goals, by allowing me to witness and participate in an intersection of digital media and the environment. Each week, I was able to study a website that created a truly impressive combination of technology and the environment. Throughout college, I had been torn between my passion for the environment and my passion for English, specifically digital media; my assistantship highlighted the interdisciplinary nature of research and led me to the perfect graduate specialization that will allow me to combine my passions.

The bulk of my time as a research assistant consisted of analyzing videos of participants exploring and completing tasks on the Fluid Earth Viewer website. One of the global projections that concerned me most was the section displaying gases and aerosols in the atmosphere. In participant videos and my own exploration of the website, I was able to see the problematic concentration of gases like Sulfur Dioxide and Carbon Monoxide lurking over our heads. These gases are most prevalent in highly populated, industrious countries, and the Fluid Earth Viewer clearly depicts their overwhelming presence. Being able to fully visualize mankind’s drastic effects on the global climate, instead of merely reading about it online, was quite the wake-up call for myself. I gained an increased urgency for addressing the climate crisis and began to brainstorm how I can cut down on my own contribution to atmospheric pollutants. I have begun to practice more eco-friendly modes transportation, cut down on consumption that creates pollutants, and vote for candidates and legislation that promote renewable energy and environmental conservation.

Arguably more important than the website in the research process were the participants themselves; after all, the website is designed and tailored to their needs and preferences. Some features of the website were quite difficult for participants to locate or use, which is expected in a young, constantly changing web development project. Unfortunately, users often believed that they were the main reason that could not successfully perform a task, and this sense of incompetency is a common side effect of ineffective user centered design. Other times, users were visibly frustrated when the site did not behave the way they expected, and the combination of these problems caused me to start thinking about usability and accessibility outside of the research lab. The overall goal of new technologies, or almost anything made by humans, is to make life easier or more efficient. However, that is not always the case for everyone—objects often neglect certain members of the population, whether intentionally or unintentionally, but user research like that on the Fluid Earth Viewer is an excellent way to combat exclusion or frustration. Listening to community members is essential to enhancing the accessibility of society, and new technologies are not the only things that require considerations as to their accessibility. I hope to contribute to conversations of access in all facets of life—from other newly budding websites to objects as simple as city sidewalks.

My research assistantship opened avenues that allowed me to discover my ultimate passions in life and watch as they all neatly intertwined before me. Throughout the project, I was fascinated by the relationships between the participant, the website, and the environment; each was an equally important component, and constant communication between the parts was required for the whole machine (the research process) to work successfully. For the past year or so I had planned on pursuing a career with technology, but I was unable to let go of my passion for the environment. In fact, I entered college as an Environmental Science major before hesitantly switching to English (which I love). The fusion of the environment and digital media in this research experience showed me the possibility of finding such an interdisciplinary field and led me to search for similar opportunities for my career path, eventually leading me to environmental rhetoric. This subfield of English deals with how people communicate about the environment, and it is part of my intended specialization in graduate school.

Finally understanding that research is not always limited to one particular field, I am now able to combine my passions and confidently pursue a career in academia. This experience cemented my desires to conduct my own research one day as a university professor. I hope to study the relationship between social media and the environment—more specifically, how companies talk about the environment online and what rhetorical strategies prove effective at promoting sustainability, conservation, and environmental policy change. Without this STEP project, I may not have discovered how I could combine my passions for English and the environment nor realize my desire to conduct my own research. I hope to one day design an experiment that will inspire another young research assistant like myself.

-Luke Van Niel

 

This depicts one of the many projections available on the website, in this case Carbon Monoxide buildup in Earth’s atmosphere.

 

This projection displays total precipitable water, or the total amount of water vapor in the air above a unit area of Earth.

STEP Undergraduate Research Reflection

My name is Avidaan Srivastava and I am a third year Physics and Astrophysics double major at The Ohio State University. For my STEP Project, I decided to study and predict a theoretical model of the behavior of Super-Paramagnetic Iron Oxide Nanoparticles (SPIONs) when attached to a DNA Nano-hinge, placed in an external magnetic field. On this Project I worked under Ms. Prerna Kabtiyal, a PhD. student working in Dr. Ezekeil Johnston-Halperin’s Condensed Matter group at the OSU Physics Department.

I have been a part of Dr. Johnston-Halperin’s research group for a year now and the entire experience has been an eye opener for me. As someone who plans on going to graduate school and eventually get a PhD., undergraduate research has been a very important step for me. To say the least, it completely changed my understanding of how reasearch is done.

My idea of research first came from TV shows and movies, like The Big Bang Theory, but it wasn’t until I actually got involved in the process of doing research that I realized how complicated it actually is. The biggest problem I had to face was that we did not know the answer to the question we were asking. My experience is classes and life so far was to ask someone if I wasn’t sure about something. But now, I had to find the answer myself or figure out a way to find it. It was both a challenging and rewarding experience. Challenging because I knew what was to be done and I had to figure out how to do it and for that I had to read and understand quiet a few research papers that contained some complicated physics that I hadn’t learned about at that point. Rewarding because once I did accomplish some task, be it figuring out some part of the computer code I was stuck on, or some physics related topic, it really felt like an achievement.

Another quite important thing I learnt was the ability to work together. Previously when I had worked on group projects, it had mostly been diving the various tasks, individually completing them and finally putting them all together at the end. However, here it did not quite work like that. In my experience working in the Johnston-Halperin research group, the coding aspect of the project was mostly my job and a part of it depended on another member of the group completing their tasks and in turn my worked served as a basis for yet another member’s work, thus it was a system of building on and contributing to the previously done tasks. This always kept me on my toes and gave me the drive to finish my end of the project in a timely manner, which is very important.

Working on this project has been extra challenging this year because of the COVID-19 situation. Thankfully, my side of the project mostly involved computer coding, so it wasn’t affected to an extreme degree, but the overall progress, especially in the experimental side. This reinforced the importance on communication and coordinating with all the members of the research group. Because of that, we were able to make a lot of progress in the theoretical modeling part of the project and once the experimental group has their findings, we can compare it to the our model and finally publish a paper.

Overall, this has been a huge step in my development as a person and for my future career. I have thoroughly enjoyed doing research and this experience has strengthened my passion to pursue a master’s degree and finally a PhD. If there is a thing that living in the pandemic has taught me, it’s that I have to love doing my work, because only then can I actually be productive.

Gadde_STEP_Reflection

Please provide a brief description of your STEP Signature Project. Write two or three sentences describing the main activities your STEP Signature Project entailed.

Collagen type 4 (Col IV) is a tetrameric protein (polymer consisting of 4 monomers) that forms networks within the basement membrane, a thin layer between epithelial cells and underlying tissue. The goal of my STEP project was to identify the binding regions of Discoidin Domain Receptor 1 (DDR1) to Collagen type 4 (col IV) using Atomic Force Microscopy (AFM). The main activities included sample preparation, AFM imaging, and image analysis.

What about your understanding of yourself, your assumptions, or your view of the world changed/transformed while completing your STEP Signature Project? Write one or two paragraphs to describe the change or transformation that took place.

I was able to challenge two assumptions I had about myself. First, I do not have the skills necessary as an undergraduate to be successful with an independent research project. Second, research papers are too complicated for me to be able to dissect and understand. I also realized at least two things about myself during the STEP project. First, that I could critically think through potential solutions. Second, I could get myself out of my comfort zone and collaborate with other principal investigators across the country. Finally, I was able to get an appreciation for how long innovation takes to get from the bench to the bedside for patients.

What events, interactions, relationships, or activities during your STEP Signature Project led to the change/transformation that you discussed in #2, and how did those affect you? Write three or four paragraphs describing the key aspects of your experiences completing your STEP Signature Project that led to this change/transformation.

I started research in Dr. Gunjan Agarwal’s lab in the fall of my sophomore year. Before getting my own independent project, I got published for my work in AFM of collagen in abdominal aortic aneurysms as well as in the intervertebral disk. For both, I relied on the graduate students in the lab for assistance, especially in sample preparation and image analysis. Also, both projects were ongoing, and I felt that I did not understand it at the same depth I could have if I worked on them from the start. These were what led me to wanting an independent research project. However, I doubted that I had the skills to be successful in an independent project. During my time with the STEP project, I have been able to do all the activities on my own. It also is a project I get to see from start to finish for, which gives me the level of detail I would have liked to have from the other projects.

As part of the background work before the project, I was assigned to read a few collagen IV papers. I had to present these in our lab meetings, which added an extra level of stress. At first, looking at papers that were 12-13 pages long was daunting, but I quickly found that the organizations of the papers made them easy to dissect, especially their results. I still struggle with decoding the methods used, but I still think I have a degree of understanding when reading the papers that I did not expect to have.

The first part of the project was finding the right concentration of col IV for AFM imaging. This part went rather smoothly (Figure 1), but I had difficulty when observing the DDR binding to col IV. Initially, I would just let the concentration of col IV and DDR1 sit in a tube for two hours, hoping that the DDR would bind. Then, I would place this solution on a surface that locks the col IV into place (Mica). However, I noticed that the DDR was not binding; Instead, it looks like the col IV was clumping together (Figure 2). This was not ideal, because I needed to see a clean Col IV molecule bind to DDR to map out the binding. We then tried to increase DDR concentration and place the solution in a rocker for the incubation time. Additionally, the PI and I discussed potentially plating the pure Col IV on mica to make it unmovable and then put the DDR on top of that surface for two hrs. I highlight this example to show the immense amount of troubleshooting that research entails.

Another part of the project I will be working on now is looking at a mutated form of Col IV in collaboration with Dr. Douglas Gould. I would laugh if someone told my sophomore self that I would be able to network with researchers across the country. It has definitely been a unique experience in setting up this collaboration.

Finally, through my Pharmaceutical Sciences major, I first was able to see the length of time it takes for an innovative therapy to get from the bench to bedside. The basic science research I am doing is at the start of this long process, and I will not lose sight of the fact that someone 20 years from now could benefit from my work. This also comes with integrity in research because I should not cut corners. Finally, in the era of COVID-19, I think the story of the vaccines are incredible in how they were able to develop, test and distribute a vaccine within a year. However, I think we should realize that this was an exemption, and that innovation takes time to come to fruition.

 

Why is this change/transformation significant or valuable for your life? Write one or two paragraphs discussing why this change or development matters and/or relates to your academic, personal, and/or professional goals and future plans.

As I said above, my STEM project has put research into perspective within the larger drug discovery and development process. I look to continue research in medical school and as a physician, and I will not lose sight of the fact that my work could impact a patient’s care. I also now have the self confidence that I can be successful with an independent research project, which would be an expectation as a medical student.

The networking skills I gained is also important for my career. For starters, a new trend for medical students to boost their residency applications is a research year between M2 and M3. Now, this could be something I go down to California and work more directly with Dr. Gould. Also, I have been told by many career development faculties that who I know is as important as what I know to be successful in my future endeavors.

Finally, critical thinking and troubleshooting comes back as a physician as I know a “one size fits all” approach will not work. So, working alongside my patients like I did with the PI to find the best treatment plan will help me provide the most effective care for my patients.

Figure 1: 1.0ug/ml col IV in PBS

Here, this image of Col IV shows the individual monomers coming together to form some tetramers. The collagen IV strands are well defined and I would expect to see DDR binding to these individual strands.

Figure 2: 1.0 ug/ml col IV in PBS

Here, this image is more representative of the collagen IV I have seen more recently. The strands are not neatly defined and it looks like they are clumped together (example in the blue circle). I would not expect to see any DDR binding to this in the counter samples. We suspect that the effect of letting these samples sit in the fridge (to give time for the counter samples with DDR to bind) is a factor in this clumping with itself.

 

If you have any questions please contact me at my email address (gadde.9@buckeyemail.osu.edu)

Nikhit Gadde