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Large Datasets Problem

Large observational and computer-generated datasets:

Often have spatial and temporal aspects.
Nearly global coverage.
High resolutions.

Examples:

Satellite measurements.
Computer model outputs.

Goal:

Make inference on underlying spatial processes from
observations at n locations where n is large.



Gaussian Processes

Gaussian process models can be used to

describe the spatial variability in the process.
predict unobserved values of the process, and provide
prediction uncertainties.
serve as a building block for more complex models.

Gaussian process Z on a domain D ⊂ Rd is fully specified by

µ(x) = E{Z (x)}, and
K (x , y) = cov{Z (x),Z (y)}, for all x , y ∈ D.

Make inferences:

Estimation: µ and K when specified up to θ ∈ Rp.
Prediction: kriging.

Methods:

Likelihood-based methods.
Bayesian approaches.



Maximum Likelihood Estimation
Suppose data Z = (Z1, . . . ,Zn)T is observed from a Gaussian random
field Z ∼ GP(0,K (h;θ)) at n irregularly spaced locations.

Goal: estimate θ ∈ Rp by likelihood methods.

Loglikelihood:

`(θ) = −1
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∣∣Σn×n(θ)
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Score equations:

ZTΣ−1ΣiΣ
−1Z− tr(Σ−1Σi ) = 0, i = 1, . . . , p,

where Σi = ∂Σ(θ)/∂θi .

The standard way:

Cholesky decomposition of Σn×n.
Generally requires O(n3) computations and O(n2) memory.

The covariance matrix Σnxn is

large: n × n for n locations.
unstructured: irregular spaced locations.
dense: non-negligible correlations.



Large n

Options for large n:

Use models that reduce computations and/or storage.
Use approximate methods.
Both.

Models that might allow for exact computations:

Compactly supported covariance functions.
Reduced rank covariance functions.
Markov models.

Approximation methods:

Approximating likelihoods: obtain approximate functions to be
maximized.
Approximating score equations: yield biased/unbiased
estimating equations.

Statistical and computational efficiency.

Exact computations.
Approximation methods.
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Tapering

Covariance tapering:

K̃ (h;θ) = K (h;θ) ◦ T (h; γ),

T (h; γ): an isotropic correlation function of compact support,
i.e., T (h; γ) = 0 for h ≥ γ.

Assumptions:

The covariance function has compact support.
Its range is sufficiently small.

The tapered covariance matrix K̃ :

Retains the property of positive definiteness.
Zero at large distances.
Minimal distortion to K for nearby locations.
Efficient sparse matrix algorithms can be used.
Also saves storage.



Tapering

How much statistical efficiency is lost?

Estimation: properties of the MLEs.

Kaufman et al. (2008), JASA: proposed biased and unbiased
estimating equations with tapered covariance matrices.
Stein (2014) JCGS: studied the statistical properties of
isotropic covariance tapers and showed numerically that
independent blocks are usually better.

Prediction: spatial interpolation using kriging with known
covariance functions.

Furrer et al. (2006), JCGS: proposed covariance tapering for
kriging and studied the properties of the resulting MSPE.

Open questions:

Tapers for nonstationary processes.
Anisotropic tapers.
Multivariate tapers: need compact supported cross-covariance
functions.



Low Rank Approximations

Find reduced rank covariance function representation:

Banerjee et al. (2008), JRSSB: proposed Gaussian predictive
processes ω̃(s) to replace ω(s) in

Z (s) = xT(s)β + ω(s) + ε(s),

by projecting ω(s) onto a m-dimension (lower) subspace

ω̃(s) = E (ω(s)|ω(x1), . . . , ω(xm)).

Cressie and Johannesson (2008), JRSSB: proposed fixed rank
kriging by defining a spatial random effect model:

ω(s) = BT(s)η,

where B is a vector consisting of m basis functions and
var(η) = G .

Have computational advantages but also limitations. (Stein, 2013,
Spatial Statistics).



Combinations

Low rank+tapering: Sang and Huang (2011), JRSSB

A reduced rank process for large-scale dependence: low rank
approximation.
A residual process for small-scale dependence: covariance
tapering.

Multi-resolution models: Nychka et al. (2013), Manuscript

The basis functions at each level of resolution are constructed
using a compactly supported correlation function with the
nodes arranged on a rectangular grid.
Numerically, it gives a good approximation to the Matérn
covariance function.



Markov Models

Markov models

The conditional distributions only depend on nearby neighbors.
Lead to sparseness of the precision matrix, the inverse of the
covariance matrix.
Computational cost: O(n3/2).

Gaussian Markov Random Fields:

Rue et al. (2009), JRSSB:

Proposed integrated nested Laplace approximation (INLA).
Studies the computational gains for latent Gaussian field
models in Bayesian inference.

Lindgren et al. (2011), JRSSB:

Represented a GRF with Matérn covariance function as the
solution of a particular type of SPDE.
Proposed an approach to find GMRFs with local neighborhood
and precision matrix to represent certain Gaussian random
fields with Matérn covariance structure.



Likelihood Approximation

Likelihood approximation

Spatial domain: Stein et al. (2004), JRSSB

Used the composite likelihood method (Vecchia, 1998) to
approximate REML.
Joint density: product of conditional densities.
Condition on only subset of the “past” observations.

Spectral domain: Fuentes (2007), JASA

A version of Whittle’s approximation (1954) for irregularly
spaced data by introducing a lattice process.

Score equation approximation: estimating equations.

Kaufman et al. (2008), JASA: sparse covariance matrix
approximation.
Sun and Stein (2013), Manuscript: sparse precision matrix
approximation.



Multivariate Spatial Data and Space-time Data

Multivariate spatial data: Furrer and Genton (2011), Biometrika

Proposed aggregation-cokriging.
Based on a linear aggregation of the covariables.
The secondary variables are weighted by the strength of their
correlation with the location of interest.
The prediction is then performed using a simple cokriging
approach with the primary variable and the aggregated
secondary variables.

Space-time Data: Genton (2007), Environmetrics

Separable covariance structure approximation.
To identify two small matrices that minimize the Frobenius
norm of the difference between the original covariance matrix
and the Kronecker product of those two matrices.



Methods in Numerical Analysis

Iterative methods: solve Σx = Z.

xk → xk+1, then check residuals.
For positive definite Σ ⇔ minimizing f (x) = 1

2x
TΣx− xTZ.

Can be solved by conjugate gradient method.

Matrix-free:

Never have to store an n × n matrix.
Computation is becoming cheap much faster than memory.

Main computation: matrix-vector multiplication.

Requires O(n2) for dense and unstructured matrices.
This is fast, if

Σ is sparse, or
Σ has some exploitable structures (e.g., Toeplitz).

Let m be the number of iterations:

O(n2 ×m) v . O(n3)



Computational Difficulties

Loglikelihood:

`(θ) = −1
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∣∣Σn×n(θ)
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Score equations:

ZTΣ−1ΣiΣ
−1Z− tr(Σ−1Σi ) = 0, i = 1, . . . , p,

where Σi = ∂Σ(θ)/∂θi .

Computing Σ−1Z: best done by solving systems Σx = Z.

Loglikelihood:

Main computation is due to calculating log |Σ|.

Score equations:

Need n solves to compute tr(Σ−1Σi ).
May not be any easier than computing log |Σ|.



Comparisons

Sparse covariance matrix approximation:

Covariance tapering.
Assume Σ is sparse.
Σ−1 is not generally sparse.

Approximating Σ−1 by a sparse matrix:

No need to assume Σ−1 is sparse everywhere in the
computation.

Markov random field models:

Assume Σ−1 is actually sparse.



Discussion

Low Rank Approximations

Cannot capture local dependence well.
How to improve it?

Sparse Covariance Approximations

Distortion of the covariance matrix.
Other types of tapers?

Markov Random Field Approximations

Sparse precision matrix.
Precision matrix approximation?

Combine methods and learn from numerical analysis community.
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