Statistical Methods for Large Spatial Datasets

Ying Sun

Department of Statistics
The Ohio State University

Large Datasets Problem

- Large observational and computer-generated datasets:
 - Often have spatial and temporal aspects.
 - Nearly global coverage.
 - High resolutions.
- Examples:
 - Satellite measurements.
 - Computer model outputs.
- Goal:
 - Make inference on underlying spatial processes from observations at *n* locations where *n* is large.

Gaussian Processes

- Gaussian process models can be used to
 - describe the spatial variability in the process.
 - predict unobserved values of the process, and provide prediction uncertainties.
 - serve as a building block for more complex models.
- ullet Gaussian process Z on a domain $\mathcal{D}\subset\mathbb{R}^d$ is fully specified by
 - $\mu(x) = E\{Z(x)\}$, and
 - $K(x,y) = cov\{Z(x), Z(y)\}$, for all $x, y \in \mathcal{D}$.
- Make inferences:
 - Estimation: μ and K when specified up to $\theta \in \mathbb{R}^p$.
 - Prediction: kriging.
- Methods:
 - Likelihood-based methods.
 - Bayesian approaches.

Maximum Likelihood Estimation

Suppose data $\mathbf{Z} = (Z_1, \dots, Z_n)^{\mathrm{T}}$ is observed from a Gaussian random field $Z \sim GP(0, K(h; \theta))$ at n irregularly spaced locations.

- Goal: estimate $\theta \in \mathbb{R}^p$ by likelihood methods.
- Loglikelihood:

$$\ell(\boldsymbol{\theta}) = -\frac{1}{2} \mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{n \times n}^{-1}(\boldsymbol{\theta}) \mathbf{Z} - \frac{1}{2} \log \big| \boldsymbol{\Sigma}_{n \times n}(\boldsymbol{\theta}) \big|.$$

Score equations:

$$\mathbf{Z}^{\mathrm{T}} \Sigma^{-1} \Sigma_{i} \Sigma^{-1} \mathbf{Z} - \mathrm{tr}(\Sigma^{-1} \Sigma_{i}) = 0, \quad i = 1, \dots, p,$$
 where $\Sigma_{i} = \partial \Sigma(\boldsymbol{\theta}) / \partial \theta_{i}$.

- The standard way:
 - Cholesky decomposition of $\Sigma_{n \times n}$.
 - Generally requires $O(n^3)$ computations and $O(n^2)$ memory.
- The covariance matrix $\Sigma_{n \times n}$ is
 - large: $n \times n$ for n locations.
 - unstructured: irregular spaced locations.
 - dense: non-negligible correlations.

Large n

- Options for large n:
 - Use models that reduce computations and/or storage.
 - Use approximate methods.
 - Both.
- Models that might allow for exact computations:
 - Compactly supported covariance functions.
 - Reduced rank covariance functions.
 - Markov models.
- Approximation methods:
 - Approximating likelihoods: obtain approximate functions to be maximized.
 - Approximating score equations: yield biased/unbiased estimating equations.
- Statistical and computational efficiency.
 - Exact computations.
 - Approximation methods.

Statistical Methods for Large Spatial Datasets

- Tapering
- 2 Low Rank Approximations
- 3 Low Rank+Tapering and Multi-resolution Models
- Markov Models
- 5 Likelihood and Score Equation Approximations
- 6 Multivariate Spatial Data and Space-time Data
- Methods in Numerical Analysis
- 8 Discussion

Tapering

Covariance tapering:

$$\tilde{K}(h; \boldsymbol{\theta}) = K(h; \boldsymbol{\theta}) \circ T(h; \gamma),$$

- $T(h; \gamma)$: an isotropic correlation function of compact support, i.e., $T(h; \gamma) = 0$ for $h \ge \gamma$.
- Assumptions:
 - The covariance function has compact support.
 - Its range is sufficiently small.
- ullet The tapered covariance matrix $ilde{\mathcal{K}}$:
 - Retains the property of positive definiteness.
 - Zero at large distances.
 - ullet Minimal distortion to K for nearby locations.
 - Efficient sparse matrix algorithms can be used.
 - Also saves storage.

Tapering

- How much statistical efficiency is lost?
 - Estimation: properties of the MLEs.
 - Kaufman et al. (2008), JASA: proposed biased and unbiased estimating equations with tapered covariance matrices.
 - Stein (2014) JCGS: studied the statistical properties of isotropic covariance tapers and showed numerically that independent blocks are usually better.
 - Prediction: spatial interpolation using kriging with known covariance functions.
 - Furrer et al. (2006), JCGS: proposed covariance tapering for kriging and studied the properties of the resulting MSPE.
- Open questions:
 - Tapers for nonstationary processes.
 - Anisotropic tapers.
 - Multivariate tapers: need compact supported cross-covariance functions.

Low Rank Approximations

- Find reduced rank covariance function representation:
 - Banerjee et al. (2008), JRSSB: proposed Gaussian predictive processes $\tilde{\omega}(\mathbf{s})$ to replace $\omega(\mathbf{s})$ in

$$Z(\mathbf{s}) = \mathbf{x}^{\mathrm{T}}(\mathbf{s})\boldsymbol{\beta} + \omega(\mathbf{s}) + \epsilon(\mathbf{s}),$$

by projecting $\omega(\mathbf{s})$ onto a *m*-dimension (lower) subspace

$$\tilde{\omega}(\mathbf{s}) = E(\omega(\mathbf{s})|\omega(\mathbf{x}_1),\ldots,\omega(\mathbf{x}_m)).$$

 Cressie and Johannesson (2008), JRSSB: proposed fixed rank kriging by defining a spatial random effect model:

$$\omega(\mathbf{s}) = \mathbf{B}^{\mathrm{T}}(\mathbf{s})\boldsymbol{\eta},$$

where **B** is a vector consisting of m basis functions and $var(\eta) = G$.

 Have computational advantages but also limitations. (Stein, 2013, Spatial Statistics).

Combinations

- Low rank+tapering: Sang and Huang (2011), JRSSB
 - A reduced rank process for large-scale dependence: low rank approximation.
 - A residual process for small-scale dependence: covariance tapering.
- Multi-resolution models: Nychka et al. (2013), Manuscript
 - The basis functions at each level of resolution are constructed using a compactly supported correlation function with the nodes arranged on a rectangular grid.
 - Numerically, it gives a good approximation to the Matérn covariance function.

Markov Models

- Markov models
 - The conditional distributions only depend on nearby neighbors.
 - Lead to sparseness of the precision matrix, the inverse of the covariance matrix.
 - Computational cost: $O(n^{3/2})$.
- Gaussian Markov Random Fields:
 - Rue et al. (2009), JRSSB:
 - Proposed integrated nested Laplace approximation (INLA).
 - Studies the computational gains for latent Gaussian field models in Bayesian inference.
 - Lindgren et al. (2011), JRSSB:
 - Represented a GRF with Matérn covariance function as the solution of a particular type of SPDE.
 - Proposed an approach to find GMRFs with local neighborhood and precision matrix to represent certain Gaussian random fields with Matérn covariance structure.

Likelihood Approximation

- Likelihood approximation
 - Spatial domain: Stein et al. (2004), JRSSB
 - Used the composite likelihood method (Vecchia, 1998) to approximate REML.
 - Joint density: product of conditional densities.
 - Condition on only subset of the "past" observations.
 - Spectral domain: Fuentes (2007), JASA
 - A version of Whittle's approximation (1954) for irregularly spaced data by introducing a lattice process.
- Score equation approximation: estimating equations.
 - Kaufman et al. (2008), JASA: sparse covariance matrix approximation.
 - Sun and Stein (2013), Manuscript: sparse precision matrix approximation.

Multivariate Spatial Data and Space-time Data

- Multivariate spatial data: Furrer and Genton (2011), Biometrika
 - Proposed aggregation-cokriging.
 - Based on a linear aggregation of the covariables.
 - The secondary variables are weighted by the strength of their correlation with the location of interest.
 - The prediction is then performed using a simple cokriging approach with the primary variable and the aggregated secondary variables.
- Space-time Data: Genton (2007), Environmetrics
 - Separable covariance structure approximation.
 - To identify two small matrices that minimize the Frobenius norm of the difference between the original covariance matrix and the Kronecker product of those two matrices.

Methods in Numerical Analysis

- Iterative methods: solve $\Sigma \mathbf{x} = \mathbf{Z}$.
 - $\mathbf{x}_k \to \mathbf{x}_{k+1}$, then check residuals.
 - For positive definite $\Sigma \Leftrightarrow \text{minimizing } f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\Sigma\mathbf{x} \mathbf{x}^{\mathrm{T}}\mathbf{Z}$.
 - Can be solved by conjugate gradient method.
- Matrix-free:
 - Never have to store an $n \times n$ matrix.
 - Computation is becoming cheap much faster than memory.
- Main computation: matrix-vector multiplication.
 - Requires $O(n^2)$ for dense and unstructured matrices.
 - This is fast, if
 - Σ is sparse, or
 - Σ has some exploitable structures (e.g., Toeplitz).
- Let m be the number of iterations:

$$O(n^2 \times m)$$
 v. $O(n^3)$

Computational Difficulties

Loglikelihood:

$$\ell(\boldsymbol{\theta}) = -\frac{1}{2} \mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}_{n \times n}^{-1}(\boldsymbol{\theta}) \mathbf{Z} - \frac{1}{2} \log \big| \boldsymbol{\Sigma}_{n \times n}(\boldsymbol{\theta}) \big|.$$

Score equations:

$$\mathbf{Z}^{\mathrm{T}}\Sigma^{-1}\Sigma_{i}\Sigma^{-1}\mathbf{Z} - \operatorname{tr}(\Sigma^{-1}\Sigma_{i}) = 0, \quad i = 1, \dots, p,$$

where $\Sigma_i = \partial \Sigma(\boldsymbol{\theta})/\partial \theta_i$.

- Computing $\Sigma^{-1}\mathbf{Z}$: best done by solving systems $\Sigma \mathbf{x} = \mathbf{Z}$.
- Loglikelihood:
 - Main computation is due to calculating log $|\Sigma|$.
- Score equations:
 - Need *n* solves to compute $\operatorname{tr}(\Sigma^{-1}\Sigma_i)$.
 - May not be any easier than computing $\log |\Sigma|$.

Comparisons

- Sparse covariance matrix approximation:
 - Covariance tapering.
 - Assume Σ is sparse.
 - \bullet Σ^{-1} is not generally sparse.
- Approximating Σ^{-1} by a sparse matrix:
 - No need to assume Σ^{-1} is sparse everywhere in the computation.
- Markov random field models:
 - \bullet Assume Σ^{-1} is actually sparse.

Discussion

- Low Rank Approximations
 - Cannot capture local dependence well.
 - How to improve it?
- Sparse Covariance Approximations
 - Distortion of the covariance matrix.
 - Other types of tapers?
- Markov Random Field Approximations
 - Sparse precision matrix.
 - Precision matrix approximation?
- Combine methods and learn from numerical analysis community.