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Notation:

@ The underlying spatially continuous phenomenon S(x), x € R? is
sampled at a set of locations x;,i = 1,...,n, from the spatial region
of interest A C R?

@ Y, is the measurement taken at x;

@ /; is the measurement error

The model:
K:M+S(XI)+ZH i=1,...,n

e {Z;,i=1,...,n} are a set of mutually independent random variables
with E[Z;] = 0 and Var(Z;) = 72 (called the nugget variance)
e Assume E[S(x)] = 0 Vx



If X = (Xl,

Diggle et al. (1998) rewrote this simple model hierarchically, assuming
Gaussian distributions:

@ 5(x) follows a latent Gaussian stochastic process

. 7Xn): Y = (Y1;

o Y;|S(x;) ~ N(u+ S(x;),7%) are mutually independent for i =1,...,n
this model can be described by:

»yn), and S(X) = {S(x), ..., S(xn)}
[S, YT = [SIYIS(X)] = [SIIYalS(a)l - - [YalS(xn)]

where [-] denotes the distribution of the random variable.
— This model treats X as deterministic



@ Typically, the sampling locations x; are treated as stochastically
independent of S(x), the spatially continuous process:

[S, X] = [S][X]

(this is non-preferential sampling).

e This means that [S, X, Y] = [S][X][Y|S(X)], and by conditioning on
X, standard geostatistical techniques can be used to infer properties
about S and Y.

o Preferential sampling describes instances when the sampling process
depends on the underlying spatial process:

[5, X1 # [S][X]

@ Preferential sampling complicates inference!



@ Non-preferential, uniform designs: Sample locations come from an
independent random sample from a uniform distribution on the region
of interest A (e.g. completely random designs, regular lattice designs).

@ Non-preferential, non-uniform design: Sample locations are
determined from an independent random sample from a non-uniform
distribution on A.

© Preferential designs:

e Sample locations are more concentrated in parts of A that tend to have
higher (or lower) values of the underlying process S(x)

e X, Y form a marked point process where the points X and the marks
Y are dependent

Schlather et al. (2004) developed a couple tests for determining if
preferential sampling has occurred.



Consider the situation where S and X are stochastically dependent, but
measurements Y are taken at a different set of locations, independent of
X. Then, the joint distribution of S, X, and Y is:

[5, X, Y] = [S]IX|S][Y]S]
We can integrate out X to get:
[S, Y] =[S][YIS]

This means inference on S can be done by "ignoring” X (as is convention
in geostatistical inference). However, if Y is actually observed at X, then
the joint distribution is:

[S, X, YT = [SIIXISIIY X, S] = [S]IXIS][Y]S(X)]

Conventional methods which "ignore” X are misleading for preferential

sampling! O <> «Z» <Z» T HAC



The joint distribution of S, X, and Y (from previous slide):

[S, X, Y] = [SIIX|S][Y[X, S] = [S][XIS][Y]S(X)]
with the last equality holding for typical geostatistical modeling.
@ S is a stationary Gaussian process with mean 0, variance ¢
correlation function:

2

, and
for x, x' separated by distance u

p(u; ¢) = Corr(S(x), S(x'))

@ Given S, X is an inhomogeneous Poisson process with intensity
A(x) = exp(a + S5(x))
© Given Sand X, Y =(VY1,.
random variables such that

., Yn) is set of mutually independent
Yi ~ N(u+ S(xi), %)
=} (=) = E £ DA
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Some notes about this model:

@ Unconditionally, X follows a log-Gaussian Cox process (details in
Moller et al. (1998))

o If we set B =0 in [X|S], then unconditionally, Y follows a
multivariate Gaussian distribution

@ Ho and Stoyan (2008) considered a similar hierarchical model
construction for marked point processes



@ Approximately simulate the stationary Gaussian process S on the unit

square by simulating on a finely spaced grid, and then treating S as
constant within each cell.

@ Then, sample values of Y according to one of 3 sampling designs:

@ Completely random (non-preferential): Use sample locations x; that are
determined from an independent random sample from a uniform
distribution on A.

@ Preferential: Generate a realization of X by using [X|S], with § = 2,
and then generate Y using [Y|S(X)].

© Clustered: Generate a realization of X by using [X|S], but then
generate Y on locations X using a separate independent realization of
S.

@ This is non-preferential, but marginally X and Y share the same
properties as the preferential design.



e S is stationary Gaussian with mean y = 4, variance ¢® = 1.5 and
functions:

correlation function defined by the Matérn class of correlation

p(u; ¢, k) = (2°71(K)) " (u/9) Ke(u/¢), u>0

where K, is the modified Bessel function of the second kind. For this
simulation, ¢ = 0.15 and k = 1.
S(x;).

@ Set the nugget variance 72 = 0 so that y; is the realized value of
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Figure: Underlying process realization and sampling locations from the simulation
for (a) completely random sampling, (b) preferential sampling, and (c) clustered




Theoretical variogram of spatial process Y(x):
1
V(u) = EVar( Y(x) - Y(x)

where x and x’ are distance u apart

Empirical variogram ordinates: For (x;,y;), i =1,...,n where x; is the
location and y; is the measured value at that location:

1
vij = 5(}/:' —y)?

@ Under non-preferential sampling, vj is an unbiased estimate of V/(uj;),
where uj; is the distance between x; and Xx;

@ A variogram cloud plots vj; against u;j; these can be used to find an
appropriate correlation function. For this simulation, simple binned

estimators are used. e
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Looking at 500 replicated simulations, the pointwise bias and standard
deviation of the smoothed empirical variograms are plotted:
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Fig.2. Estimated bias and standard deviation of the sample variogram under random (- ), preferential
[ CEREEE ) and clustered (------- ) sampling (see the text for a detailed description of the simulation model): (a)

pointwise means plus and minus two pointwise standard errors; (b) pointwise standard deviations

@ Under preferential sampling, the empirical variogram is biased and
less efficient!

@ The bias comes from sample locations covering a much smaller range

of S(x) values A
=} (=) = £ DA



Goal: Predict the value of the underlying process S at a location xp, given
the sample (x;,yi), i=1,...,n.

@ Typically, ordinary kriging is used to estimate the unconditional
expectation of S(xp), with plug-in estimates for covariance
parameters.

@ The bias and MSE of the kriging predictor at the point

xo = (0.49,0.49) are calculated for each of the 500 simulations, and
used to form 95% confidence intervals:

Model Parameter | Confidence intervals for the following sampling designs:
Completely random Preferential Clustered
1 Bias (-0.014,0.055) (0.951,1.145)  (-0.048,0.102)
1 RMSE (0.345,0.422) (1.387,1.618) (0.758,0.915)
2 Bias (0.003,0.042) (-0.134,-0.090)  (-0.018,0.023)
2 RMSE (0.202,0.228) (0.247,0.292) (0.214,0.247)
=] (=) = E £ DA



@ For both models, the completely random and clustered sampling
designs lead to approximately unbiased predictions (as expected).

@ Under the Model 1 simulations, there is large, positive bias and high
MSE for preferential sampling (here, 8 = 2) - this is because
locations with high values of S are oversampled.

@ Under the Model 2 simulations, there is some negative bias (and
slightly higher MSE) due to preferential sampling (here, § = —2) ;
however, the bias and MSE are not as drastic because:

e the variance of the underlying process is much smaller; the degree of
preferentiality So is lower here than for Model 1.
e the nugget variance is non-zero for Model 2.



Data: X, Y

Likelihood for the data:
L(9) = [X, Y] = Es[[X|S][Y|X, S]]

where 6 consists of all parameters in the model

@ To evaluate [X|S], the realization of S at all possible locations x € A
is needed; however, we can approximate S (which is spatially
continuous) by a set of values on a finely spaced grid, and replace
exact locations X by their closest grid point.

o Let S = {Sp, S1}, where Sy represents values of S at the n observed
locations x; € X and S; denotes values of S at the other N — n grid
points.

@ Unfortunately, estimating the likelihood with a sample average over
simulations S; fails when the nugget variance is 0 because simulations
of 5j usually will not match up with the observed Y.
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The third equality uses [S] = [So][S1]S0], [S]Y] = [So| Y][S1]S0, Y], and
[Y|X,S] =[Y|So]. The last equality uses [S1]|So, Y] = [S1]S0]. Hence:

[Y|So]
[Sol Y]

L(0) = Bgy [[X|51 [501] 2)

o> 9 = = = 9ac



A Monte Carlo approximation can be used to approximate the likelihood:

Luc(6) = m ™ S IXIS] 10
j=1 /

where S; are simulations of S|Y'.

@ Antithetic pairs of realizations are used to reduce Monte Carlo
variance

e To simulate from [S|Y], we can simulate from several other
unconditional distributions, and then notice that:

S+YCT My —pu+Z-CS)
has the distribution of S|Y =y, where:
o S~ MVN(0,X),Y ~ MVN(p, Xo), Z ~ N(0,72)
e Cisan n x N matrix which identifies the position of the data

locations within all possible prediction locations
[m] = =



@ We can use K-functions to assess how well the shared latent process
model under preferential sampling fits the data.

@ The K-function K(s) is defined by AK(s) = E[Ny(s)], where Ny(s) is
the number of points in the process within distance s of a chosen
origin and \ is the expected number of points in the process per unit
area.

@ Under our preferential sampling model, X marginally follows a
log-Gaussian Cox process with intensity A(x) = exp(« + 85(x)). The
corresponding K-function is:

K(s) = ms® + 27T/ v(u)udu
0

where «y(u) is the covariance function of A(x) (Diggle (2003))
@ By comparing the estimated K-function from the data to an envelope
of estimates obtained from simulated realizations of the fitted model,

goodness of fit can be determined.
=] (=) = E £ DA



Background

@ Uses lead concentration, [Pb] (ug/g dry weight), in moss samples as
measured variable

@ Initial survey conducted in Spring 1995 to 'select the most suitable
moss species and collection sites' (Fernandez et al., 2000)

e Two further surveys of [Pb] in samples of Scleropodium purum

e October 1997: sampling conducted more intensively in subregions
where large gradiants in [Pb] expected

e July 2000: used approximately regular lattice design; gaps arise where
different moss species collected
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Sampling locations for 1997 (s) and 2000 (o): the unit of distance is 100 km; two outliers in the 1997
data were at locations (6.50,46.90) and (6.65,46.75)
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Summary statistics:

Untransformed | Log-transformed
1997 2000 | 1997 2000

Number of locations | 63 132 63 132

Mean 472 2.15 1.44 0.66
Standard deviation | 2.21 1.18 0.48 0.43
Minimum 1.67 0.80 0.52 -0.22
Maximum 9.51 8.70 2.25 2.16

=] = = = = o



Standard geostatistical analysis
Assumptions:

e standard Gaussian model with underlying signal S(x)
e variance o2

@ S(x) is a zero-mean stationary Gaussian process with:
e Matern correlation function p(u; ¢, k)
o Gaussian measurement errors, Z; ~ N(0, 72)

Models fitted separately for 1997 and 2000 data



Standard geostatistical analysis
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Fig. 5. hed empirical () and fitted theoretical (——) variograms for (a) 1997 and (b) 2000 log-trans-
formed lead concentration data




Analysis under preferential sampling
Parameter estimation

Goal: To investigate whether the 1997 sampling is preferential

@ Use Nelder-Mead simplex algorithm (Nelder and Mead, 1965) to
estimate model parameters

e m = 100,000 Monte Carlo samples reduced standard error to
approximately 0.3 and approximate generalized likelihood ratio test
statistic to test # = 0 was 27.7 on 1 degree of freedom (p < 0.001)



Analysis under preferential sampling
Parameter estimation

Goal: To test the hypothesis of shared values of o, ¢, and 7

e Fit joint model to 1997 and 2000 data sets, treated as preferential
and nonpreferential, respectively
@ Fit model with and without constaints on o, ¢, and 7 to get
generalized likelihood ratio test statistic of 6.2 on 3 degrees of
freedom (p = 0.102)
Using shared parameter values (when justified) improves estimation
efficiency and results in a better identified model (Altham, 1984)



Analysis under preferential sampling
Parameter estimation

@ Monte Carlo maximum likelihood estimates obtained for the model
with shared o, ¢, and 7

@ Preferential sampling parameter estimate is negative, B =—2.198;
dependent on allowing two separate means

Recall:

Given S, X is an inhomogeneous Poisson process with intensity

A(x) = exp(a+ 55(x))



Analysis under preferential sampling
Goodness of Fit
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Analysis under preferential sampling
Prediction

e Figures in paper show predicted surfaces T(x) = E[T(x)|X, Y],
where T(x) = exp{S(x)} denotes the [Pb] on the untransformed scale

@ Predictions based on the preferential sampling have much wider range
over lattice of prediction locations compared to those that assume
non-preferential sampling (1.310-7.654 and 1.286-5.976 respectively)

o Takeaway: Recognition of the preferential sampling results in a
pronounced shift in the predictive distribution



o Conventional geostatistical models and associated statistical methods
can lead to misleading inferences if the underlying data have been
preferentially sampled

@ This paper proposes a simple model to take into account preferential
sampling and develops associated Monte Carlo methods to enable
maximum likleihood estimation and likelihood testing within the class
of models proposed

@ This method is computationally intensive - each model takes several
hours to run
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