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Introduction

Introduction

Markov chain Monte Carlo (MCMC) methods have become a
standard tool for statisticians.

Methods like the Metropolis-Hastings algorithm are commonly used
to sample from high dimensional distributions that may also exhibit
complex dependency structures.

The efficiency of these algorithms depends on an appropriate choice
for the proposal distribution.

A good proposal distribution should capture important characteristics
of the target distribution, such as its scale and dependence structure.
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Introduction

Introduction

Goal:

Design an efficient proposal distribution.

Problem:

This is a feasible task in small dimensions, but it can be very difficult
in high dimensions.

Existing Solutions:

Focus on subcomponents of the target distribution; this can ignore
some of the dependency that exists!

Particle MCMC Solution:

Use sequential Monte Carlo (SMC) and MCMC methods together to
design efficient MCMC algorithms with little user design.
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Sequential Monte Carlo

Motivation for SMC: Hidden Markov Model

In this model, we have a hidden Markov process {Xn; n ≥ 1} that is
characterized some initial density X1 ∼ µθ(·) and transition probability
density

Xn+1|Xn = x ∼ fθ(·|x)

for some θ ∈ Θ.

The process {Xn} is observed through another process {Yn; n ≥ 1}. The
observations (the Yi ’s) are assumed to be conditionally independent given
{Xn} with densities of the form

Yn|X1, . . . ,Xn = x , . . . ,Xm ∼ gθ(·|x),∀n ∈ {1, . . . ,m}.
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Sequential Monte Carlo

Motivation for SMC: Hidden Markov Model

Goal:
Perform Bayesian inference conditional on the observations
y1:T = (y1, . . . , yT ) for some T ≥ 1.

This will require the posterior density pθ(x1:T |y1:T ).

If θ ∈ Θ is known, the posterior is proportional to

pθ(x1:T , y1:T ) = µθ(x1)gθ(y1|x1)
T∏

n=2

fθ(xn|xn−1)gθ(yn|xn).

If θ ∈ Θ is unknown, the posterior is proportional to

pθ(x1:T , y1:T )p(θ).
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Sequential Monte Carlo

Background for SMC: Importance Sampling

Used to sample from a target distribution p by using an importance
density q.

1. Sample candidates Y1, . . . ,Ym i.i.d. from q.

2. Calculate the (normalized) importance weights, W (Y1), . . . ,W (Ym)
defined by

W (yi ) =
p(yi )/q(yi )∑m
i=1 p(yi )/q(yi )

.

3. Resample X1, . . . ,Xn from Y1, . . . ,Ym (with replacement) with
probabilities W (Y1), . . . ,W (Ym).

The sample X1, . . . ,Xn has distribution that converges to p as m→∞.
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Sequential Monte Carlo

Sequential Monte Carlo Algorithm (HMM)

SMC methods yield an estimate, p̂, for the posterior described previously.

At time 1, we approximate pθ(x1|y1) using importance sampling with an
importance density qθ(x1|y1).

N particles {X k
1 } = (X 1

1 , . . . ,X
N
1 ) are sampled from qθ(x1|y1) and

(normalized) importance weights, {W k
1 } = (W 1

1 , . . . ,W
N
1 ), are calculated.

Using these particles and weights, we can (re)sample N particles
(approximately distributed as pθ(x1|y1)) by sampling from our estimate of
p given by

p̂θ(x1|y1) =
N∑

k=1

W k
1 δX k

1
(x1).
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Sequential Monte Carlo

Sequential Monte Carlo Algorithm (HMM)

At time 2, we again use importance sampling to approximate pθ(x1:2|y1:2).
We reuse the N samples (particles) from time 1 and extend each particle
with an importance sampling density qθ(x2|y2, x1).

This yields samples that are approximately distributed as

pθ(x1|y1)qθ(x2|y2, x1).

Importance weights {W k
2 } are recalculated since our target is pθ(x1:2|y1:2).

We then resample N particles from

p̂θ(dx1:2|y1:2) =
N∑

k=1

W k
2 δX k

1:2
(dx1:2).

Repeat until time T .
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Sequential Monte Carlo

Sequential Monte Carlo Algorithm (HMM)

At time T , this algorithm yields an approximation of the joint posterior
density pθ(dx1:T |y1:T ) given by

p̂θ(dx1:T |y1:T ) =
N∑

k=1

W k
T δX k

1:T
(dx1:T ).

This algorithm also provides us with an estimate of the marginal likelihood
pθ(y1:T ) given by

p̂θ(y1:T ) = p̂θ(y1)
T∏

n=2

p̂θ(yn|y1:(n−1))

where

p̂θ(yn|y1:(n−1)) =
1

N

N∑
k=1

wn(X k
1:n).
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Sequential Monte Carlo

Sequential Monte Carlo: Design and Limitations

This is a powerful algorithm because it requires very little user input,
yet still provides useful results.

We need only specify one-dimensional importance densities qθ(x1|y1)
and qθ(xn|yn, xn−1) for n ≥ 2.

The authors suggest using qθ(x1|y1) = µθ(x1) and
qθ(xn|yn, xn−1) = fθ(xn|xn−1) for n ≥ 2.

When T is too large, we run into issues of degeneracy.

Successive resampling diminishes the number of distinct values for xn.
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Sequential Monte Carlo

An Illustrative Example: Linear Gaussian SSM

Linear Gaussian State-Space Model

State process {Xt : t ∈ Z}:

Xt = φXt−1 + εt

where εt
iid∼ N(0, σ2) and |φ| < 1.

Data process {Yt : t ∈ Z}:

Yt = θXt + rt

where rt
iid∼ N(0, γ2).

Parameter vector: θ = (φ, θ, σ2, γ2).

Li, Smith PMCMC December 7, 2015 13 / 33



Sequential Monte Carlo

An Illustrative Example: Linear Gaussian SSM

Suppose that the parameters θ = (0.7, 1, 0.5, 0.1) are given.

The goal is to estimate the system state {Xt : 1, 2, . . .T}
conditioning on the observed data Y1:T , that is

Pθ(Xt | Y1:T = y1:T ) for t = 1, . . .T

1. Obtain Pθ(Xt | Y1:T = y1:T ), ∀t = 1, . . .T from Kalman Filter.
2. Obtain approximate samples from Pθ(Xt | Y1:T = y1:T ),
∀t = 1, . . .T using SMC.
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Sequential Monte Carlo

SSM Example: Kalman Filter

Filtering: for t = 1 . . .T ,

1. get forecasts xt|t−1 and Pt|t−1 from

xt|t−1 = φxt−1|t−1, Pt|t−1 = σ2 + φ2Pt−1|t−1

2. get analysis xt|t and Pt|t from

Kt =
θPt|t−1

γ2 + θ2Pt|t−1

xt|t = xt|t−1 + Kt(yt − θxt|t−1)

Pt|t = (1− Ktθ)Pt|t−1
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Sequential Monte Carlo

SSM Example: Kalman Filter

Smoothing: for t = T − 1 . . . 1,
1. Obtain Jt from

Jt =
φPt|t

Pt+1|t

2. Obtain xt|T from

xt|T = xt|t + Jt(xt+1|T − xt+1|t)

3. Obtain Pt|T from

Pt|T = Pt|t + J2t (Pt+1|T − Pt+1|t)
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Sequential Monte Carlo

SSM Example: Sequential Monto Carlo

Step 1: n = 1

(1) Sample X k
1 from an arbitrary initial distribution for X1 ∼ N(0, 5);

(2) Importance weights w1 is

w1(X k
1 ) = pθ(y1 | x1)

(3) Normalized importance weight W1 is obtained as

W1(X k
1 ) =

w1(X k
1 )

N∑
k=1

w1(X k
1 )
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Sequential Monte Carlo

SSM Example: Sequential Monte Carlo

Step 2: n = 2 . . .T ,

(1) Sample Ak
n−1 ∼ Multinominal(· |Wn−1)

(2) Sample X k
n ∼ Normal(φX

Ak
n−1

n−1 , σ
2) and set X k

1:n = (X
Ak
n−1

1:n−1,X
k
n )

(3) Importance weights are calculated from

wn(X k
1:n) = pθ(yn | xkn )

Wn(X k
1:n) =

wn(X k
1:n)

N∑
k=1

wn(X k
1:n)

(4) p̂θ(yn|y1:(n−1)) = 1
N

∑N
k=1 wn(X k

1:n)
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Sequential Monte Carlo

Figure: Number of unique values at time t
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Sequential Monte Carlo

Figure: N Particles from SMC
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Particle Markov Chain Monte Carlo

Particle Independent Metropolis-Hastings (PIMH)

PIMH Setup/Notation:

Target Density: pθ(x1:T |y1:T ).

Optimal Proposal Density: qθ(x1:T |y1:T ) = pθ(x1:T |y1:T ).

Realistic Proposal Density: qθ(x1:T |y1:T ) = p̂θ(x1:T |y1:T ).

Implementing p̂θ into the Metropolis-Hastings algorithm yields a
relatively simple and familiar method.
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Particle Markov Chain Monte Carlo

Particle MCMC

SMC is an approximate simulation procedure for the target density
pθ(X1:T | Y1:T ).

The output of an SMC algorithm targeting pθ(X1:T | Y1:T ) using
N ≥ 1 particles is used as the proposal distribution for the usual
MCMC algorithm.

This cannot be implemented directly, as the evaluation of the
acceptance ratio in MCMC requires the marginal density of a particle
that is generated from an SMC algorithm.
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Particle Markov Chain Monte Carlo

Particle Independent Metropolis-Hastings (PIMH)

Step 1 : iteration i = 0, run an SMC algorithm targeting pθ(x1:T |y1:T ),
sample X1:T (0) ∼ p̂θ(·|y1:T ), and let p̂θ(y1:T )(0) denote the corresponding
marginal likelihood estimate.
Step 2 : iteration i ≥ 1,

1. run an SMC algorithm targeting pθ(x1:T |y1:T ), sample
X ∗1:T ∼ p̂θ(·|y1:T ), and let p̂θ(y1:T )∗ denote the corresponding
marginal likelihood estimate, then

2. with probability

min

{
1,

p̂θ(y1:T )∗

p̂θ(y1:T )(i − 1)

}
set X1:T (i) = X ∗1:T and p̂θ(y1:T )(i) = p̂θ(y1:T )∗; else set
X1:T (i) = X1:T (i − 1) and p̂θ(y1:T )(i) = p̂θ(y1:T )(i − 1)
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Particle Markov Chain Monte Carlo

10 paths from prior state process
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Particle Markov Chain Monte Carlo
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Figure: Marginal density plot of xt given y1:T
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Particle Markov Chain Monte Carlo
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Particle Markov Chain Monte Carlo

Particle MCMC with unknown θ

When the parameter θ is unknown and we are interested in sampling from
p(θ, x1:T |y1:T ),

1. Particle Marginal Metropolis-Hastings Sampling(PMMH)

2. Particle Gibbs Sampling.
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Particle Markov Chain Monte Carlo

Particle Marginal Metropolis-Hastings Sampling(PMMH)

Given that p(θ, x1:T |y1:T ) = p(θ | y1:T )pθ(x1:T | y1:T ), a natural
choice of proposal density for an MH update is,

q(θ?, x?1:T | θ, y1:T ) = q(θ? | θ)pθ?(x?1:T | y1:T )

The resulting MH acceptance ratio is given by

p(θ?, x?1:T ) | y1:T )q(θ, x?1:T | θ?, y1:T )

p(θ, x?1:T ) | y1:Tq(θ?, x?1:T | θ, y1:T )

=
p?θ(y1:T )p(θ?)q(θ | θ?)

pθ(y1:T )p(θ)q(θ? | θ)
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Particle Markov Chain Monte Carlo

Particle Marginal Metropolis-Hastings Sampling(PMMH)

Step 1 : at i = 0, set θ(0) arbitrarily and run an SMC algorithm targeting
pθ(0)(x1:T | y1:T ), sample X1:T (0) ∼ p̂θ(0)(·|y1:T ), and let p̂θ(0)(y1:T )
denote the corresponding marginal likelihood estimate.
Step 2 : iteration i ≥ 1,

1. sample θ? ∼ q(· | θ(i − 1)),

2. sample X ∗1:T ∼ p̂θ?(·|y1:T ), and let p̂θ?(y1:T ) denote the
corresponding marginal likelihood estimate, then

3. with probability

min

{
1,

p̂?θ(y1:T )p(θ?)q(θ(i − 1) | θ?)

p̂θ(i−1)(y1:T )p(θ(i − 1))q(θ? | θ(i − 1))

}
set θ(i) = θ?,X1:T (i) = X ?

1:T and p̂θ(i)(y1:T )(i) = p̂θ(y1:T )∗;
otherwise set θ(i) = θ(i − 1),X1:T (i) = X1:T (i − 1) and
p̂θ(i)(y1:T ) = p̂θ(i−1)(y1:T )
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Conclusions

Conclusions

1. In high dimensions, designing an efficient MCMC algorithm (proposal)
”by hand” is not possible.

2. Breaking up the problem into many low dimensional problems often
fails to include some information about the target density.

3. Combining sequential Monte Carlo methods with existing MCMC
algorithms breaks the high dimensional problem in many low
dimensional problems while still accounting for properties of the
target distribution.

4. Particle MCMC methods provide efficient algorithms with little user
design needed.
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