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Introduction (Furrer et al. 2006)

Problem: Large amounts of data on irregularly spaced grids render
traditional spatial process prediction computationally infeasible.
Traditional prediction methods such as kriging (and more complex,
flexible methods like Bayesian hierarchical models) are not useful in
this situation.

Goal: Use an approximation to the standard linear spatial predictor,
i.e., "taper the spatial covariance function to zero beyond a certain
range using a positive definite but compactly supported function."
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Motivating Example

I Random spatial field Z(x) with covariance function K (x,x∗) for
x,x∗ ∈ D ⊂ Rd observed at n locations x1, ...,xn

I Consider simplest spatial model, with mean 0 and no
measurement error

I Common problem: predict Z (x∗) given n observations for
arbitrary x∗ ∈ D
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Best Linear Unbiased Predictor (BLUP)

The BLUP at some unobserved location x∗ is

Ẑ (x∗) = c∗T C−1Z (1)

where Z = (Z (x1), ...,Z (xn))T , Cij = K (xi ,xj ), and c∗i = K (xi ,x∗)
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BLUP Covariance

The covariance function K̃ is assumed and probably different from
the real function K, so

MSE(x∗, K̃ ) = K (x∗,x∗)− 2c̃∗T C̃
−1

c∗ + c̃∗T C̃
−1

CC̃
−1

c̃∗ (2)

Under the assumption that K̃ is the correct covariance function,
MSE(x∗,K ) reduces to:

%(x∗,K ) = K (x∗,x∗)− c∗T C−1c∗ (3)
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Computational Challenges

I Computation of u = C−1Z has an operation count on the order of
n3 and storage order on the order of n2

I Evaluation at many grid points means one must find c∗T u for
many c∗
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Tapering

I Basic Idea: Deliberately introduce zeros into C to make it sparse
I Note: Sparse modification of the covariance matrix must

maintain positive definiteness
I Let Kθ be a covariance function identically zero outside of some

particular range described by θ
I Consider the tapered covariance, obtained by taking the direct

product of Kθ and K ,

Ktap(x,x∗) = K (x,x∗)Kθ(x,x∗) (4)

I Replacing the covariance matrices in Equation 1 with Ktap
preserves some of the shape of K , and is identically zero outside
of a fixed range θ and maintains positive definiteness, since the
direct product of two positive definite matrices is positive definite
(Horn and Johnson 1994, theorem 5.2.1)
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Relationship to Nearest Neighbors

I Limiting covariance to a local neighborhood is not new.
I Tapering has been used for numerical weather prediction

(Gaspari and Cohn 1999) and in ensemble Kalman filtering,
where the sample covariance matrix is tapered using a
compactly supported correlation function.

I The method in this paper borrows from filtering applications but
does not rely on the variance reduction property necessary for
ensemble filters to be stable.
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Matrix Inversion

For C symmetric and positive definite, Ẑ (x∗) from Equation 1 is found
first using Cholesky decomposition on C = AAT and solving the
triangular systems Aw = Z and AT u = w to get u = C−1Z.

Then the dot product c∗T u is calculated. Matlab (toolbox: Gilbert,
Moler, and Schreiber 1992) and R (SparseM) can be used to perform
the Cholesky decomposition using sparse matrix technique functions.

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review



Sparsity of C−1

Key assumption: the Cholesky factor A of a sparse matrix is sparse.
This is true as long as the matrix is permuted properly.

C−1 is not necessarily sparse. "Define the semi-bandwidth s of a
symmetric matrix A as the smallest value for which Si,i+s = 0∀i ."
Then A has a semi-bandwidth of at most s. Careful ordering of the
locations can guarantee sparsity of A.
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Effects of Ordering
The performances of various permutations like the Cuthill-McKee and
minimum-degree ordering are summarized below:

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review



Furrer et. al. Overview

Goal: Show that under specific conditions, the asymptotic
mean-squared error of the kriging predictions using the tapered
covariance will converge to the minimal error.

Assumptions:
(i) The processes and tapering functions are second-order

stationary and isotropic.
(ii) The ‘true’ covariance function is the Matérn covariance function.
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Matérn Covariance Function

Let h = ||x− x∗||. The Matérn covariance function is given by

Cα,ν(h) =
φ

2ν−1Γ(ν)
(αh)νKν(αh), (5)

where α > 0, φ > 0, ν > 0, and Kν is the modified Bessel function of
the second kind of order ν.

WLOG, assume φ = 1. The Matérn spectral density in this case is

fα,ν(ρ) =
Γ(ν + d/2)α2ν

πd/2Γ(ν)
· 1

(α2 + ρ2)ν+d/2 (6)
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Conditions for Asymptotic Equivalence

The main results of this paper follow from Stein (1993) and depend
on the following conditions.

Infill Condition. Let x∗ ∈ D and x1,x2, ... be a dense sequence in D
and distinct from x∗.

Tail Condition. Two spectral densities f0 and f1 satisfy the tail
condition iff

lim
ρ→∞

f1(ρ)

f0(ρ)
= γ, 0 < γ <∞. (7)
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Kriging Mean-Squared Error

The MSE when the true covariance is K and the BLUP is calculated
using K̃ :

MSE(x∗, K̃ ) = K (x∗,x∗)− 2c̃∗T C̃
−1

c∗ + c̃∗T C̃
−1

CC̃
−1

c̃∗ (8)

Assuming the BLUP is computed using the correct covariance
function:

%(x∗,K ) = K (x∗,x∗)− c∗T C−1c∗ (9)
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Result I

Theorem 1. Let C0 and C1 be isotropic Matérn covariance functions
with corresponding spectral densities f0 and f1. Furthermore, assume
that Z is an isotropic, mean zero, second-order stationary process
with covariance function C0 and that the Infill Condition holds. If f0
and f1 satisfy the Tail Condition, then

lim
n→∞

MSE(x∗,C1)

MSE(x∗,C0)
= 1, lim

n→∞

%(x∗,C1)

MSE(x∗,C0)
= γ
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The Taper Theorem

Let fθ denote the spectral density of the taper function. The spectral
density of the tapered covariance function Ctap is given by

ftap(||u||) =

∫
Rd

fα,ν(||u− v||)fθ(||v||) dv

Taper Condition. Let fθ be the spectral density of the taper
covariance function Cθ with taper range θ, and for some ε ≥ 0 and
M(θ) <∞

0 < fθ(ρ) <
M(θ)

(1 + ρ2)ν+d/2+ε
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The Taper Theorem

Proposition 1. If fθ satisfies the Taper Condition, then ftap and fα,ν
satisfy the Tail Condition.

Theorem 2. (Taper Theorem) Assume that Cα,ν is a Matérn
covariance function with smoothness parameter ν and the Infill and
Taper Conditions hold. Then

lim
n→∞

MSE(x∗,Cα,νCθ)

MSE(x∗,Cα,ν)
= 1,

lim
n→∞

%(x∗,Cα,νCθ)

MSE(x∗,Cα,ν)
= γ,

where 0 < γ <∞.
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Constructing Practical Tapers

Taper Cθ(h) Valid taper for
Spherical (1− h/θ)2

+ (1 + h/(2θ)) ν ≤ 0.5
Wendland1 (1− h/θ)4

+ (1 + 4h/θ) ν ≤ 1.5
Wendland2 (1− h/θ)6

+

(
1 + 6h/θ + (35h2)/(3θ2)

)
ν ≤ 2.5
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First Experiment

D = [0,1]2, x∗ = (0.5,0.5), and n locations are sampled randomly in
D or on a square grid, where n varies in [49,784].

The following are plots of MSE(x∗,Cα,νCθ)
MSE(x∗,Cα,ν) and %(x∗,Cα,νCθ)

MSE(x∗,Cα,ν) .
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Second Experiment

Calculate MSE(x∗,Cα,νCθ)
MSE(x∗,Cα,ν) for different taper supports θ
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Use Tapering for Covariance Estimation

I Furrer et al. (2006)
• Assumption: covariance parameters were known
• Focus: using covariance tapering to ease the computational

burden of kriging large data sets

I Kaufman, Schervish and Nychka (2008)
• Idea: using tapering to approximate Gaussian likelihood for easier

ML estimation of the original covariance parameters
• Approaches:

One-taper Approximation (tapering the model covariance matrix)
v.s.
Two-taper Approximation (tapering both the model and sample
covariance matrices)

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review



One-taper Approximation

I Gaussian Log Likelihood

l(θ) = −1
2

log |Σ(θ)| − 1
2

Z ′Σ(θ)−1Z

I One-taper Approximation: Replacing Σ(θ) with a tapered
covariance matrix Σ(θ) ◦ T (γ) (small values of γ correspond to more
severe tapering)

l1T (θ) = −1
2

log |Σ(θ) ◦ T (γ)| − 1
2

Z ′[Σ(θ) ◦ T (γ)]−1Z

I Notes
• Easy-to-compute likelihood (solving a sparse system of equations)

• E
[
∂

∂θ
l1T (θ)

]
6= 0, i.e., the score equation is biased!

• Sizable bias in practice, especially when the taper range is small
relative to the true correlation range

• Not a big issue if we use the estimated covariance in tapered
kriging
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Two-taper Approximation

I Two-taper Approximation: tapering both the model covariance
Σ(θ) and sample covariance ZZ ′

l2T (θ) = −1
2

log |Σ(θ) ◦ T (γ)| − 1
2

Z ′
(
[Σ(θ) ◦ T (γ)]−1 ◦ T (γ)

)
Z

= −1
2

log |Σ(θ) ◦ T (γ)|

− 1
2

tr
{

ZZ ′ ◦ T (γ)[Σ(θ) ◦ T (γ)]−1}
I Notes

• 2nd equation follows from tr{(A ◦ B)C} = tr{A(B ◦ C)} for sym. B.

• The estimating equation is unbiased now: E
[
∂

∂θ
l2T (θ)

]
= 0

• Computationally more involved than one-taper approximation

• Preferred to one-taper estimator
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Asymptotics for the One-taper Estimator

I Theorem (Consistency of the One-taper Estimator):
Let

1 K0 be a Matérn covariance function on Rd , d ≤ 3 with known ν and
unknown σ2 and ρ = 1/α

2 {Sn}∞n=1 be an increasing sequence of finite subsets of Rd such that
∪∞n=1Sn is bounded and infinite

3 the taper function KT be an isotropic correlation function constant with n
and whose spectral density fT (ω) exists and is bounded above by
Mε/(1 + ||ω||2)v+d/2+ε for certain ε,

then fix ρ∗ > 0 and let σ̂2
n;1T maximize ln;1T (σ2, ρ∗) and we have

σ̂2
n;1T/ρ

∗2ν a.s.→ σ2/ρ2ν

as n→∞ under the Gaussian measure G(K0) with mean 0 and
covariance function K0.
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More Details

I Zhang (2004) showed that under the fixed domain asymptotics
with d ≤ 3, consistent estimators of both σ2 and ρ cannot exist.
But the ratio σ2/ρ2ν can be consistently estimated by MLE and
this quantity is more important to spatial interpolation.

I Main result of Kaufman et al. (2008): Condition 3 (Taper
condition)⇒ zero-mean Gaussian measures G(K0) and
G(K0KT ) are equivalent on paths of {Z (s), s ∈ T} for any
bounded T ⊂ Rd .

I Sketch of proof:
1 For fixed ρ∗, find σ2∗ such that G(K0) ≡ G(K ∗0 ) ≡ G(K ∗0 KT ).
2 Solve for σ̂2

n;1T explicitly and show that σ̂2
n;1T

a.s.→ σ2∗ under
G(K ∗0 KT ).

3 Hence σ̂2
n;1T/ρ

∗2ν a.s.→ σ2/ρ2ν under G(K0).

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review



Asymptotics for the Two-taper Estimator

I Theorem (Consistency of the Two-taper Estimator):
Let

1 K0 be a Matérn covariance function on Rd , d ≤ 3 with known ν and
unknown σ2 and ρ = 1/α

2 {Sn}∞n=1 be an increasing sequence of finite subsets of Rd such that
∪∞n=1Sn is bounded and infinite

3 the eigenvalues of [(Σn ◦ Tn)−1 ◦ Tn]Σn satisfy certain regularity conditions,

then fix ρ∗ > 0 and let σ̂2
n;2T maximize ln;2T (σ2, ρ∗) and we have

σ̂2
n;2T/ρ

∗2ν a.s.→ σ2/ρ2ν

as n→∞ under the Gaussian measure G(K0) with mean 0 and
covariance function K0.

I The result is proven by explicitly solving for σ̂2
n;2T for fixed ρ∗:

σ̂2
n;2T =

σ2

n

n∑
i=1

λn,iχ
2
1,i
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Choice: One-taper vs. Two-taper

I For estimation, the two-taper estimator is preferred. Both the
bias and the variance of the two-taper estimator is comparable to
that of the MLE, whereas one-taper estimator suffers from bias
when the taper range is small relative to the correlation range.

I When tapering is used in the kriging procedure, it is better to plug
in the one-taper estimator. Intuition: it uses the same covariance
model for both estimation and prediction.
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Robust Information Criterion

I Maximimizing two-taper approximation of log-likehood = solving
an unbiased estimating equation for θ

I Suggests estimator of sample variance of θ̂2T based on robust
information criterion of Heyde (1997)

I Let G(Z;θ) be an unbiased estimating function for θ, i.e.
E[G(Z;θ)] = 0 for all possible values of θ. Then the robust
information criterion corresponding to G is

E(G) = E[
∂G
∂θ

]′E[GG′]−1E[
∂G
∂θ

] (10)

I G∗ that maximizes (10) is optimal within a certain class. (Details
in the paper.)
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Robust Information Criterion

I Under conditions, norming by sample version of E(G)−1 gives
asymptotic normality of θ̂n obtained by maximizing G(Zn;θ)

I Not the case for irregularly spaced observations, but authors
claim diagonals of E(G)−1 give reasonable estimates of sampling
variability

I Let G2T be the vector of partial derivatives of l2T w.r.t. θi .
Calculating E(G2T ) will require two matrices with entries

E[
∂G2T

∂θ
]i,j = −1

2
tr
{[∂Σ
∂θi
◦ T
]
[Σ ◦ T]−1

[∂Σ
∂θj
◦ T
]
[Σ ◦ T]−1

}
(11)

E[G2T G′2T ]i,j =
1
2

tr
{[(

[Σ ◦ T]−1
[∂Σ
∂θi
◦ T
]
[Σ ◦ T]−1

)
◦ T
]

×Σ
[(

[Σ ◦ T]−1
[∂Σ
∂θj
◦ T
]
[Σ ◦ T]−1

)
◦ T
]
Σ
}

(12)

I Derivatives in (11) and (12) depend on sampling quantities so no
closed-form expression for E(G2T )−1, but computationally
straightforward
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Choosing the Taper Range (γ) and Estimating
Sampling Variability

1 Calculate a pilot estimate of the covariance parameters, θ̂pilot
(e.g. MLE for a small subset of data).

2 Calculate E(G2T (Zn; θ̂pilot , γ))−1 for sequence of increasing γ
values, starting with one that is “quite small”.
• As γ increases, variance estimates along the diagonal should

decrease, but computation time should increase.
• Use plots to choose γ to give a reasonable trade-off between the

two.
• “We hope that a small variance can be obtained within the available

computing time. We are confident that this will often be the case.”

3 Determine θ̂2T as before and use the diagonal elements of
E(G2T (Zn; θ̂2T , γ))−1 to estimate its variance.
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Simulation Study

I Obtained perturbed grid of n = 300 points over [0,1]2. Over this
grid, 1,000 datasets were simulated according to the exponential
covariance function with σ2 = 1 and ρ = 0.2. Gives negligible
correlation at locations more than 0.6 apart, termed "effective
range" in the paper

I Maximized l(θ) over σ2 and ρ to get ĉn = σ̂2
n/ρ̂n. Likewise for l1T

and l2T .
I Used Wendland tapering function with k = 1 and γ = 0.1,0.2,

and 0.6 to see what happens when taper range is equal
to/smaller than effective range
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Simulation Study
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Simulation Study

I Decreasing γ increases biases in one-taper estimates, but
negligible bias in two-taper estimates.

I One-taper appropriate whenever taper range is at least as large
as effective range, two-taper much more accurate for highly
correlated processes.

I Taper estimators comparable to MLE when covariance is
exponential. Extended version of simulation shows this holding
across a variety of Matern covariance functions.

I Larger γ produces smaller bias and variance, so choose the
largest γ that is computationally feasible.

I Another table (not shown) shows that tapering can inflate the
estimated variance of the estimators σ̂2, ρ̂ and ĉ.
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Data Example

I Anomalies in precipitation data from 1962 National Climatic Data
Center.

I Contained 7532 observations which didn’t show obvious
nonstationarity or anisotropy (simple taper okay). Computing full
likelihood once takes 10 minutes.

I Choose γ = 70 miles so that the ratio of standard errors (below)
is < 1.5, admitting it “is somewhat subjective”.
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Data Example

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review



Recent Extensions

Sang, H., JUN, M. & Huang, J. Z. Covariance approximation for
large multivariate spatial data sets with an application to multiple
climate model errors. Ann. Appl. Stat. 5, 2519-2548 (2011).

Furrer, R. & Sain, S. R. Spatial model fitting for large datasets
with applications to climate and microarray problems. Statistics
and Computing 19, 113–128 (2008).

Zhang, H. & Du, J. Covariance tapering in spatial statistics.
Technical Report 181-196 (2008).

DEMEL, S. S. Modeling and Computations of Multivariate
Datasets in Space and Time. 1-134 (2013).

Bolin, D. & Lindgren, F. A comparison between Markov
approximations and other methods for large spatial data sets.
CSDA 1-15 (2012). doi:10.1016/j.csda.2012.11.011

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review



References

Furrer R, Genton, M. G. & Nychka D. Covariance tapering for
interpolation of large spatial datasets. JCGS, 15, 502-523,
(2006).

Heyde, Christopher C. Quasi-likelihood and its application: a
general approach to optimal parameter estimation. Springer,
(1997).

Kaufman, C., Schervish, M. J. & Nychka, D. Covariance Tapering
for Likelihood-Based Estimation in Large Spatial Data Sets.
JASA, 103, 1545-1555 (2008).

Stein, M. (1993) A Simple Condition for Asymptotic Optimality of
Linear Predictions of Random Fields. Statistics & Probability
Letters, 17, 399-404.

Zhang, H. (2004) Inconsistent Estimation and Asymptotically
Equal Interpolations in Model-based Geostatistics. JASA, 99,
250-261.

M. Ozanne, G. Schneider, S. White, M. Yin P. Craigmile, R. Herbei, W. Notz A Covariance Tapering Literature Review


