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Introduction to Gaussian Markov Random Fields

A GMRF is essentially a Normal random vector with a certain
type of covariance structure.

Specifically, x = (x1, . . . , xn) is a GMRF with mean µ and
symmetric positive definite precision matrix Q if it has density

π(x) = (2π)−n/2|Q|1/2 exp(−1/2(x− µ)′Q(x− µ))

and the property that

Qij = 0⇐⇒ xi ⊥ xj |x−{i ,j} for all i 6= j .

GMRFs are often used as a prior where x is a collection of
latent variables.
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Advantages of GMRFs

Sparse precision matrix makes problems more computationally
tractable.

Exact algorithms (up to numerical error) are available and
provide an alternative to MCMC.

Fast because of linear algebra tricks (such as the reordering of
band matrices to compute the Cholesky decomposition of the
precision matrix).

Can approximate a Gaussian Random Field with a GMRF to
speed up computation.
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Gaussian Field

A continuous random field x(u) defined on a domain D ∈ Rd

is a Gaussian Field if all finite dimensional distributions of the
field are Gaussian.
It is completely defined by the mean µ(.) and covariance
function C (., .)
Observe data X = (X1, . . . ,Xn)T at spatial locations
{u i , i = 1, . . . , n}
Assume an exponential covariance function

l(θ) ∝ |Σ(θ)|−1/2 exp

{
−1

2
(X′Σ(θ)−1X)

}
Σij ≡ Cov(x(ui), x(uj)) ≡ C (ui,uj) ∝ exp

{−3||ui − uj||
θ

}
Computational cost of factorizing Σ for a GF is generally
O(n3)
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GMRF to approximate GF?

Computational cost of factorizing Q for a GMRF is typically
O(n3/2)

Why do we model GF and not a GMRF?

Deal with continuous processes (not defined on a regular grid)
It is easier to specify the covariance structure for two distinct
sites than to specify conditional properties
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What we would like to do

Model the process using a GF on a set of locations {u i} to
construct a discretized GF with a covariance matrix

Find a GMRF with local neighborhood and precision matrix Q
that optimally represents the GF

Do the computations using the GMRF representation using
numerical methods for sparse matrices
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Literature Review

Besag & Kooperberg (1995)
Estimate parameters for a GMRF using the GF covariance
matrix
Used KL divergence

Parameters to be estimated θ00, θ10, θ20, θ11, θ21, θ22
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Literature Review

Rue & Tjelmeland (2002)

Show that KL divergence is not optimal to fit GMRF to a GF
Define a modified discrepancy metric based on weighted
differences between correlations
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Results from Rue & Tjelmeland (2002)

Solid line - Target, Dashed line - Fitted by KLD

(a) Exponential (b)Gaussian (c) Spherical (d) Matern (ν = 0.05)
(e) (ν = 0.5) (f) (ν = 10)
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Results from Rue & Tjelmeland (2002)contd

Exponential Correlation: solid line - 3x3 dashed dot line - 5x5 dashed line - 7x7 dotted

line - 9x9

(a) r = 10 (b)r = 30 (c) r = 50
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Results from Rue & Tjelmeland (2002)contd

Gaussian Correlation: solid line - 3x3 dashed dot line - 5x5 dashed line - 7x7 dotted line

- 9x9

(a) r = 10 (b)r = 30 (c) r = 50
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Problems with Rue & Tjelmeland (2002)

Only works for GF’s defined on a Lattice or Torus

Need to precompute fit for different neighborhood sizes and
different parameter values of C (., .)
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SPDE Approach - Lindgren et al (2011)

Provide an explicit link between GF with Matern covariance
structure and GMRF’s on any triangulation of Rd

Matern Covariance function

r(u, v) =
σ2

Γ(ν)× 2ν−1
(κ||v − u||)νKν(κ||v − u||) (1)

Controlled by the smoothness parameter ν and range
parameter κ
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SPDE Approach

SPDE
(κ2 −∆)

α
2 x(u) =W(u) (2)

α = ν + d/2

∆ =
d∑

i=1

∂2

∂xi 2

Solution to the SPDE, is a GF with a matern covariance
structure with parameters ν and κ
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SPDE Approach

Main Idea : Use a finite element representation of a weak
solution to (2) to then link the GF to a particular GMRF
precision structure

x(u) =
n∑

k=1

ψk(u)wk (3)

ψk basis functions defined on the triangulated input domain

wk Gaussian distributed weights
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What makes this exciting!

Any GF model defined with a Matern covariance structure
such that ν + d/2 is integer valued, can be approximated by a
GMRF

Result is not limited to regular lattices

Can be extended to GF’s on manifolds, nonstationary and
anisotropic covariance structures etc
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A discrete model on a regular grid

Let x be a GMRF on a regular two-dimensional lattice indexed by
ij , with the Gaussian full conditionals:

E (xij |x−ij) =
1

a
(xi−1,j + xi+1,j + xi ,j−1 + xi ,j+1). (4)

var(xij |x−ij) = 1/a

and |a| > 4. This model can be written as the elements of the
precision matrix related to a single location

-1
a -1

(5)
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A discrete model on a regular grid

Besag (1981) obtained the following approximation result
from the general Matérn covariance function letting ν → 0,
κ2 = a− 4, and σ2 = 1/4π:

cov(xij , xi ′j ′) ≈
1

2π
K0{l

√
(a− 4)}, l 6= 0,

where l is the Euclidean distance between ij and i ′j ′.
“Informally this means that the discrete model defined by
expression (4) generates approximate solutions to the SPDE
equation (2) on a unit distance regular grid, with ν = 0.”
(Lindgren et al., 2011).
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Set α = 1 and solve the SPDE equation (2), a generalized
random field has spectrum:

R1(k) ∝ (a− 4 + ||k||2)−1,

Some discretized version of the SPDE can be considered as a
linear filter with the squared transfer function R1.

Replace the noise term W(u) in SPDE equation(2) by
Gaussian noise with spectrum R1, the resulting solution has
spectrum R2 = R2

1 .
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Therefore the GMRF representations for the Matérn fields are
convolutions of the coefficients in representation (5).

ν = 1
1

-2a 2
4 + a2 -2a 1

ν = 2
-1
3a -3

−3(a2 + 3) 6a -3
a(a2 + 12) −3(a2 + 3) 3a -1
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Fig. 1 in Lindgren et al. (2011) shows the performance of the
approximations when ν = 1.
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Main Result 1

Result 1. The coefficients in the GMRF representation of
SPDE equation(2) on a regular unit distance two-dimensional
infinite lattice for ν = 1, 2, . . . , is found by convolving model
(5) by itself ν times.
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Main Result 2: Triangulation

Goal: extend the SPDE approach to irregular grids.

Build an irregular grid of non-intersecting triangles (share edges or corners)

over the space. Corners are denoted vertices.

Triangulation process is based on collected data.

Initialize observed locations as vertices.

Add vertices using heuristics such as

maximize minimum interior angles of triangles.
minimize the total number of triangles.
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Main Result 2: Triangulation Example

Leukemia survival data in England (Henderson et al, 2002)

1043 observations

Triangulation resulted in 1749 vertices, 3446 triangles.

fine resolution near observed locations; coarse resolution elsewhere.

Fig 2 from Lindgren et al: (a) observed locations, (b) triangulation.
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Main Result 2: SPDE

Use a stochastic weak formulation of the SPDE:

The solution must fulfill the above for every appropriate finite set of test

functions {φk , j = 1, ...,m}.

The inner product is defined as (integral over area of interest):
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Main Result 2: Finite Element Representation

The finite element representation of the solution to the SPDE is:

continuously indexed.

n = number of vertices in the triangulation.

{ψk} - piecewise linear basis fcns = 1 at vertex k, 0 at other vertices.

{wk} - Gaussian-distributed weights = value of the field at the vertices.

Then the values of the field...

at the vertices are determined by the weights.

at triangle interiors are determined by linear interpolation.
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Main Result 2: Finite Element Representation

Fig 3 from Calmeletti et al, 2012: Left panel is the continuously indexed spatial random

field. Right panel is the corresponding finite element representation.
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Main Result 2: Finite Dimension Solution

The full distribution of the solution is determined by the joint distribution of

the Gaussian-distributed weights. We would like:

the precision matrix for the Gaussian weights of the finite element field.

to approximate that precision matrix with a GMRF precision matrix.
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Main Result 2: Finite Dimension Solution

For the finite dimension solution, we find the distribution of weights {wk} that

fulfills the weak SPDE for a specific set of m=n (number of vertices) test

functions. Lindgren et al chose:

for α = 1, φk =(κ2 −∆)1/2ψk (denoted least squares solution)

for α = 2, φk = ψk (denoted Galerkin solution)

for α ≥ 3, recursive Galerkin

Define the following (n x n) matrices with entries:
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Main Result 2

With some boundary conditions, we then have the result in Lindgren et al:

C and G are non-zero only where basis fcn pairs share common triangles.

C−1 is dense, resulting in a dense Q (finite element solution, not Markov).

Approximate C by a diagonal matrix with elements c̃ii = < ψi , 1 >.

The precision matrix is then sparse (GMRF model).
And we have an explicit mapping from GF to GMRF.
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Main Result 2: Leukemia Example

Fig 2c from Lindgren et al: stationary correlation function and the corresponding GMRF

approximation for ν=1, approx range=0.26
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Extensions

Matérn fields on manifolds

Non-stationary fields

Oscillating covariance functions

Non-isotropic models and spatial deformations

Non-separable space-time models

All these extensions give explicit GMRF representations (the finite
element representations and equation (10) in Main Result 2),
individually or combined. Therefore one can construct the GMRF
representations of non-stationary oscillating GFs on the sphere,
without requiring any computation beyond the geometric
properties of the triangulation.
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Extensions

Matérn fields on manifolds
To define Matérn fields on a sphere, we can define Gaussian white
noise on S2 as a zero-mean random GF W (·) with the property
that the covariance between W (A) and W (B), for any subsets A
and B of S2, is proportional to the surface integral over A∩B. The
GMRF representation of the weak solution only needs to change
the definition of the inner product to a surface integral on S2 .
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Extensions

Non-stationary fields
Let the the parameters κ2 and the innovation variance in SPDE
equation(2) depend on the coordinate u,

{κ2(u)−∆}α/2{τ(u)x(u)} =W(u) (6)

It is non-stationary when one or both parameters are non-constant.
If we let the parameters κ2(u) and τ(u) vary slowly, the local
interpretation of equation (6) is still a Matérn field. With a similar
approach for the stationary case, the GMRF representation of
equation (6) can be obtained.
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Extensions

Oscillating covariance functions
Consider a complex version of SPDE equation(2), let α = 2,

{κ2 exp(iπθ)−∆}{x1(u) + ix2(u)} =W1(u) + iW2(u), (7)

where W1(u), W2(u) are two independent white noise fields, θ is
the oscillation parameter, 0 ≤ θ < 1.
Non-isotropic models and spatial deformations
Consider SPDEs with a non-isotropic Laplacian and a directional
derivative term. Use the deformation method for non-stationary
covariances (Sampson and Guttorp, 1992).
Non-separable space-time models
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Why you should like your INLAs

Introduced by Rue, Martino, and Chopin (2009) in JRSSB.

“to provide accurate and fast deterministic approximations to all, or
some of,the n posterior marginals for xi [latent variables] . . . plus
possibly the posterior marginals for θ or some of its components . .
. ”

“. . . MCMC sampling remains painfully slow from the end user’s
point of view.”

“We argue, however, that for a given computational cost, the
deterministic approach that is developed in this paper outperforms
MCMC algorithms to such an extent that, for latent Gaussian
models, resorting to MCMC sampling rarely makes sense in
practice.”

“It is our experience that INLA outperforms without comparison any
MCMC alternative, in terms of both accuracy and computational
speed.”
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Setting where INLA is Appropriate

Recall the Bayesian Setting:

Data: y = (yi ) i ∈ I.

Likelihood:
∏

i∈I π(yi |xi ,θ)
where x are latent variables and θ are hyper-parameters.

Priors: π(x|θ) and π(θ).

Assumptions for INLA:

dim(x) = n is around 102 to 105 (large) and
dim(θ) is 2 to 6 (small)

π(x|θ) = GMRF with sparse precision matrix Q(θ).
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Posterior

The posterior is:

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi |xi ,θ)

∝ π(θ)|Q(θ)|1/2 exp

(
−1

2
x′Q(θ)x +

∑
i

log(π(yi |xi ,θ))

)

Our goal is to find posterior marginals π(xi |y), π(θj |y).

We will make a series of approximations in order to obtain these
posterior marginal distributions, including an approximation for
π(θ|y) as an intermediate step.
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Step 1: Approximate π(θ|y)
Step 2: Approximate π(xi |θ, y)

Step 1: Approximate π(θ|y)

Begin with a Laplace approximation to the marginal posterior of
π(θ|y) (see Tierney and Kadane, 1986):

π̃(θ|y) ∝ π(x,θ, y)

π̃G (x|θ, y)

∣∣∣∣
x=x∗(θ),

(3)

where π̃G (x|θ, y) is the Gaussian approximation to the full
conditional of x and x∗(θ) is the mode of the full conditional of x
for a given θ.
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Integrated Nested Laplace Approximations (INLAs)

Step 1: Approximate π(θ|y)
Step 2: Approximate π(xi |θ, y)

Step 1: Approximate π(θ|y)

To find π̃G (x|θ, y), we are attempting to approximate

π(x|θ, y) ∝ exp

(
−1

2
x′Q(θ)x +

∑
i

gi (xi )

)
,

where in our case

gi (xi ) = log(π(yi |xi ,θ)),

with a Gaussian distribution that has the same mode and curvature
at the mode.
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Step 1: Approximate π(θ|y)
Step 2: Approximate π(xi |θ, y)

Step 1: Approximate π(θ|y)

The following steps allow us to do this:

Initial Guess: µ(0) = (µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
n ).

Approximate gi (xi ) = gi (µ
(0)
i ) + bixi − 1

2cix
2
i , where bi and ci

depend on µ(0).

Obtain a Gaussian approximation with precision matrix
Q + diag(c) and mode µ(1) given by the solution
(Q + diag(c))µ(1) = b.

Repeat with µ(1) in place of µ(0) and repeat until
convergence.

Let this converged Gaussian be π̃G (x|θ, y).
The mode of π̃G (x|θ, y) is x∗(θ) from (3).
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Step 1: Approximate π(θ|y)
Step 2: Approximate π(xi |θ, y)

Step 1: Approximate π(θ|y)

We then have

π̃(θ|y) =
π(θ)π(x∗(θ)|θ)π(y|x∗(θ),θ)

π̃G (x∗(θ)|θ, y)
,

all of which can be evaluated exactly (though it is still an
approximation) at several different θ values (a grid).

Use this approximation to approximate each π(θi |y) by summing
out the other dimensions from π̃(θ|y).
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Step 1: Approximate π(θ|y)

328 H. Rue, S. Martino and N. Chopin

second derivatives of log{π̃.θ|y/} by using the difference between successive gradient
vectors. The gradient is approximated by using finite differences. Let θÅ be the modal
configuration.

(b) Step 2: at the modal configuration θÅ compute the negative Hessian matrix H > 0, using
finite differences. Let Σ= H−1, which would be the covariance matrix for θ if the den-
sity were Gaussian. To aid the exploration, use standardized variables z instead of θ. Let
Σ=VΛVT be the eigendecomposition of Σ, and define θ via z, as follows:

θ.z/=θÅ +VΛ1=2z:

If π̃.θ|y/ is a Gaussian density, then z is N .0, I/. This reparameterization corrects for scale
and rotation, and simplifies numerical integration; see for example Smith et al. (1987).

(c) Step 3: explore log{π̃.θ|y/} by using the z-parameterization. Fig. 1 illustrates the proce-
dure when log{π̃.θ|y/} is unimodal. Fig. 1(a) shows a contour plot of log{π̃.θ|y/} for
m= 2, the location of the mode and the new co-ordinate axis for z. We want to explore
log{π̃.θ|y/} to locate the bulk of the probability mass. The result of this procedure is
displayed in Fig. 1(b). Each dot is a point where log{π̃.θ|y/} is considered as significant,
and which is used in the numerical integration (5). Details are as follows. We start from
the mode .z = 0/ and go in the positive direction of z1 with step length δz say δz = 1, as
long as

log[π̃{θ.0|y}]− log[π̃{θ.z/|y}] < δπ .11/

where, for example, δπ = 2:5. Then we switch direction and do similarly. The other co-
ordinates are treated in the same way. This produces the black dots. We can now fill in
all the intermediate values by taking all different combinations of the black dots. These
new points (which are shown as grey dots) are included if condition (11) holds. Since we
lay out the points θk in a regular grid, we may take all the area weights ∆k in equation (5)
to be equal.

(d) Approximating π(θj|y): posterior marginals for θj can be obtained directly from π̃.θ|y/
by using numerical integration. However, this is computationally demanding, as we need
to evaluate π̃.θ|y/ for a large number of configurations. A more feasible approach is to
use the points that were already computed during steps 1–3 to construct an interpolant

(a) (b)

Fig. 1. Illustration of the exploration of the posterior marginal for θ: in (a) the mode is located and the Hes-
sian and the co-ordinate system for z are computed; in (b) each co-ordinate direction is explored (!) until the
log-density drops below a certain limit; finally the new points ( ) are explored

How to find a good grid:

Find the mode of π̃(θ|y) with respect to θ with numerical
maximization techniques.
Find important directions to explore with the Hessian matrix.
Explore π̃(θ|y) along the important directions and fill in the
grid with points ∆k apart.
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Step 2: Approximate π(xi |θ, y)

To approximate π(xi |y), we will use a sum over a fine grid of
points:

π̃(xi |y) =
∑
k

π̃(xi |θk , y)π̃(θk |y)∆k . (5)

Note that π̃(θ|y) has already been established. We then must find
the approximation π̃(xi |θ, y).
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Step 2: Approximate π(xi |θ, y)

There are three different approximations we could consider for
π̃(xi |θ, y):

Using a Gaussian approximation (using the recursions we used
before)

Using a Laplace approximation (see paper with their
modifications)

Using a simplified Laplace approximation (again, see paper)
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Step 2: Approximate π(xi |θ, y)

Discussion

A large discussion of examples, approximation errors, and
applications is presented in the paper.

There are is also a large amount of discussion from other
statisticians at the end of the paper.
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