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Why Use R?
R is one of a number of platforms, or languages, that allow you to do bioinformatics. Some others you might have run across include Python,
Command Line/Bash, and Perl. We’re going to focus on R here. Some of its advantages…

Works well across platforms (Windows, Mac, Linux)
Open-source (free)
Lots of community support, including training materials
Offers packages for lots of bioinformatic (including microbiome-specific) tasks
Great for data visualization
The R Studio IDE provides nice user-friendly interface

Opening R / R Studio
You have the option of working in the original R, or R Studio. I highly recommend you work in R Studio - it’s built on top of R, so it has all the
functionality of R, but gives you several other conveniences that are likey to make your R coding smoother.

Once you open R Studio, you should have a screen that looks like…

If you need help installing R and/or R Studio, check out this video.

R Packages
Much of the power of R comes from packages that are written by R users and made available to the broader R community. There are 1000’s of
packages that have been written, addressing all sorts of types of analyses, including those relevant to microbiome studies.

Installing R Packages
R packages are typically only installed on your computer once.

install.packages("tidyverse")

Loading R Packages
The R packages you want to use in any given R session have to be loaded for that session. We’ll circle back to R packages later.

library(tidyverse)

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Getting Help
One great advantage of R is there are lots of places to get help.

Package Vignettes
Each package has a vignette that may contain information such as what functions are available in the package, how the functions are used, and
example workflows/analyses.

vignette("readr")

Function Documentation
Every function in R has a documentation page that has information like how to use the function, details about arguments that can be passed to
the function, and examples of how to use the function.

?read_tsv

Resources From The R Community
Generally speaking, the R community is very active in generating various types of resources to help others learn and use R. Personally, I use sites
like StackOverflow, https://community.rstudio.com, or whatever else comes up in a Google search frequently to troubleshoot errors, find new
functions for doing something I don’t do routinely, etc. In addition, when it comes to learning R (or learning new things in R), some resources you
might want to check out are the book (R for Data Science)[https://r4ds.had.co.nz], which is freely available online, and also the Riffomonas
(website)[https://riffomonas.org] and (YouTube channel)[https://www.youtube.com/c/RiffomonasProject], which are maintained by Pat Schloss
who does microbiome research at U. of Michigan.

R Basics
Functions and Objects
Functions in R are always structured as the function name followed by a set of parenthesis, which often accept one or more arguments to the
function.

log10(1000)

## [1] 3

Objects in R are created with the assignment operator - a combination of the less-than arrow and the dash. Here, the result of 2+3 is assigned to
the name (or variable) “result”.

result <- 2+3

And now we can retrieve this by calling result…

result

## [1] 5

Object Classes
Every object you create in R is assigned to a particular class. Some of the object classes you’ll encounter frequently include…

character
numeric/double
logical

We can use the class()  function to check the class of any object…

class(result)

## [1] "numeric"

Try running the following to see an example of the significance of different classes of data…

2 + 2

"2" + "2"

class(2)

class("2")

Data Structures
Some common data structures:

Vector
Matrix
List
Data Frame/Tibble

Vectors
Vectors are one-dimensional, and are created with the combine function c() …

vec1 <- c(1,3,5)

vec1

## [1] 1 3 5

vec2 <- c("cat", "dog", "cow")

vec2

## [1] "cat" "dog" "cow"

vec3 <- c(2:10)

vec3

## [1]  2  3  4  5  6  7  8  9 10

Matrices
Matrices are vectors that are wrapped into two dimensions.

test_matrix <- matrix(vec3, nrow = 3)

test_matrix

##      [,1] [,2] [,3]
## [1,]    2    5    8
## [2,]    3    6    9
## [3,]    4    7   10

Data Frames/Tibbles
Like matrices, data frames are two-dimensional (rows x columns). A primary difference in matrices and data frames is that the data within a matrix
all have to be of the same class, while each column of a data frame has it’s own class.

test_df <- data.frame("size" = c(5,9,4,5),
                      "color" = c("red", "blue", "green", "orange"),
                      "type" = c("A", "C", "D", "A"))

test_df

##   size  color type
## 1    5    red    A
## 2    9   blue    C
## 3    4  green    D
## 4    5 orange    A

Indexing
Indexing refers to taking a subset of an object. The most basic form of subsetting in R is with square brackets…

vec3

## [1]  2  3  4  5  6  7  8  9 10

vec3[1:4]

## [1] 2 3 4 5

Because data frames/tibbles have two dimensions, they have to be indexed along each dimension [rows, columns]

test_df

##   size  color type
## 1    5    red    A
## 2    9   blue    C
## 3    4  green    D
## 4    5 orange    A

test_df[c(2,3), c(1:2)]

##   size color
## 2    9  blue
## 3    4 green

Leaving one of the dimensions blank just returns all of the entries along that margin…

test_df[c(2,3),]

##   size color type
## 2    9  blue    C
## 3    4 green    D

And the $  can be used as an alternative way to select the contents of and individual column/variable from a data frame or tibble…

test_df$color

## [1] "red"    "blue"   "green"  "orange"

Additional Resources
If you feel like you need to spend more time getting up to speed with some of the basics of R, you can try these videos…

R: Objects and Functions (~9 min)

https://www.youtube.com/watch?v=vW1OU6Qnd0U&list=PLxhIMi78eQegFm3XqsylVa-Lm7nfiUshe&index=2

R Data Structure: Vectors (~12 min)

https://www.youtube.com/watch?v=MmWKzrDPkG4&list=PLxhIMi78eQegFm3XqsylVa-Lm7nfiUshe&index=3

R Data Structure: Matrices (~9 min)

https://www.youtube.com/watch?v=2T9ITPRsSE0

R Data Structures: Lists and Data Frames (~13 min)

https://www.youtube.com/watch?v=3eTf_XyvqRw&list=PLxhIMi78eQegFm3XqsylVa-Lm7nfiUshe&index=5

Tidyverse vs Base R
The tidyverse is a set of packages that have effectively resulted in a new dialect of the R language. The packages within the tidyverse are written
to try to make R code more readable and intuitive, and put an emphasis on working with data in “tidy” format.

Tidy Data
Tidy data has several characteristics…

each variable has its own column
each observation has its own row
each value has its own cell

We’ll look at some examples of base R approaches vs tidyverse approaches as we go along just to be able to recognize some of the differences,
but will focus on using the tidyverse as much as possible.

Reading Data In To R
You’ll probably find that most of the work you do in R will at some point involve reading data in from outside of R. It could be a data file from
another software package, or maybe something you’ve put together by hand in something like Excel. Data you read in to R typically should…

be plain text
be rectangular
have columns separated/delimited by some character - often a comma or a tab

Get Raw Data
The data files we’ll need for both the in-class examples and the homework are in the directory ‘M8161_R_files’. Download that folder from
https://u.osu.edu/sovic.1/teaching/ and put it in a convenient location - I’m going to put mine on my Desktop.

The initial dataset we’re going to read in to R is a table of counts representing abundances of OTU’s (an abundance table). This is a file format
produced by a number of microbiome software packages - in this specific case, Mothur, which is widely used in 16s metagenomic studies
(Mothur is not part of R). The data are from a microbiome study by Schubert et al (2014), and are used by Pat Schloss as one of the example
datasets in his Riffomonas tutorials (links above). The full set of example files associated with this dataset is available from the Source Code link
here, but everything we will work with is in the ‘M8161_R_files’ folder.

We’re going to first work with the file schubert.shared, which is inside the ‘schubert’ folder of ‘M8161_R_files’. Before we read it in to R, let’s take
a look at it in a text editor.

Does it look like this file adheres to the characteristics above for files that will be read in to R? How are columns delimited?

read_*()  functions
The read_*()  functions are part of the readr package within the tidyverse. Since the schubert.shared file is tab-delimited, we’ll use the
read_tsv()  function to read it in, and we’ll assign the data as an object named ‘raw_counts’.

raw_counts <- read_tsv("~/Desktop/M8161_R_files/schubert/schubert.shared")

## Rows: 338 Columns: 5448
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr    (1): Group
## dbl (5447): label, numOtus, Otu0001, Otu0002, Otu0003, Otu0004, Otu0005, Otu...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Let’s explore these data a bit.

class(raw_counts)

## [1] "spec_tbl_df" "tbl_df"      "tbl"         "data.frame"

Tibbles were introduced with the tidyverse and are similar to data frames in many ways.

raw_counts

## # A tibble: 338 × 5,448
##    label Group   numOtus Otu0001 Otu0002 Otu0003 Otu0004 Otu0005 Otu0006 Otu0007
##    <dbl> <chr>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1  0.03 DA00006    5445       0       1     323     539       1       0      17
##  2  0.03 DA00044    5445       1       1    1280       0       0       1       0
##  3  0.03 DA00065    5445     729    1049       0       1     758     950      37
##  4  0.03 DA00108    5445      57     936       0    1488       0      12       7
##  5  0.03 DA00153    5445      50      41      60       2      85      40       0
##  6  0.03 DA00154    5445       1       0      70       4       0       0    1718
##  7  0.03 DA00155    5445       8       4     161     772       8       5     396
##  8  0.03 DA00165    5445     628     493     803      12       2       1       0
##  9  0.03 DA00170    5445     698     441       0     494     441       0       6
## 10  0.03 DA00210    5445     625      37     210    1291      10       0      53
## # ℹ 328 more rows
## # ℹ 5,438 more variables: Otu0008 <dbl>, Otu0009 <dbl>, Otu0010 <dbl>,
## #   Otu0011 <dbl>, Otu0012 <dbl>, Otu0013 <dbl>, Otu0014 <dbl>, Otu0015 <dbl>,
## #   Otu0016 <dbl>, Otu0017 <dbl>, Otu0018 <dbl>, Otu0019 <dbl>, Otu0020 <dbl>,
## #   Otu0021 <dbl>, Otu0022 <dbl>, Otu0023 <dbl>, Otu0024 <dbl>, Otu0025 <dbl>,
## #   Otu0026 <dbl>, Otu0027 <dbl>, Otu0028 <dbl>, Otu0029 <dbl>, Otu0030 <dbl>,
## #   Otu0031 <dbl>, Otu0032 <dbl>, Otu0033 <dbl>, Otu0034 <dbl>, …

view(raw_counts)

dim(raw_counts)

## [1]  338 5448

There are over 300 rows and 5000 columns in this tibble. Let’s try subsetting it to get a small dataset to experiment with.

Subsetting A Tibble/Data Frame
There are several approaches to subsetting in R. This gives us a good opportunity to see some differences between base R approaches and
tidyverse methods…

Base R Subsetting
raw_counts[1:3,c(2,4)]

## # A tibble: 3 × 2
##   Group   Otu0001
##   <chr>     <dbl>
## 1 DA00006       0
## 2 DA00044       1
## 3 DA00065     729

OR

raw_counts[raw_counts$Group %in% c("DA00006", "DA00044", "DA00065") , c("Group", "Otu0001")]

## # A tibble: 3 × 2
##   Group   Otu0001
##   <chr>     <dbl>
## 1 DA00006       0
## 2 DA00044       1
## 3 DA00065     729

Tidyverse Subsetting
select()

select(raw_counts, Group, Otu0001)

## # A tibble: 338 × 2
##    Group   Otu0001
##    <chr>     <dbl>
##  1 DA00006       0
##  2 DA00044       1
##  3 DA00065     729
##  4 DA00108      57
##  5 DA00153      50
##  6 DA00154       1
##  7 DA00155       8
##  8 DA00165     628
##  9 DA00170     698
## 10 DA00210     625
## # ℹ 328 more rows

filter()  and slice()

filter(raw_counts, Group %in% c("DA00006", "DA00044", "DA00065"))

## # A tibble: 3 × 5,448
##   label Group   numOtus Otu0001 Otu0002 Otu0003 Otu0004 Otu0005 Otu0006 Otu0007
##   <dbl> <chr>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1  0.03 DA00006    5445       0       1     323     539       1       0      17
## 2  0.03 DA00044    5445       1       1    1280       0       0       1       0
## 3  0.03 DA00065    5445     729    1049       0       1     758     950      37
## # ℹ 5,438 more variables: Otu0008 <dbl>, Otu0009 <dbl>, Otu0010 <dbl>,
## #   Otu0011 <dbl>, Otu0012 <dbl>, Otu0013 <dbl>, Otu0014 <dbl>, Otu0015 <dbl>,
## #   Otu0016 <dbl>, Otu0017 <dbl>, Otu0018 <dbl>, Otu0019 <dbl>, Otu0020 <dbl>,
## #   Otu0021 <dbl>, Otu0022 <dbl>, Otu0023 <dbl>, Otu0024 <dbl>, Otu0025 <dbl>,
## #   Otu0026 <dbl>, Otu0027 <dbl>, Otu0028 <dbl>, Otu0029 <dbl>, Otu0030 <dbl>,
## #   Otu0031 <dbl>, Otu0032 <dbl>, Otu0033 <dbl>, Otu0034 <dbl>, Otu0035 <dbl>,
## #   Otu0036 <dbl>, Otu0037 <dbl>, Otu0038 <dbl>, Otu0039 <dbl>, …

slice(raw_counts, 1:3)

## # A tibble: 3 × 5,448
##   label Group   numOtus Otu0001 Otu0002 Otu0003 Otu0004 Otu0005 Otu0006 Otu0007
##   <dbl> <chr>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1  0.03 DA00006    5445       0       1     323     539       1       0      17
## 2  0.03 DA00044    5445       1       1    1280       0       0       1       0
## 3  0.03 DA00065    5445     729    1049       0       1     758     950      37
## # ℹ 5,438 more variables: Otu0008 <dbl>, Otu0009 <dbl>, Otu0010 <dbl>,
## #   Otu0011 <dbl>, Otu0012 <dbl>, Otu0013 <dbl>, Otu0014 <dbl>, Otu0015 <dbl>,
## #   Otu0016 <dbl>, Otu0017 <dbl>, Otu0018 <dbl>, Otu0019 <dbl>, Otu0020 <dbl>,
## #   Otu0021 <dbl>, Otu0022 <dbl>, Otu0023 <dbl>, Otu0024 <dbl>, Otu0025 <dbl>,
## #   Otu0026 <dbl>, Otu0027 <dbl>, Otu0028 <dbl>, Otu0029 <dbl>, Otu0030 <dbl>,
## #   Otu0031 <dbl>, Otu0032 <dbl>, Otu0033 <dbl>, Otu0034 <dbl>, Otu0035 <dbl>,
## #   Otu0036 <dbl>, Otu0037 <dbl>, Otu0038 <dbl>, Otu0039 <dbl>, …

slice(raw_counts, c(1,2,3))

## # A tibble: 3 × 5,448
##   label Group   numOtus Otu0001 Otu0002 Otu0003 Otu0004 Otu0005 Otu0006 Otu0007
##   <dbl> <chr>     <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1  0.03 DA00006    5445       0       1     323     539       1       0      17
## 2  0.03 DA00044    5445       1       1    1280       0       0       1       0
## 3  0.03 DA00065    5445     729    1049       0       1     758     950      37
## # ℹ 5,438 more variables: Otu0008 <dbl>, Otu0009 <dbl>, Otu0010 <dbl>,
## #   Otu0011 <dbl>, Otu0012 <dbl>, Otu0013 <dbl>, Otu0014 <dbl>, Otu0015 <dbl>,
## #   Otu0016 <dbl>, Otu0017 <dbl>, Otu0018 <dbl>, Otu0019 <dbl>, Otu0020 <dbl>,
## #   Otu0021 <dbl>, Otu0022 <dbl>, Otu0023 <dbl>, Otu0024 <dbl>, Otu0025 <dbl>,
## #   Otu0026 <dbl>, Otu0027 <dbl>, Otu0028 <dbl>, Otu0029 <dbl>, Otu0030 <dbl>,
## #   Otu0031 <dbl>, Otu0032 <dbl>, Otu0033 <dbl>, Otu0034 <dbl>, Otu0035 <dbl>,
## #   Otu0036 <dbl>, Otu0037 <dbl>, Otu0038 <dbl>, Otu0039 <dbl>, …

Tidyverse Pipes
We can combine the two above functions into a single expression, “piping” the results of one function as input to the next…

raw_counts %>%
  select(Group, Otu0001) %>%
  filter(Group %in% c("DA00006", "DA00044", "DA00065"))

## # A tibble: 3 × 2
##   Group   Otu0001
##   <chr>     <dbl>
## 1 DA00006       0
## 2 DA00044       1
## 3 DA00065     729

OR

raw_counts %>%
  select(Group, Otu0001) %>%
  slice(1:3)

## # A tibble: 3 × 2
##   Group   Otu0001
##   <chr>     <dbl>
## 1 DA00006       0
## 2 DA00044       1
## 3 DA00065     729

Compare these approaches to the Base R ones above. Which is easier to read/interpret?

Exercise 1
Create a new object named raw_count_sub that contains the first 10 rows of the original dataset (groups “DA00006” “DA00044” “DA00065”
“DA00108” “DA00153” “DA00154” “DA00155” “DA00165” “DA00170” “DA00210”) and the columns “Group”, and “Otu0001” through “Otu0010”

Adding/Editing Variables
mutate()
mutate()  creates a new column based on a function you provide. Let’s say for some reason you wanted to adjust the values for Otu0002 to half

of their original value. We’ll select just the original “Group” and “Otu0002” columns, then create the new column Otu0002_half…

raw_count_sub %>%
  select(Group, Otu0002) %>%
  mutate("Otu0002_half" = Otu0002 / 2)

## # A tibble: 10 × 3
##    Group   Otu0002 Otu0002_half
##    <chr>     <dbl>        <dbl>
##  1 DA00006       1          0.5
##  2 DA00044       1          0.5
##  3 DA00065    1049        524. 
##  4 DA00108     936        468  
##  5 DA00153      41         20.5
##  6 DA00154       0          0  
##  7 DA00155       4          2  
##  8 DA00165     493        246. 
##  9 DA00170     441        220. 
## 10 DA00210      37         18.5

When working with high-throughput sequencing data, we might want to normalize the data to account for variation in the total number of
sequencing reads that are obtained for each sample. For each sample, in raw_count_sub, normalize the counts to counts per million reads (cpm)

For each row (sample)…

get the sum of the values (total reads for the sample)
divide each individual count by this sum
multiply each value by 1000000

Before we do this, it might be easier to work with the data in a different format.

Long vs Wide Data
The information stored in data frames or tibbles can be organized in different ways. The data frame we’re currently working with is a wide data
frame. In this case, each Otu is represented as a separate column.

raw_count_sub

## # A tibble: 10 × 11
##    Group Otu0001 Otu0002 Otu0003 Otu0004 Otu0005 Otu0006 Otu0007 Otu0008 Otu0009
##    <chr>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1 DA00…       0       1     323     539       1       0      17       0       0
##  2 DA00…       1       1    1280       0       0       1       0       1       0
##  3 DA00…     729    1049       0       1     758     950      37       0      78
##  4 DA00…      57     936       0    1488       0      12       7      30       0
##  5 DA00…      50      41      60       2      85      40       0     147       0
##  6 DA00…       1       0      70       4       0       0    1718       0       0
##  7 DA00…       8       4     161     772       8       5     396       1       1
##  8 DA00…     628     493     803      12       2       1       0       3       0
##  9 DA00…     698     441       0     494     441       0       6       1      42
## 10 DA00…     625      37     210    1291      10       0      53       0       1
## # ℹ 1 more variable: Otu0010 <dbl>

We could alternatively treat the Otu as a single variable (column), and similarly, the count values. In this case, the data frame would have many
fewer columns (3), but a lot more rows. This would be considered a longer version of the data. There are functions in the tidyverse that allow you
to convert the data between the two forms…

pivot_longer()
raw_count_sub_long <- raw_count_sub %>% 
  pivot_longer(cols = !Group)

head(raw_count_sub_long)

https://youtu.be/ByxF3xjN2JQ
https://community.rstudio.com/
https://r4ds.had.co.nz/
https://riffomonas.org/
https://www.youtube.com/c/RiffomonasProject
https://www.youtube.com/watch?v=vW1OU6Qnd0U&list=PLxhIMi78eQegFm3XqsylVa-Lm7nfiUshe&index=2
https://www.youtube.com/watch?v=MmWKzrDPkG4&list=PLxhIMi78eQegFm3XqsylVa-Lm7nfiUshe&index=3
https://www.youtube.com/watch?v=2T9ITPRsSE0
https://www.youtube.com/watch?v=3eTf_XyvqRw&list=PLxhIMi78eQegFm3XqsylVa-Lm7nfiUshe&index=5
https://u.osu.edu/sovic.1/teaching/
https://github.com/riffomonas/minimalR-raw_data/releases/tag/0.3


head(raw_count_sub_long)

## # A tibble: 6 × 3
##   Group   name    value
##   <chr>   <chr>   <dbl>
## 1 DA00006 Otu0001     0
## 2 DA00006 Otu0002     1
## 3 DA00006 Otu0003   323
## 4 DA00006 Otu0004   539
## 5 DA00006 Otu0005     1
## 6 DA00006 Otu0006     0

OR

raw_count_sub_long <- raw_count_sub %>% 
  pivot_longer(cols = starts_with("Otu"))

head(raw_count_sub_long)

## # A tibble: 6 × 3
##   Group   name    value
##   <chr>   <chr>   <dbl>
## 1 DA00006 Otu0001     0
## 2 DA00006 Otu0002     1
## 3 DA00006 Otu0003   323
## 4 DA00006 Otu0004   539
## 5 DA00006 Otu0005     1
## 6 DA00006 Otu0006     0

And the same thing, but getting some more informative names for the new columns…

raw_count_sub_long <- raw_count_sub %>% 
  pivot_longer(cols = !Group, names_to = "OTU", values_to = "Count")

head(raw_count_sub_long)

## # A tibble: 6 × 3
##   Group   OTU     Count
##   <chr>   <chr>   <dbl>
## 1 DA00006 Otu0001     0
## 2 DA00006 Otu0002     1
## 3 DA00006 Otu0003   323
## 4 DA00006 Otu0004   539
## 5 DA00006 Otu0005     1
## 6 DA00006 Otu0006     0

Changing Variable Names
rename()

Group is maybe not the best name for that original column. We can rename it…

raw_count_sub_long <- raw_count_sub_long %>%
  rename(Sample = Group)

head(raw_count_sub_long)

## # A tibble: 6 × 3
##   Sample  OTU     Count
##   <chr>   <chr>   <dbl>
## 1 DA00006 Otu0001     0
## 2 DA00006 Otu0002     1
## 3 DA00006 Otu0003   323
## 4 DA00006 Otu0004   539
## 5 DA00006 Otu0005     1
## 6 DA00006 Otu0006     0

Grouping Data
group_by()

Now we’ll group the tibble by Sample and calculate the total reads for each sample. We’ll add these as a new column.

raw_count_sub_long <- raw_count_sub_long %>%
  group_by(Sample) %>%
  mutate("Total_Reads" = sum(Count)) %>%
  ungroup()

head(raw_count_sub_long)

## # A tibble: 6 × 4
##   Sample  OTU     Count Total_Reads
##   <chr>   <chr>   <dbl>       <dbl>
## 1 DA00006 Otu0001     0         881
## 2 DA00006 Otu0002     1         881
## 3 DA00006 Otu0003   323         881
## 4 DA00006 Otu0004   539         881
## 5 DA00006 Otu0005     1         881
## 6 DA00006 Otu0006     0         881

And with these counts, we can get the proportions of each OTU in each sample, and then multiply by 1000000 to get the reads per million value.

raw_count_sub_long <- raw_count_sub_long %>%
  mutate("cpm" = Count/Total_Reads*1000000)

head(raw_count_sub_long)

## # A tibble: 6 × 5
##   Sample  OTU     Count Total_Reads     cpm
##   <chr>   <chr>   <dbl>       <dbl>   <dbl>
## 1 DA00006 Otu0001     0         881      0 
## 2 DA00006 Otu0002     1         881   1135.
## 3 DA00006 Otu0003   323         881 366629.
## 4 DA00006 Otu0004   539         881 611805.
## 5 DA00006 Otu0005     1         881   1135.
## 6 DA00006 Otu0006     0         881      0

Exercise 2
Transform these cpm values to get the log (ln) cpm. Note that the log of 0 is undefined. Since log(1) is 0, we can add 1 to each value before taking
the log so you don’t get any values that aren’t defined. Call the new column “lcpm”.

Editing Text
str_replace()

As an exercise in modifying character strings, let’s say we wanted to remove the first two zeros following the “Otu” in the OTU column. Since our
otu names only go up to 10, we don’t really need these.

raw_count_sub_long %>%
  mutate("OTU" = str_replace(OTU, pattern = "(Otu)(00)(..)", replacement = "\\1\\3"))

## # A tibble: 100 × 6
##    Sample  OTU   Count Total_Reads     cpm  lcpm
##    <chr>   <chr> <dbl>       <dbl>   <dbl> <dbl>
##  1 DA00006 Otu01     0         881      0   0   
##  2 DA00006 Otu02     1         881   1135.  7.04
##  3 DA00006 Otu03   323         881 366629. 12.8 
##  4 DA00006 Otu04   539         881 611805. 13.3 
##  5 DA00006 Otu05     1         881   1135.  7.04
##  6 DA00006 Otu06     0         881      0   0   
##  7 DA00006 Otu07    17         881  19296.  9.87
##  8 DA00006 Otu08     0         881      0   0   
##  9 DA00006 Otu09     0         881      0   0   
## 10 DA00006 Otu10     0         881      0   0   
## # ℹ 90 more rows

head(raw_count_sub_long)

## # A tibble: 6 × 6
##   Sample  OTU     Count Total_Reads     cpm  lcpm
##   <chr>   <chr>   <dbl>       <dbl>   <dbl> <dbl>
## 1 DA00006 Otu0001     0         881      0   0   
## 2 DA00006 Otu0002     1         881   1135.  7.04
## 3 DA00006 Otu0003   323         881 366629. 12.8 
## 4 DA00006 Otu0004   539         881 611805. 13.3 
## 5 DA00006 Otu0005     1         881   1135.  7.04
## 6 DA00006 Otu0006     0         881      0   0

Before Thurs
The file ‘vik/vik_abundance.csv’ in the ‘M8161_R_files’ directory stores (partial) data from a large study investigating ocean microbial
communities. The values in the table represent tp means, which are derived from the raw counts. However, these values do not account for
differing sequencing depths across samples. The relevant total sequence read counts for each sample needed to normalize for sequence read
counts are stored in the 2nd row in this file.

First, read in the data and store the sequence read information in one tibble and the OTU counts (tp means) in another.

Next, reformat the data in each of these tibbles to get them into long format, with columns named “sample_site” & “seq_reads” for the
sequence reads tibble, and columns named “sample_site” & “tp_mean” for the OTU count tibble.

Finally, the values in the “contig” column of the tibble containing the OTU counts consist of fields separated by “_“. These identifiers are
longer than they need to be, with the first four of the eight fields providing enough information to uniquely identify each OTU. So, let’s
reduce these down to just the first 4 fields (everything before”_length”). Also, rename this column to “OTU”.

See below for previews of what these tibbles should look like, along with expected dimensions of each…

view(vik_seq_cts_long)

view(vik_otu_cts_long)

The dimensions of these tibbles should be…

dim(vik_seq_cts_long)

## [1] 22  2

dim(vik_otu_cts_long)

## [1] 22000     3


