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A simple geostatistical model

Notation:

The underlying spatially continuous phenomenon S(x), x ∈ R2 is
sampled at a set of locations xi , i = 1, . . . , n, from the spatial region
of interest A ⊂ R2

Yi is the measurement taken at xi

Zi is the measurement error

The model:
Yi = µ+ S(xi ) + Zi , i = 1, . . . , n

{Zi , i = 1, . . . , n} are a set of mutually independent random variables
with E[Zi ] = 0 and Var(Zi ) = τ2 (called the nugget variance)

Assume E[S(x)] = 0 ∀x
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Thinking hierarchically

Diggle et al. (1998) rewrote this simple model hierarchically, assuming
Gaussian distributions:

S(x) follows a latent Gaussian stochastic process

Yi |S(xi ) ∼ N(µ+ S(xi ), τ
2) are mutually independent for i = 1, . . . , n

If X = (x1, . . . , xn), Y = (y1, . . . , yn), and S(X ) = {S(x1), . . . ,S(xn)},
this model can be described by:

[S ,Y ] = [S ][Y |S(X )] = [S ][Y1|S(x1)] . . . [Yn|S(xn)]

where [·] denotes the distribution of the random variable.
→ This model treats X as deterministic
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What is preferential sampling?

Typically, the sampling locations xi are treated as stochastically
independent of S(x), the spatially continuous process:

[S ,X ] = [S ][X ]

(this is non-preferential sampling).

This means that [S ,X ,Y ] = [S ][X ][Y |S(X )], and by conditioning on
X , standard geostatistical techniques can be used to infer properties
about S and Y .

Preferential sampling describes instances when the sampling process
depends on the underlying spatial process:

[S ,X ] 6= [S ][X ]

Preferential sampling complicates inference!
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Examples of sampling designs

1 Non-preferential, uniform designs: Sample locations come from an
independent random sample from a uniform distribution on the region
of interest A (e.g. completely random designs, regular lattice designs).

2 Non-preferential, non-uniform design: Sample locations are
determined from an independent random sample from a non-uniform
distribution on A.

3 Preferential designs:

Sample locations are more concentrated in parts of A that tend to have
higher (or lower) values of the underlying process S(x)
X ,Y form a marked point process where the points X and the marks
Y are dependent

Schlather et al. (2004) developed a couple tests for determining if
preferential sampling has occurred.
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Why does preferential sampling complicate inference?

Consider the situation where S and X are stochastically dependent, but
measurements Y are taken at a different set of locations, independent of
X . Then, the joint distribution of S , X , and Y is:

[S ,X ,Y ] = [S ][X |S ][Y |S ]

We can integrate out X to get:

[S ,Y ] = [S ][Y |S ]

This means inference on S can be done by ”ignoring” X (as is convention
in geostatistical inference). However, if Y is actually observed at X , then
the joint distribution is:

[S ,X ,Y ] = [S ][X |S ][Y |X , S ] = [S ][X |S ][Y |S(X )]

Conventional methods which ”ignore” X are misleading for preferential
sampling!
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Shared latent process model for preferential sampling

The joint distribution of S ,X , and Y (from previous slide):

[S ,X ,Y ] = [S ][X |S ][Y |X , S ] = [S ][X |S ][Y |S(X )]

with the last equality holding for typical geostatistical modeling.

1 S is a stationary Gaussian process with mean 0, variance σ2, and
correlation function:

ρ(u;φ) = Corr(S(x), S(x ′))

for x , x ′ separated by distance u
2 Given S , X is an inhomogeneous Poisson process with intensity

λ(x) = exp(α + βS(x))

3 Given S and X , Y = (Y1, . . . ,Yn) is set of mutually independent
random variables such that

Yi ∼ N(µ+ S(xi ), τ
2)
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Shared latent process model for preferential sampling

Some notes about this model:

Unconditionally, X follows a log-Gaussian Cox process (details in
Moller et al. (1998))

If we set β = 0 in [X |S ], then unconditionally, Y follows a
multivariate Gaussian distribution

Ho and Stoyan (2008) considered a similar hierarchical model
construction for marked point processes
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Simulation experiment

Approximately simulate the stationary Gaussian process S on the unit
square by simulating on a finely spaced grid, and then treating S as
constant within each cell.

Then, sample values of Y according to one of 3 sampling designs:
1 Completely random (non-preferential): Use sample locations xi that are

determined from an independent random sample from a uniform
distribution on A.

2 Preferential: Generate a realization of X by using [X |S ], with β = 2,
and then generate Y using [Y |S(X )].

3 Clustered: Generate a realization of X by using [X |S ], but then
generate Y on locations X using a separate independent realization of
S .

This is non-preferential, but marginally X and Y share the same
properties as the preferential design.
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Specifying the model for simulation

S is stationary Gaussian with mean µ = 4, variance σ2 = 1.5 and
correlation function defined by the Matérn class of correlation
functions:

ρ(u;φ, κ) = (2κ−1Γ(κ))−1(u/φ)κKκ(u/φ), u > 0

where Kκ is the modified Bessel function of the second kind. For this
simulation, φ = 0.15 and κ = 1.

Set the nugget variance τ2 = 0 so that yi is the realized value of
S(xi ).
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Simulation sampling location plots

Figure: Underlying process realization and sampling locations from the simulation
for (a) completely random sampling, (b) preferential sampling, and (c) clustered
sampling
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Estimating the variogram

Theoretical variogram of spatial process Y (x):

V (u) =
1

2
Var(Y (x)− Y (x ′))

where x and x ′ are distance u apart

Empirical variogram ordinates: For (xi , yi ), i = 1, . . . , n where xi is the
location and yi is the measured value at that location:

vij =
1

2
(yi − yj)

2

Under non-preferential sampling, vij is an unbiased estimate of V (uij),
where uij is the distance between xi and xj

A variogram cloud plots vij against uij ; these can be used to find an
appropriate correlation function. For this simulation, simple binned
estimators are used.
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Empirical variograms under different sampling regimes

Looking at 500 replicated simulations, the pointwise bias and standard
deviation of the smoothed empirical variograms are plotted:

Under preferential sampling, the empirical variogram is biased and
less efficient!
The bias comes from sample locations covering a much smaller range
of S(x) values
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Spatial prediction

Goal: Predict the value of the underlying process S at a location x0, given
the sample (xi , yi ), i = 1, . . . , n.

Typically, ordinary kriging is used to estimate the unconditional
expectation of S(x0), with plug-in estimates for covariance
parameters.

The bias and MSE of the kriging predictor at the point
x0 = (0.49, 0.49) are calculated for each of the 500 simulations, and
used to form 95% confidence intervals:

Model Parameter Confidence intervals for the following sampling designs:
Completely random Preferential Clustered

1 Bias (-0.014,0.055) (0.951,1.145) (-0.048,0.102)
1 RMSE (0.345,0.422) (1.387,1.618) (0.758,0.915)
2 Bias (0.003,0.042) (-0.134,-0.090) (-0.018,0.023)
2 RMSE (0.202,0.228) (0.247,0.292) (0.214,0.247)
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Kriging issues under preferential sampling

For both models, the completely random and clustered sampling
designs lead to approximately unbiased predictions (as expected).

Under the Model 1 simulations, there is large, positive bias and high
MSE for preferential sampling (here, β = 2) - this is because
locations with high values of S are oversampled.

Under the Model 2 simulations, there is some negative bias (and
slightly higher MSE) due to preferential sampling (here, β = −2) ;
however, the bias and MSE are not as drastic because:

the variance of the underlying process is much smaller; the degree of
preferentiality βσ is lower here than for Model 1.
the nugget variance is non-zero for Model 2.
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Fitting the shared latent process model

Data: X , Y

Likelihood for the data:

L(θ) = [X ,Y ] = ES [[X |S ][Y |X ,S ]]

where θ consists of all parameters in the model

To evaluate [X |S ], the realization of S at all possible locations x ∈ A
is needed; however, we can approximate S (which is spatially
continuous) by a set of values on a finely spaced grid, and replace
exact locations X by their closest grid point.

Let S = {S0, S1}, where S0 represents values of S at the n observed
locations xi ∈ X and S1 denotes values of S at the other N − n grid
points.

Unfortunately, estimating the likelihood with a sample average over
simulations Sj fails when the nugget variance is 0 because simulations
of Sj usually will not match up with the observed Y .
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Evaluating the likelihood

L(θ) =

∫
[X |S ][Y |X , S ][S ]dS

=

∫
[X |S ][Y |X , S ]

[S |Y ]

[S |Y ]
[S ]dS

=

∫
[X |S ][Y |S0]

[S |Y ]

[S0|Y ][S1|S0,Y ]
[S0][S1|S0]dS

=

∫
[X |S ]

[Y |S0]

[S0|Y ]
[S0][S |Y ]dS

(1)

The third equality uses [S ] = [S0][S1|S0], [S |Y ] = [S0|Y ][S1|S0,Y ], and
[Y |X , S ] = [Y |S0]. The last equality uses [S1|S0,Y ] = [S1|S0]. Hence:

L(θ) = ES|Y

[
[X |S ]

[Y |S0]

[S0|Y ]
[S0]

]
(2)
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Approximating the likelihood

A Monte Carlo approximation can be used to approximate the likelihood:

LMC (θ) = m−1
m∑
j=1

[X |Sj ]
[Y |S0j ]
[S0j |Y ]

[S0j ]

where Sj are simulations of S |Y .

Antithetic pairs of realizations are used to reduce Monte Carlo
variance

To simulate from [S |Y ], we can simulate from several other
unconditional distributions, and then notice that:

S + ΣC ′Σ−10 (y − µ+ Z − CS)

has the distribution of S |Y = y , where:
S ∼ MVN(0,Σ),Y ∼ MVN(µ,Σ0), Z ∼ N(0, τ 2)
C is an n x N matrix which identifies the position of the data
locations within all possible prediction locations

Marie Ozanne and Justin Strait Preferential Sampling October 12, 2015 18 / 31



Goodness of fit

We can use K-functions to assess how well the shared latent process
model under preferential sampling fits the data.

The K-function K (s) is defined by λK (s) = E[N0(s)], where N0(s) is
the number of points in the process within distance s of a chosen
origin and λ is the expected number of points in the process per unit
area.

Under our preferential sampling model, X marginally follows a
log-Gaussian Cox process with intensity Λ(x) = exp(α + βS(x)). The
corresponding K-function is:

K (s) = πs2 + 2π

∫ s

0
γ(u)udu

where γ(u) is the covariance function of Λ(x) (Diggle (2003))

By comparing the estimated K-function from the data to an envelope
of estimates obtained from simulated realizations of the fitted model,
goodness of fit can be determined.
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Lead biomonitoring in Galicia, Spain

Background

Uses lead concentration, [Pb] (µg/g dry weight), in moss samples as
measured variable

Initial survey conducted in Spring 1995 to ’select the most suitable
moss species and collection sites’ (Fernandez et al., 2000)

Two further surveys of [Pb] in samples of Scleropodium purum

October 1997: sampling conducted more intensively in subregions
where large gradiants in [Pb] expected
July 2000: used approximately regular lattice design; gaps arise where
different moss species collected
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Lead biomonitoring in Galicia, Spain
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Lead biomonitoring in Galicia, Spain

Summary statistics:

Untransformed Log-transformed
1997 2000 1997 2000

Number of locations 63 132 63 132

Mean 4.72 2.15 1.44 0.66
Standard deviation 2.21 1.18 0.48 0.43

Minimum 1.67 0.80 0.52 -0.22
Maximum 9.51 8.70 2.25 2.16
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Lead biomonitoring in Galicia, Spain

Standard geostatistical analysis

Assumptions:

standard Gaussian model with underlying signal S(x)

S(x) is a zero-mean stationary Gaussian process with:

variance σ2

Matern correlation function ρ(u;φ, κ)
Gaussian measurement errors, Zi ∼ N(0, τ 2)

Models fitted separately for 1997 and 2000 data
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Lead biomonitoring in Galicia, Spain

Standard geostatistical analysis

Marie Ozanne and Justin Strait Preferential Sampling October 12, 2015 24 / 31



Lead biomonitoring in Galicia, Spain

Analysis under preferential sampling
Parameter estimation

Goal: To investigate whether the 1997 sampling is preferential

Use Nelder-Mead simplex algorithm (Nelder and Mead, 1965) to
estimate model parameters

m = 100, 000 Monte Carlo samples reduced standard error to
approximately 0.3 and approximate generalized likelihood ratio test
statistic to test β = 0 was 27.7 on 1 degree of freedom (p < 0.001)
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Lead biomonitoring in Galicia, Spain

Analysis under preferential sampling
Parameter estimation

Goal: To test the hypothesis of shared values of σ, φ, and τ

Fit joint model to 1997 and 2000 data sets, treated as preferential
and nonpreferential, respectively

Fit model with and without constaints on σ, φ, and τ to get
generalized likelihood ratio test statistic of 6.2 on 3 degrees of
freedom (p = 0.102)

Using shared parameter values (when justified) improves estimation
efficiency and results in a better identified model (Altham, 1984)
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Lead biomonitoring in Galicia, Spain

Analysis under preferential sampling
Parameter estimation

Monte Carlo maximum likelihood estimates obtained for the model
with shared σ, φ, and τ

Preferential sampling parameter estimate is negative, β̂ = −2.198;
dependent on allowing two separate means

Recall:
Given S , X is an inhomogeneous Poisson process with intensity

λ(x) = exp(α + βS(x))
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Lead biomonitoring in Galicia, Spain

Analysis under preferential sampling
Goodness of Fit

Goodness of fit assessed using statistic T ; the resultant p-value = 0.03

T =

∫ 0.25

0

{K̂ (s)− K (s)}2

v(s)
ds
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Lead biomonitoring in Galicia, Spain

Analysis under preferential sampling
Prediction

Figures in paper show predicted surfaces T̂ (x) = E[T (x)|X ,Y ],
where T (x) = exp{S(x)} denotes the [Pb] on the untransformed scale

Predictions based on the preferential sampling have much wider range
over lattice of prediction locations compared to those that assume
non-preferential sampling (1.310-7.654 and 1.286-5.976 respectively)

Takeaway: Recognition of the preferential sampling results in a
pronounced shift in the predictive distribution

Marie Ozanne and Justin Strait Preferential Sampling October 12, 2015 29 / 31



Discussion

Conventional geostatistical models and associated statistical methods
can lead to misleading inferences if the underlying data have been
preferentially sampled

This paper proposes a simple model to take into account preferential
sampling and develops associated Monte Carlo methods to enable
maximum likleihood estimation and likelihood testing within the class
of models proposed

This method is computationally intensive - each model takes several
hours to run
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