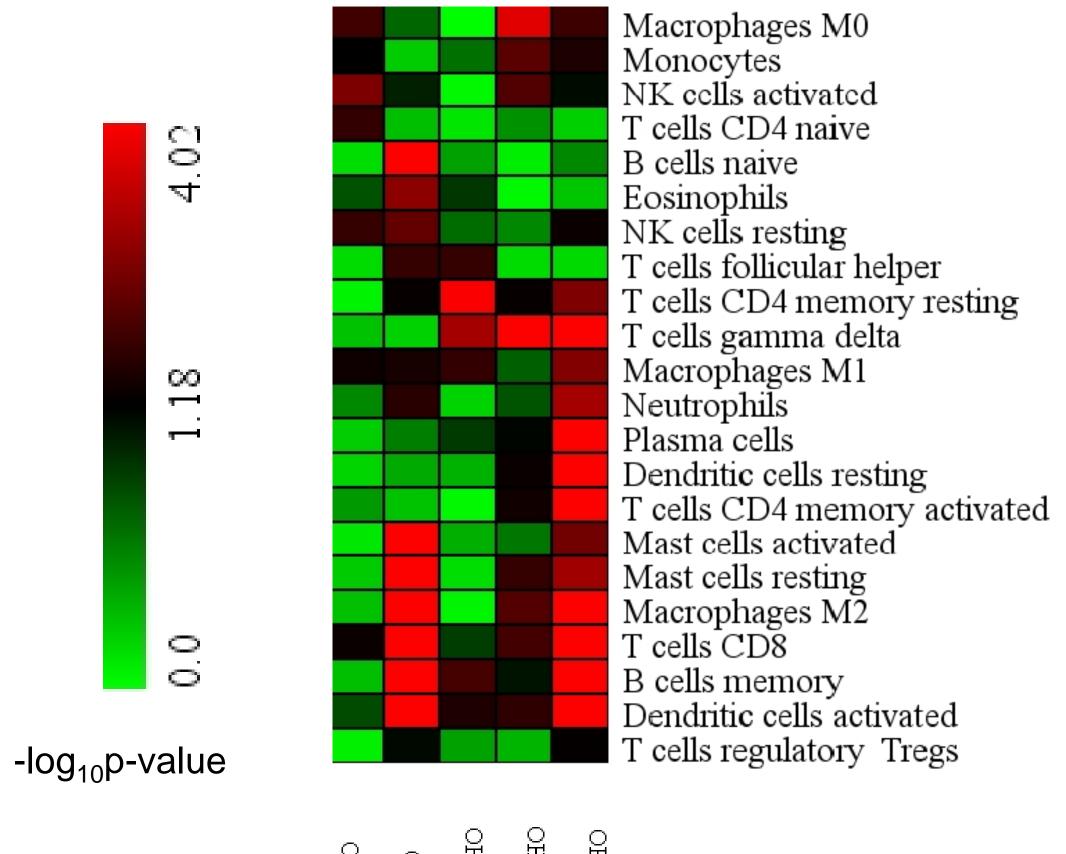
Intra-tumoral microbes correlate with immune cell fractions in lung cancer biopsies

Xiaokui Mo^{1*}, Rebecca Hoyd^{2*}, David Carbone² and Daniel Spakowicz^{1,2} The Ohio State University/Wexner Medical Center – James Comprehensive Cancer Center - ¹Department of Biomedical Informatics, ²Division of Medical Oncology, Columbus, OH * Equal contribution

Background

- Exogenous sequences in bacteria have been found in many tumors.
- Their effects on clinical outcomes remain largely unknown.
- We hypothesize that intratumoral microbes elicit effects through the recruitment of immune cells, such as CD8+ Tcells that are important for immunotherapy response.


Methods

- We obtained RNA-seq data from biopsies of 480 tumors (Melanoma=16, Gastrointestinal=104, p=20 Renal Cell Carcinoma=20, Sarcoma=118, Lung=202) from patients treated at The Ohio State University Comprehensive Cancer Center, as part of the Oncology Research Information Exchange Network (ORIEN) under the OSU Total Cancer Care Program (TCC)
- Reads aligned to human and exogenous genomes using TopHat2¹and Kraken2/Bracken², respectively. Exogenous databases included bacteria, fungi, viruses, archaea and eukaryotes.
- Human gene expression was deconvolved to relative abundances of immune cells using CIBERSORT³. Across cancers, an average of 99.87% of reads were aligned to the human reference genome.
- The difference in the distribution of tumor infiltrated immune cells among different types of cancer was compared by using Kruskal-Wallis test.
- The correlation between relative abundances of microbes and immune cells in each cancer type was evaluated by Spearman correlation method.
- Data analyses were performed in R and SAS

Abbreviations

CUT: Melanoma GI: Gastrointestinal GU: Genitourinary RCC: Renal Cell Carcinoma SAR: Sarcoma THO: Thoracic

Figure 1. Comparisons of percent of tumor infiltrated immune cells between lung cancer and other cancers

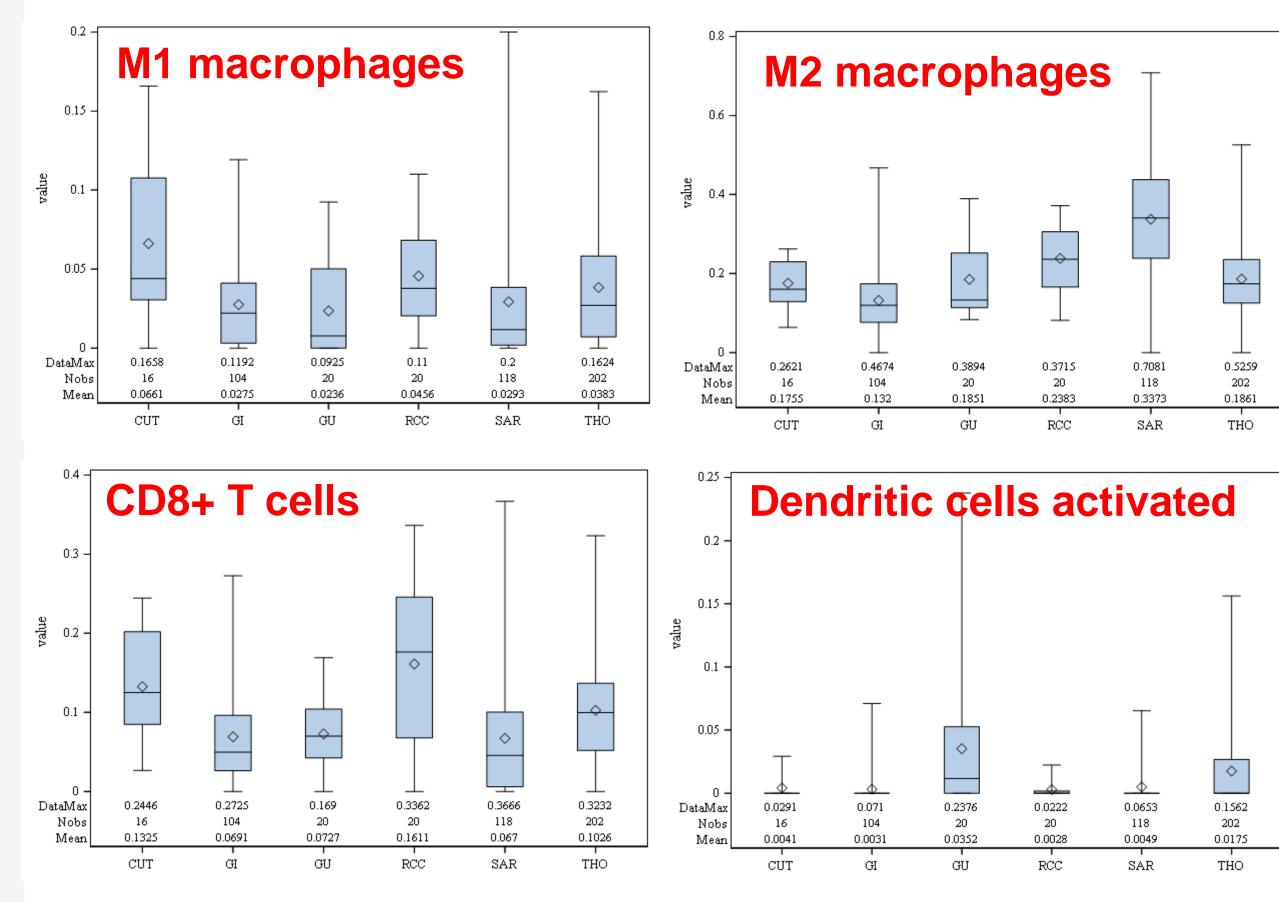


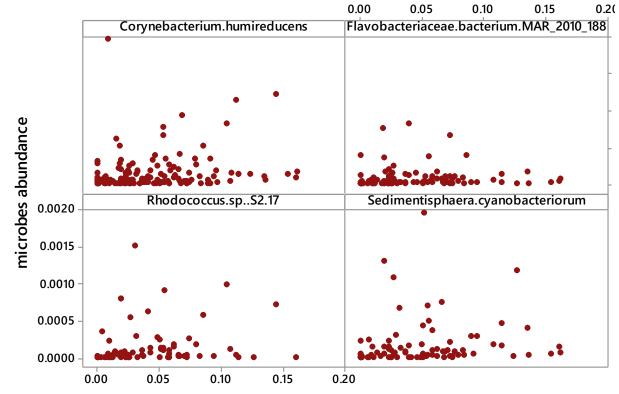
Table 1. Cohort summary

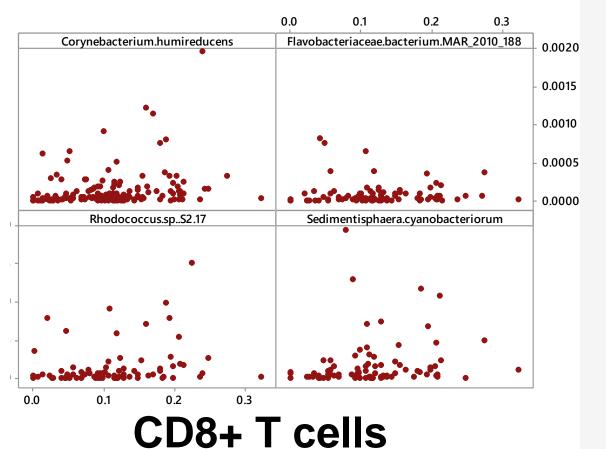
Covariates	Description	CUT	GI	GU	RCC	SAR	THO
Demographic	Age (std)	59 (10.78)	59 (11.72)	61 (12.22)	56 (11.68)	56 (15.99)	63 (10.04)
	BMI (std)	34 (8.72)	29 (6.18)	31 (8.98)	34 (7.68)	29 (6.03)	27 (5.82)
	Percent Male	0.75	0.6	0.8	0.75	0.53	0.53
	Ν	16	104	20	20	118	202
Treatment Type	Chemo	5	91	17	12	90	142
	Other	13	58	12	9	32	54
Stage	0A	0	0	3	0	0	0
	1A/1B	1	3	1	2	16	54
	2A/2B/2C	5	19	1	3	19	51
	3A/3B/3C	7	31	7	9	40	31
	4A/4B/4C	0	47	3	6	14	42
	Unknown	3	4	5	0	29	24

Results

Figure 2. Tumor infiltrated immune cell distributions in cancer

Taxon	Rho	p-value
Methylobacterium.spWL1	-0.28817	<.0001
Pseudomo.s.lundensis	-0.27645	<.0001
Citrobacter.freundii	-0.26871	0.0001
Vibrio.cholerae	-0.25143	0.0003
Enterobacter.oligotrophica	-0.24375	0.0005
Thauera.chlorobenzoica	0.28708	<.0001
Tabrizicola.spK13M18	0.28951	<.0001
Bacillus.megaterium	0.33116	<.0001
Sedimentisphaera.cyanobacteriorum	0.3358	<.0001
Corynebacterium.humireducens	0.41018	<.0001


Taxon	Rho	p-value
Actinomadura.spWMMB499	-0.23053	0.001
Herbaspirillum.robiniae	-0.21596	0.002
Bosea.vaviloviae	-0.20026	0.0043
Tabrizicola.spK13M18	0.21533	0.0021
Acinetobacter.pittii	0.22749	0.0011
Planococcus.spY42	0.23073	0.001
Acinetobacter.junii	0.24069	0.0006
Thauera.chlorobenzoica	0.24481	0.0004
Flavobacteriaceae.bacterium.M	0.26709	0.0001
Corynebacterium.humireducen	s 0.27868	<.0001


The James

The Ohio State University COMPREHENSIVE CANCER CENTER

Figure 3. The association between tumor infiltrated M1 macrophages, CD8+ T cells and microbes in lung cancer

M1 macrophages

Spearman correlation analysis showed that 4 microbes positively associated with both macrophages M1 and CD8+ T cells (|r|>0.2, p-value<0.05)

Conclusions

- . The compositions of tumor infiltrated immune cells were different in other cancers compared with in lung cancer.
- 2. CD8+ T-cells, M1 macrophages and the activated dendritic cells were significantly enriched in lung cancer (p-values < 0.0001), and M2 macrophages were significantly enriched in sarcoma (pvalues<0.0001).
- 3. Corynebacterium.humireducens, Flavobacteriaceae.bacterium,Rhodococcus.sp..S2.1 7, Sedimentisphaera.cyanobacteriorum, positively associated with both macrophages M1 and CD8+ T cells (|r| > 0.2, p-value<0.05) in lung cancer.

Acknowledgements & References

For more information, contact Xiaokui.mo@osumc.edu. This project was supported by The Ohio State University Center for Clinical and Translational Science grant support (National Center for Advancing Translational Sciences, Grant 8UL1TR000090-05) and a Pelotonia Junior Investigator Award to Daniel Spakowicz, and performed on the Ohio Supercomputer Center servers (Owens, Pitzer; Projects) PAS1460 & 1479 awarded to Daniel Spakowicz). Cancer Center Supporting Grant from National Cancer Center Institute (NCI) P30CA016058

REFERENCES

[1] Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protocols 7, 562–578 (2012). [2] Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact

alignments. Genome Biology 15, R46 (2014). [3] Chen B. Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with

CIBERSORT. Methods Mol Biol. 1711:243-259 (2018) [5] Poore, G.D., Kopylova, E., Zhu, Q. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567-574 (2020)