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Large Datasets Problem

@ Large observational and computer-generated datasets:

o Often have spatial and temporal aspects.
o Nearly global coverage.
e High resolutions.

@ Examples:

o Satellite measurements.
e Computer model outputs.

@ Goal:

e Make inference on underlying spatial processes from
observations at n locations where n is large.



Gaussian Processes

Gaussian process models can be used to

o describe the spatial variability in the process.

e predict unobserved values of the process, and provide
prediction uncertainties.

e serve as a building block for more complex models.

Gaussian process Z on a domain D C R? is fully specified by

o pu(x)=E{Z(x)}, and
o K(x,y)=cov{Z(x),Z(y)}, forall x,y € D.

@ Make inferences:

o Estimation: p and K when specified up to 8 € RP.
o Prediction: kriging.

@ Methods:

o Likelihood-based methods.
e Bayesian approaches.



Maximum Likelihood Estimation

Suppose data Z = (Zi,...,Z,)" is observed from a Gaussian random
field Z ~ GP(0, K(h; 6)) at n irregularly spaced locations.

@ Goal: estimate 8 € RP by likelihood methods.

@ Loglikelihood:
1 1
06) = 7§zT>:;X1n(0)z -5 log|Znxn(6)]-
@ Score equations:

2Ty y 7tz (X)) =0, i=1,...,p,
where X; = 9%(0)/06;.
The standard way:

o Cholesky decomposition of ¥ .
o Generally requires O(n*) computations and O(n?) memory.

@ The covariance matrix X ,,, is

o large: n x n for n locations.
e unstructured: irregular spaced locations.
e dense: non-negligible correlations.



@ Options for large n:

o Use models that reduce computations and/or storage.
o Use approximate methods.
e Both.

@ Models that might allow for exact computations:

o Compactly supported covariance functions.
o Reduced rank covariance functions.
e Markov models.

@ Approximation methods:

e Approximating likelihoods: obtain approximate functions to be
maximized.

e Approximating score equations: yield biased/unbiased
estimating equations.

@ Statistical and computational efficiency.

e Exact computations.
e Approximation methods.
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@ Covariance tapering:

K(h;0) = K(h;0) o T(h;7),

o T(h;7v): an isotropic correlation function of compact support,
i.e., T(h;y)=0for h>~.

@ Assumptions:

e The covariance function has compact support.
e lIts range is sufficiently small.

@ The tapered covariance matrix K:

Retains the property of positive definiteness.
Zero at large distances.

Minimal distortion to K for nearby locations.
Efficient sparse matrix algorithms can be used.
Also saves storage.



@ How much statistical efficiency is lost?

e Estimation: properties of the MLEs.

e Kaufman et al. (2008), JASA: proposed biased and unbiased
estimating equations with tapered covariance matrices.

@ Stein (2014) JCGS: studied the statistical properties of
isotropic covariance tapers and showed numerically that
independent blocks are usually better.

e Prediction: spatial interpolation using kriging with known
covariance functions.

o Furrer et al. (2006), JCGS: proposed covariance tapering for
kriging and studied the properties of the resulting MSPE.

@ Open questions:

e Tapers for nonstationary processes.

e Anisotropic tapers.

o Multivariate tapers: need compact supported cross-covariance
functions.



Low Rank Approximations

@ Find reduced rank covariance function representation:

o Banerjee et al. (2008), JRSSB: proposed Gaussian predictive
processes @(s) to replace w(s) in

Z(s) = x*(s)B + w(s) + €(s),
by projecting w(s) onto a m-dimension (lower) subspace
&(s) = E(w(s)|w(x1), - - ,w(xm))-

o Cressie and Johannesson (2008), JRSSB: proposed fixed rank
kriging by defining a spatial random effect model:

w(s) = BT (s)n,

where B is a vector consisting of m basis functions and
var(n) = G.

@ Have computational advantages but also limitations. (Stein, 2013,
Spatial Statistics).



@ Low rank+tapering: Sang and Huang (2011), JRSSB
o A reduced rank process for large-scale dependence: low rank
approximation.
e A residual process for small-scale dependence: covariance
tapering.
@ Multi-resolution models: Nychka et al. (2013), Manuscript

e The basis functions at each level of resolution are constructed
using a compactly supported correlation function with the
nodes arranged on a rectangular grid.

o Numerically, it gives a good approximation to the Matérn
covariance function.



Markov Models

@ Markov models

e The conditional distributions only depend on nearby neighbors.

o Lead to sparseness of the precision matrix, the inverse of the
covariance matrix.

o Computational cost: O(n%/?).

@ Gaussian Markov Random Fields:

o Rue et al. (2009), JRSSB:
@ Proposed integrated nested Laplace approximation (INLA).
o Studies the computational gains for latent Gaussian field
models in Bayesian inference.

o Lindgren et al. (2011), JRSSB:

o Represented a GRF with Matérn covariance function as the
solution of a particular type of SPDE.

@ Proposed an approach to find GMRFs with local neighborhood
and precision matrix to represent certain Gaussian random
fields with Matérn covariance structure.



Likelihood Approximation

@ Likelihood approximation
o Spatial domain: Stein et al. (2004), JRSSB
@ Used the composite likelihood method (Vecchia, 1998) to
approximate REML.

@ Joint density: product of conditional densities.
e Condition on only subset of the “past” observations.

e Spectral domain: Fuentes (2007), JASA

o A version of Whittle's approximation (1954) for irregularly
spaced data by introducing a lattice process.

@ Score equation approximation: estimating equations.

o Kaufman et al. (2008), JASA: sparse covariance matrix

approximation.
e Sun and Stein (2013), Manuscript: sparse precision matrix

approximation.



Multivariate Spatial Data and Space-time Data

@ Multivariate spatial data: Furrer and Genton (2011), Biometrika

e Proposed aggregation-cokriging.

o Based on a linear aggregation of the covariables.

e The secondary variables are weighted by the strength of their
correlation with the location of interest.

e The prediction is then performed using a simple cokriging
approach with the primary variable and the aggregated
secondary variables.

@ Space-time Data: Genton (2007), Environmetrics

e Separable covariance structure approximation.

e To identify two small matrices that minimize the Frobenius
norm of the difference between the original covariance matrix
and the Kronecker product of those two matrices.



Methods in Numerical Analysis

@ lIterative methods: solve ¥x = Z.

@ X, — Xxu1, then check residuals.
o For positive definite © <> minimizing f(x) = 3x"Ex — xTZ.
e Can be solved by conjugate gradient method.

@ Matrix-free:

e Never have to store an n X n matrix.
e Computation is becoming cheap much faster than memory.

@ Main computation: matrix-vector multiplication.

o Requires O(n?) for dense and unstructured matrices.
o This is fast, if

@ 2 is sparse, or
@ Y has some exploitable structures (e.g., Toeplitz).

@ Let m be the number of iterations:

O(n*xm) v. 0O(n®)



Computational Difficulties

@ Loglikelihood:
1 e g 1
00) = —EZ Y ()2 — 5 Iog’Z,,X,,(G)’.

@ Score equations:
2Ty 7tz (X)) =0, i=1,...,p,
where ¥; = 9X(0)/06;.
@ Computing ¥ 'Z: best done by solving systems ¥x = Z.
@ Loglikelihood:
e Main computation is due to calculating log |X]|.

@ Score equations:

o Need n solves to compute tr(X~1%;).
o May not be any easier than computing log |Z|.



Comparisons

@ Sparse covariance matrix approximation:

e Covariance tapering.
e Assume X is sparse.
o Y !is not generally sparse.

@ Approximating ! by a sparse matrix:

o No need to assume ¥ ! is sparse everywhere in the
computation.

@ Markov random field models:

o Assume ¥ ! is actually sparse.



Discussion

@ Low Rank Approximations

e Cannot capture local dependence well.
e How to improve it?

Sparse Covariance Approximations

o Distortion of the covariance matrix.
o Other types of tapers?

@ Markov Random Field Approximations

e Sparse precision matrix.
e Precision matrix approximation?

@ Combine methods and learn from numerical analysis community.
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