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Abstract

Digital manufacturing is the use of an integrated, computer-based system com-

prised of simulation, 3D visualization, analytics, and collaboration tools to simulta-

neously create product and manufacturing process definitions. Digital manufacturing

has become more feasible with the rise in the quantity and quality of computer sys-

tems. The advantage of digital manufacturing is the ability to modify or create

manufacturing procedures within a virtual and controlled environment before be-

ing physically implemented. This enables the designers to see the results of their

procedure before investing in physical products. The focus of this work is digital

manufacturing of automotive wire harnesses. Current digital manufacturing software

lack the ability to accurately simulate flexible components such as cables, hoses, and

harnesses. The specific purpose of this work is to develop experimental procedures

to characterize wire harnesses and obtain homogenized material properties for incor-

poration into digital manufacturing software. Experimental procedures are presented

to characterize harness components and harness bundles. The different sizes of the

components and various possible combinations of harness bundles make it difficult

to experimentally characterize each one of them. Hence, limited experiments were

conducted, and analytical models are proposed to characterize the components and

use the available test data to validate the models. This research can fundamentally
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change the way harnesses are manufactured, designed and assembled. The experi-

mental characterization and analytical models will help in harness routing, designing

correct harness lengths to reduce vibration and rattling, residual stresses, and me-

chanical failure.
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Chapter 1: Introduction

1.1 Background and motivation

Automobiles have multiple electronic, electrical, and electro-mechanical systems

connected by a network of electrical wire harnesses. The function of a wire harness

is similar to the nervous system in a human body, i.e., the wire harness allows the

exchange of information between various components of an automobile in the form of

electrical signals. Wire harness related issues are a root cause of a significant number

of customer-reported problems [8]. Additionally, increasing vehicle electrification due

to technological advances has increased the complexity of wire harnesses [34]. This

has increased the demand for reliable wire harnesses capable of maintenance free op-

eration. Additionally, shorter development periods and reduced number of prototypes

has also called for a greater efficiency in harness design. This can be achieved with

digital manufacturing tools to identify and mitigate any performance issues that may

arise during and after manufacturing. Digital manufacturing also helps to identify

variability in harness features such as excess harness lengths or insufficient tape layers,

neither of which damage the harness but can cause unwanted noise due to rattling.

Digital manufacturing is the computer simulation of the assembly process, where

a digital mock-up of the actual assembly process is performed before moving on to the

1



prototyping stage. Automotive companies specifically use a range of commercial soft-

ware such as CATIA, IPS, and IC.IDO for this purpose. However, current commercial

software is intrinsically inaccurate for mechanical modeling of wire harness networks

since they typically assume linear elasticity, whereas in practice, harnesses are com-

plex multi-material structures that undergo elasto-plastic deformations. Hence, there

is a need to accurately model the elasto-plastic response of harness components for

use in digital manufacturing applications. Another issue to be addressed is the lack

of accurate material properties for use in the modeling software. Wire harnesses are

typically designed for their electrical performance, hence, the mechanical behavior of

wire harnesses is often neglected. This creates a need to design experiments to char-

acterize and study the mechanical behavior of harness components under different

loading modes. In this thesis, experimental techniques are presented to mechanically

characterize the wire harness components.

1.2 Modeling of wire harnesses

A typical wire harness is made of various components such as electrical wires,

protective conduits, insulation taping, and mounting clips as shown in Figure 1.1.

Studies on wire harnesses have predominantly focused on reducing the manufactur-

ing cost and installation time. Narayana et. al. [28] have simulated the wire harness

assembly and have concluded that the performance of a wire harness is not affected

even after experiencing high forces during installation. Hermansson et. al. [15] per-

formed a study on the installation of flexible pipes and cables and have developed

methods to reduce the propagation of uncertainties in the object shape during in-

stallation. [15] assumed the the cables as flexible 1D structures which can undergo

2



Figure 1.1: An automotive wire harness showing the various components of the har-
ness.

large deflection. Theetten et al [40] developed a model to simulate the mechanical

behavior of 1D slender objects by taking into account tension, bending and torsion.

They modeled the cables as geometrically exact splines and the model was validated

with the a cable position system to compare the actual and simulated cable shape.

Kim et al. [23] performed fatigue analysis of an automotive door wire harness.

The door was operated at a frequency of 10 closures/min and the wires stiffness was

measured every 10,000 cycles for a total of 350,000 cycles. The experimental results

were compared with FEM of door harness in both cases, larger wire harnesses showed

longer life. But their FEA modeled the wire harnesses as bare copper wires enclosed

in a tube and both the wires and the tube were assumed to have similar mechanical

properties, which is not accurate for wiring harness. Goebbels et al. [12] studied the

dynamic behavior of wire harnesses by modeling the harness as a 1D beam. Their

3



model takes into account the effect of contact on the dynamic simulation. However,

the material properties of the harnesses were calculated analytically without experi-

mental validation. Spak et al. [36] modeled the vibration response of an aircraft cable

harness using a distributed transfer function and also included hysteretic damping.

They presented a new method to model the stiffness of a harness mounting points

and experimentally validated the model on four different harness configurations.

1.3 Mechanical characterization of wire harnesses

Previous studies on the mechanical behavior of wire harnesses have focused mainly

on computer simulation with inadequate experimental validation. The simulations

were inaccurate due to the lack of proper mechanical properties such as Young’s

modulus and Poisson’s ratio. Wright et al.[46] performed experiments on stripped

single core electrical wires to measure the Young’s modulus of the conductor and

compared the results of the tensile testing with analytical calculation of the Young’s

modulus. However, the analytical calculations are based on the rule of mixtures

between copper and PVC and only works for small deflections. Hence, there is a

necessity to develop experiments to characterize the electrical wires with insulation.

Many experimental studies have been performed on multi-strand conductors, wire

ropes, electric cables, and transmission lines. This is due to the fact that wire-rope

structures are used in load bearing applications such as cable swayed bridges and

electrical transmission lines. These cables typically undergo combined loading, i.e.

both tension and bending. McConnell and Zemke [27] developed three different test

methods to measure the static bending stiffness of a cable structure. They tested

several ACSR wire strands and tabulated the bending stiffness for two extreme cases:
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stick state and slip state. In stick state the conductor strands are in contact with one

another and the cable behaves as a homogeneous structure. In slip state the conductor

strands freely slip against each other and each conductor behaves as an individual

beam. These cases represent the highest and lowest possible bending stiffness of a

cabled structure.

Papailiou [32] designed a similar test setup though his model takes into account

the effect of friction through a function which can be used to measure the bending

stiffness at all states between the stick and slip states. In this experimental setup, a

laser sensor was used to measure the deflection curve of the conductor. The sensor

was set to scan 800 points on the conductor surface and the scans are repeated every

few millimeters. Inagaki et al. [19] designed an experiment setup with an ACSR cable

fixed at both ends and a compressive force is applied to the upper end so that the cable

is bent in the shape of a circular arc. A load cell at the upper end of the cable is used

to measured the force. They compared the bending stiffness vs curvature response

between theoretical and experimental results in the curvature range between 1 and

10, which showed a good match. However, the experimental results are not shown

for small curvatures since the measured data was affected due to residual stress.

Colozza [5] designed three point bending tests to measure the flexibility of wire

or cable used on a lunar rover. They performed tests at both room temperature and

extreme cold conditions (similar to the moon). The bending test results were used

to estimate the torque required to unwind the harness at extreme temperatures. Van

der Heijden et al. [42] studied the mechanical behavior of pre-twisted rods undergoing

large axial deformations. Force and torque transducers were used at both ends of

a wire to measure the torque and the tensile force. Goss et al. [13] extended the
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above experiment by applying both axial and torsional deformation. Dörlich et al. [9]

studied heterogeneous cabled structures made with strands of various materials. They

concluded that increasing the torsion decreases the tensile stiffness and vice versa.

Rothenburg et al. [35] designed a more complex experiment setup where the cables

were simultaneously loaded in bending, torsion, and compression..

Wienss et al. [45] designed a test to simultaneously apply both the bending and

torsion. But, the test measured only the torsion and not the bending moment. Hence,

there was a disagreement between the model and the experiment results. They also

neglected the effect of friction. Automotive harnesses undergo combined loading with

predominately bending. Hence, uni-axial tensile tests are not sufficient to characterise

a harness and their components.

1.4 Analytical modeling of electrical wires

Electrical wires are key building blocks of wire harnesses and a starting point for

addressing the complex structure of wire harnesses. A typical electrical wire is made

by helically winding conductors around a core in one or multiple layers, and then

encasing them in polymeric insulation. Harnesses are predominantly subjected to

bending loads during the assembly process [20], so this modeling effort focuses on the

bending response of wires.

Costello [6] proposed a model for bending of wire ropes with single layers, which

posits that the bending stiffness reaches a minimum value corresponding to the slip

state. This model was generalized for wires with complex cross sections by Velin-

sky [43]. However, neither of these models includes the effect of interlayer friction.
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Lanteigne [25] formulated a general stiffness matrix for aluminum conductor steel re-

inforced (ACSR) cables subjected to bending, torsion, and elongation which includes

only the contribution of radial force towards interlayer friction. Papailiou [32] pre-

sented a model for bending of ACSR cables taking into account interlayer friction and

derived a moment-curvature relationship. Hong et al. [17] have modified the model by

including the change in inter-layer lay angle for calculating the radial contact forces.

Inagaki et al. [19] extended Papailiou’s model to second-order helical cables and

modeled the effect of axial and torsional forces on the bending moment of wire con-

ductors, incorporating a model for the contact between insulation and conductors.

Foti and Martinelli [11] extended this model by including the effect of residual radial

contact forces between layers and also proposing a substantially different approach

to evaluate the axial force in the wires. Another extension of Papailiou’s model is

presented in Foti and Martinelli [10], which accounts for the coupled axial-bending

behavior of wire ropes. Jiang et al. [21] presented a finite element model to pre-

dict the elasto-plastic behavior of a straight wire under pure bending loads. In our

previous work [39], a methodology was presented to determine Holloman’s material

constants [16] for homogenized electrical wires.

A new analytical formulation is presented in this research work for large deflec-

tion elastic-plastic bending of electrical wires. The overall bending behavior of the

electrical wire is modeled based on Euler-Bernoulli beam theory [24]. The friction

between conductors is defined using Amontons-Coulomb friction laws. The kinematic

state of the wire is determined by comparing stick and slip axial forces acting on each

conductor. Plasticity is modeled by treating the conductors as laminated composite
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beams with each lamina having a different bending modulus. The change in helix an-

gle is neglected since the conductors are enclosed in insulation, which limits twisting

of the helix and separation of the conductors. The total bending moment of the wire

is the sum of moments in the individual conductors and the insulation.

An effective bending stiffness versus curvature relation is derived by homogenizing

the wire as a cylindrical beam. The effective bending stiffness can then be used in

digital manufacturing applications. An algorithm for packing circles in a circle [18]

is used to determine the conductor layout in the wire cross section, i.e., the radial

and angular positions of the conductors in the cross-section. This is required as most

manufacturers of electrical wires (e.g., [26]) specify only the number of conductors

in a wire, but the arrangement of conductors needs to be known to model the forces

acting on individual conductors. The packing algorithm and the analytical model

together form a tool to automate the process of determining the bending stiffness

for an arbitrary number of electrical wires based on their geometric and material

properties.

1.5 Dissertation outline

This thesis presents the design and modeling of experiments to characterize the

mechanical properties of automotive wire harnesses and their components. The dis-

cussion of these topics is broken up into 4 chapters. Chapter 2 presents methods to

characterize the wire harness components such as electrical wires, conduits and insu-

lation tape. Chapter 3 explains the analytical formulation to model the elasto-plastic

bending behavior of helical electrical wires subjected to large deflections. Chapter

4 presents methods to characterize harness bundles such as taped wire bundles and
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conduit wire bundles. The wire bundles help in understanding the effect of various

components on the bundle stiffness and also the interactions between components.

Concluding remarks are presented in Chapter 5.
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Chapter 2: Characterization of individual components

Overview

This chapter introduces methodologies to characterize the individual components of a

wire harness such as the electrical wires, protective conduits, and insulation tape. A

Wire harness is typically designed for its electrical performance. Hence, there exist

no standards for characterizing the mechanical behavior of harness components. As a

result, the literature for mechanical characterization of harness components is limited.

The experimental methods were developed based on modeling requirements and ASTM

standards.
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2.1 Electrical wire

A typical electrical wire is made by helically winding copper conductors around

a core in one or multiple layers, and then encasing them in a polymeric insulation

(Figure 2.1). Two types of electrical wires were tested in this study, namely type

A and type B. The dimensions of the wires tested in this dissertation are shown in

Table 2.1.

Insulation

Conductor core

Figure 2.1: Architecture of a typical helically-wound stranded electrical wire modeled
in this paper.

A-type wires have cylindrical conductors and are used for low voltage applications,

whereas B-type wires have compressed conductors and used in applications with space

constraints as compressed conductors ensure a higher electrical performance with

thinner wires. For example, A2-type and B2-type wires have a similar conductor

cross-section area but the diameter of B2-type wire is 25% less than that of A2-type

wire.
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Table 2.1: Wire diameter, conductor area, number of conductors, lay angles of the
conductors, sample lengths, and conductor layouts of the five types of wires tested.
A-type wires have cylindrical conductors and B-type wires have compressed
conductors.

Wire dw (mm) Ac(mm2) Ns αq(o) L (mm) Cross-section

A1 1.4 0.37 7 12 85

A2 1.6 0.56 7 12 85

A3 1.8 0.86 19 12, -15 85

B1 1.1 0.35 7 12 85, 100

B2 1.25 0.49 7 12 85, 100

Wire harnesses are predominantly subjected to bending loads during the assembly

process [20], so this section focuses on characterizing the response of wires subjected

to such loads. Hence, a custom inverted cantilever bending test is designed to charac-

terize the bending behavior of electrical wires. In this test, one end of the wire is fixed

and a vertical load is applied on the other end. The load displacement data obtained

from this test is used in the analytical modeling of the electrical wires presented in

Chapter 3.

2.1.1 Test setup

Figure 2.2 shows the cantilever bending test setup. A support frame was built

from aluminum Unistrut. Figure 2.3 shows the test setup in detail including the load

frame and wire initial and bent states. One end of the wire sample is clamped in

an adapter creating the fixed boundary condition, and the adapter is mounted on a

shaft connected to a stepper motor. The stepper motor provides displacement to the
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fixed end of the cantilever beam. A 2g Cooper load cell is fixed to the upper Unistrut

beam and a 760 mm long aramid strand connects the load cell and free end of the

wire. Cyanoacrylate glue was used to attach the aramid strand to the wire, to ensure

the connection is intact during the test. A 2.7 g counterweight was tied to the end

of the wire to eliminate any slack in the aramid strand and keep the wire sample

straight. A dSPACE 1103 control box is used to control the stepper motor and to

record tension in the aramid strand as measured by the load cell.

Additionally, the shape of the wire sample during bending and the tip displacement

are measured with a motion capture system. This avoids error due to the possibility

of missing stepper motor steps at low speeds. The data is sampled at 10 kHz. A

Simulink model was designed to control the speed and direction of the stepper motor.

The frequency to actuate the motor was set up to be 8000 Hz so that the vertical

speed of the motor is 1 mm/s (2.4 in/min). The loading time was set up as 53 secs so

that the vertical displacement is 53 mm. Here, 53 mm is the travel limit of the load

frame.
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Figure 2.2: Cantilever bending setup.

The procedure of the test is:

1. Cut a sample with an appropriate length from a spool and gently straighten it

2. Stick Infrared (IR) reflective tape markers along the length of wire sample

3. Mount one end of the wire sample in the adapter

4. Connect the free end of the wire sample to the load cell with an aramid fiber

and hang the counterweight to the free end
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Motion capture

 markers

Aramid strand

a b

Figure 2.3: (a) Initial and (b) final shapes of a wire sample during the cantilever
bending test used for model development.

5. Use cyanoacrylate glue on the tie

6. Simultaneously start the test in dSPACE ControlDesk software and the motion

capture process

7. Output the force vs. displacement plots and motion capture output

2.1.2 Motion capture system

An OptiTrack motion capture system is used to record the shape of the wire

as it undergoes deflection. The system consists of 10 OptiTrack Flex 13 cameras.

These cameras have 1.3 MP resolution, 56 degrees of field of view, can measure up

to 4 ft distance, and can record up to 120 frames per second [30]. Each camera has

28 infrared (IR) LEDs. The light emitted from these LEDs reflects off the markers

placed on the sample and the reflected IR light is used by the cameras to measure the

position of the marker. Using the measurements from multiple cameras, the exact

position of the marker can be determined by the principle of triangulation.
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Cameras are placed strategically such that each marker is in the field of view of at

least three cameras [29]. The camera setup is shown in Figure 2.2. The software used

for motion capture is Motive, which is an optical motion capture software developed

by OptiTrack. Figure 2.4 shows the interface of the Motive software.

Figure 2.4: Motive software interface.

The distance between the reflective markers need to be at least 3× the marker

size so as not to confuse the cameras. The mocap system records the coordinates of

16



the center of the marker. Hence, the data needs to be adjusted to account for the

measurement error arising from the marker size.

2.1.3 Results and discussion

Three samples of each wire type were tested. Each sample was loaded and un-

loaded for three cycles. The force data was sampled at 10 kHz. The noise was filtered

during post-processing using a moving average filter in MATLAB. Figure 2.5 shows

the raw and filtered data for A1-type wire.
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Figure 2.5: (a) Raw and (b) filtered force versus displacement data for cantilever
bending test of A1-type wire.

The motion capture data is sampled at 50 frames per second. Figure 2.6 shows the

motion capture data for an A1-type wire sample. The data is shown at five intervals

each interval corresponding to a vertical deflection of 10 mm.

Figure 2.5 shows strain hardening between loading profiles of (cycle 2, cycle 3)

and cycle 1. This implies that the sample has undergone plastic deformation. The
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Figure 2.6: Motion capture of an A1-type wire under cantilever bending.

loading profile of the first cycle is used to characterize the electrical wires. For com-

parison with the analytical model in Chapter 3, a 95% confidence interval is estimated

based on the experimental data as shown in Figure 2.7. The confidence limits at any

displacement [7] δ for unknown population standard deviation are given by

Flimits,δ = xδ ± t0.95,n
s√
n
, (2.1)

where xδ is the mean force of all samples at displacement δ, n is the number of

samples, t0.95,n is the t-statistic for n samples, and s is the standard deviation.

A1 and A2-type wires were tested in two different lengths. The data is used

to prove the independence of length of the analytical model output presented in

Chapter 3.

For a cantilever beam with fixed deflection, the force at the free end is inversely

proportional to the beam length. This can be observed in Figure 2.9 and Figure 2.10,

where the longer beams are experiencing less force than shorter beams.
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Figure 2.7: Force versus displacement data for cantilever bend test of A1-type wire
samples showing the mean and the 95% confidence interval.
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Figure 2.8: Force versus displacement data for cantilever bending tests of (a) A2-type
and (b) A3-type wires.
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Figure 2.9: Force versus displacement data for cantilever bending test of (a) 85 mm
and (b) 100 mm long B1-type wire samples.
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Figure 2.10: Force versus displacement data for cantilever bending test of (a) 85 mm
and (b) 100 mm long B2-type wire samples.

2.2 Protective conduits

Electrical wires are enclosed in a protective conduit as shown in Figure 2.11. As

part of this dissertation two types of protective conduits are studied - corrugated
20



tubes and twist tubes. Corrugated tubes are made by extrusion blow molding of

molten polypropylene. These tubes can either be slit on unslit. Slit tubes are cut

along the length of the tube. Twist tube is a self-wrapping sleeve made with wo-

ven polypropylene fabric. Twist tubes are used in applications where the harness

experiences high frequency loads as the fabric helps in damping the vibrations. The

dimensions of the conduits tested are shown in Table 2.2

Figure 2.11: Typical automotive wire harness.

2.2.1 Corrugated tube test setup

The detailed experimental setup is shown in Figure 2.12. Corrugated tube test

samples are prepared by cutting pieces off the spool and casting the ends of the tubes

in epoxy. A custom silicon mold as shown in Figure 2.13 is used to cast the ends of the

corrugated tube in epoxy as shown in Figure 2.13. The sample length was chosen as

140 mm (5.5 in) so that the gauge length is 114.3 mm (4.5 in) and the epoxied ends are
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12.7 mm (0.5 in) long on either side. The samples are mounted in a TestResources©

load frame by clamping the epoxy casts with MTS Advantage® screw action grips.

The sample is extended by 50 mm at a rate of 0.423 mm s−1 (1 in/min). The sample

is tested until break as soft polypropylene is highly stretchable. The displacement

is measured using an built-in LVDT sensor and the force is measured using a Test

Resources 500 lbf load cell. R-controller software is used to set the test parameters

and to record the force and the displacement as measured by the sensors. The initial

and final stages of the corrugated tube test are shown in Figure 2.12

a b

Figure 2.12: (a) Initial and (b) final stage of 10 mm diameter corrugated tube tensile
test.

22



Table 2.2: Inner diameter, outer diameter, and wall thickness of the three types of
corrugated tubes tested.

Type I.D. (mm) O.D. t (mm)

Unslit 7.4 10.2 0.27

Unslit 10.7 14.1 0.27

Slit 10.7 14.1 0.27

Table 2.2 shows the three types of corrugated tubes tested and their dimensions.

The procedure of the test is:

1. Cut a (5.5 in) long sample from a corrugated tube spool

2. Stand the sample on one end in the silicon mold and pour epoxy such that

12.7 mm (0.5 in) of the sample is submerged and let it cure for 12 hours

3. Repeat step 2 for the other end

4. Mount the epoxy casts in the load frame grippers as shown in Figure 2.12

5. Set the displacement and the loading rate in the R-controller software and start

the test

6. Record the force and displacement as measured by the sensors

2.2.2 Corrugated tube results

Three samples of each tube type are tested and the force versus displacement plots

are presented in this section. The normalized force versus displacement plot shows a

linear profile up to 10 mm extension (8.7%). The corrugated tube is characterized by

fitting a straight line to the initial linear region.
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Figure 2.13: Preparation of corrugated tube tensile test samples.
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Figure 2.14: Force versus displacement data for tensile testing of (a) slit and (b)
unslit corrugated tube with 10 mm inner diameter.

Due to the cylindrical profile of the tube, circumferential stress affects the force

response of the corrugated tube. This can be observed in Figure 2.14, where the slit

tube has a lower force-displacement response compared to the unslit tube. The slit

allows the tube to warp about its length. The circumferential stress increases with a
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decrease in the tube diameter. Hence, the force response of a 10 mm diameter tube is

lower than that of a 7 mm diameter tube as shown in Figure 2.14b and Figure 2.15.
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Figure 2.15: Force versus displacement data for tensile testing of 7 mm diameter
unslit corrugated tube.

The corrugated tube is modeled as a hollow cylinder with a longitudinal modulus

equivalent to the value calculated from the force displacement plots. The vertical shift

in the force response observed in Figure Figure 2.14a is due to the sample slipping in

the grips. A confidence region was not calculated as the test results show very little

variance qualitatively.
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2.2.3 Twist tube setup

The twist tube has an architecture similar to that of a textile fabric. Hence, the

test setup was designed based on ASTM D5034-09, the standard for characterizing

the tensile strength of textile fabrics. A schematic of the twist tube tensile test setup

is shown in Figure 2.16. The samples were tested using an MTS CriterionC43.504

load frame and a LPS.155 low profile shear beam load cell with a force rating of 50 kN.

The sample is mounted using MTS Advantage® screw action grips with serrated faces

and manual screw clamps. The test specimen is 200 mm long and 25 mm wide, and

the gauge length is 75 mm. The loading rate of the specimen is 5 mm/s. Sample

failure triggers the machine to stop loading. The load frame is an electro-mechanical

machine and the cross-head is driven by a servo motor. The displacement is calculated

by multiplying the motor angular speed and the driving gear diameter.

Figure 2.16: Twist tube test setup schematic showing the sample and the setup.
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The procedure of the test is:

1. Cut a 200 mm (7.87 in) long sample from a twist tube spool

2. Unwrap the sample and mount it on the load frame in the manual screw clamps

3. Set the displacement and the loading rate in the MTS test suite software and

start the test

4. Set the test to stop at breakage, i.e., once the sample tear is detected

5. Record the force and displacement as measured by the sensors

The initial and final shape of the sample are shown in Figure 2.17.

a b

Figure 2.17: (a) Initial and (b) final state of 10 mm diameter twist tube tensile test.
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2.2.4 Twist tube results

Six twist tube samples were tested from 2 different spools were tested. All samples

are shown in Figure 2.18. The break point is closer to the jaws for all six samples.

This might be due to a higher force at the region closer to the jaws as the twist tube

is initially warped but is stretched open while mounting in the jaws.

1a 1b 1c 2a 2b 2c

Figure 2.18: The six samples of the twist tube tested.

The normalized force versus displacement data of all the six samples is shown in

Figure 2.19. The plot shows a clear bi-linear profile. A first linear region up to 10 mm

extension and a second linear region beyond 10 mm are observed.
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Figure 2.19: Normalized force versus displacement plot of the twist tube tensile test
showing the six samples tested.

To characterize the twist tube, two straight lines are fit to the force versus dis-

placement plot as shown in Figure 2.20. The normalized stiffness values are tabulated

in Table 2.3.

Table 2.3: Normalized liner stiffness of the twist tube.

Sample 1st linear region (1/m) 2nd linear region (1/m)

1a 58.33 31.78

1b 57.71 33.98

1c 56.28 32.98

2a 47.09 27.38

2b 48.19 28.81

2c 46.08 30.50
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Figure 2.20: Characterizing the twist tube tensile stiffness from the normalized force
versus displacement plot.

2.3 Insulation tape

As part of this thesis two different types of tape were used: Polyvinyl chloride

(PVC) tape and Polyethylene (PET) tape. The characterization of PVC tape has

been covered by Zhou [47] as part of her Masters thesis. In this section, the method

to characterize the PET tape is presented. The structure of PET tape is similar to a

non-woven fabric and is used in applications where the harness vibrations need to be

attenuated.

30



Figure 2.21: Polyethylene (PET) tape sample.

2.3.1 Test setup

Figure 2.21 shows a Tesa® PET tape sample and Figure 2.22 shows the experiment

setup. The setup is designed based on ASTM D7744 [2] for tensile testing of high

performance polyethylene tapes. Crosshead travel rate has to be between 50% to 100%

of the nominal gauge length of the specimen [2]. The sample gauge length is 300 mm

(11.81 in), the sample width is 18.79 mm, and the sample thickness is 0.28 mm . The

loading rate is 0.5 mm/sec which leads to a strain rate of 0.1 mm/mm/min. The

samples were stretched until full breakage. The MTS load frame and the Advantage

screw action grips described in section 2.2 are used in the tape tensile testing.

2.3.2 Results

For the tensile testing, five samples were tested from two different spools. Sample

2 failed at 40 mm elongation, but the other four samples failed around 60 mm elon-

gation. The load versus elongation curves of the 5 samples are shown in Figure 2.23.

The load profile shows that the samples have a low variance and the load profile sug-

gests a bi-linear elasto-plastic behavior. The first linear region is chosen as the elastic

region and the tape stiffness is calculated by fitting a straight line to the curve.
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Figure 2.22: Polyethylene (PET) tape tensile test setup showing the load frame and
the mounting grips.
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Figure 2.23: Normalized load versus displacement plots for tensile testing of polyethy-
lene (PET) tape.
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Chapter 3: Wire Analytical Model

Overview

In this chapter an analytical model is presented to mathematically determine the ho-

mogenized bending modulus of an electrical wire. In Chapter 2 a methodology was

presented to characterize the bending behavior of electrical wire. However, due to a

large number of wires being used in applications, it is time consuming to test and

characterize each wire. It is noted that an electrical wire is made by helical winding

of copper conductors within a polymer insulation. This helical structure makes it pos-

sible to analytically simulate the cantilever bending test presented in Chapter 2. The

goal of this analytical model is to simulate the cantilever bending test and output an

effective bending modulus, which can be used in digital manufacturing software.
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3.1 Wire geometry

In a wire, the positions of the conductors in the cross section affect the bending

stiffness of the wire. Hence, in order to automate the process of defining conductor

layouts for a large number of wire types and sizes in digital manufacturing applica-

tions, an algorithm is written for packing smaller circles in a larger bounding circle.

The smaller circles represent the conductors and the larger circle represents the inner

surface of the insulation. Initial values for the center coordinates of each conductor

are guessed using a random number generator. The conductor layout is estimated by

minimizing the elastic energy of the system, defined as the sum of distances squared.

a b

Figure 3.1: (a) Initial guess for conductor configuration; (b) optimized conductor
configuration obtained using a circle packing algorithm. The dashed circle represents
the inner surface of the insulation and the solid circles represent the outlines of the
individual conductors.

Assume N smaller circles with equal radii r are to be packed in a larger bound-

ing circle of radius R. The minimum distance between an ith circle with center

(xi, yi; i = 1, 2, 3, ..., N) and a jth circle with center (xj, yj; j = 1, 2, 3, ..., N) is given

by
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di,j =

{
2r −

√
(xi − xj)2 + (yi − yj)2 if

√
(xi − xj)2 + (yi − yj)2 < 2r

0 otherwise.
(3.1)

The minimum distance between the ith circle and the bounding circle with center at

origin (0, 0) is given by

di0 =

{
r −R +

√
x2i + y2i if

√
x2i + y2i + r > R

0 otherwise.
(3.2)

Assuming a unit proportionality constant, the potential energy of the ith body is

given by

Ui = d2i0 +
N∑

j=1,j 6=i

d2ij, (3.3)

and the total potential energy U of the system is given by

U =
N∑
i=1

Ui. (3.4)

Conductor centerline coordinates are solved by multi-variable optimization of

U (x1, y1, x2, y2, ...., xN , yN) using the MATLAB® function fminunc. This function

uses a quasi-Newton search method to find the function minimum; the search direc-

tion is determined by estimating the approximate Hessian matrix using the Broy-

den—Fletcher—Goldfarb—Shanno (BFGS) formula. Initial values of the center lo-

cations are randomly chosen such that conductor centers are within the insulation

as shown in Figure 3.1a. The final conductor arrangement after packing is shown in

Figure 3.1b. Comparisons between the estimated conductor arrangements and actual

wire cross sections for 7-conductor and 19-conductor wires are shown in Figure 3.2.
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a b

Figure 3.2: Estimated and actual cross sections of a typical (a) 7-conductor wire and
(b) 19-conductor wire.

The wire conductors are sorted into groups based on the radial distances of the

conductor centerlines to the wire centerline. Here, the number of groups equals the

number of layers in the helix. For simplicity, a pth conductor in a qth layer is identified

as (p, q). The values taken by (p, q) are

(p, q) =



1, 1 1, 2 . . . 1, Q

2, 1 2, 2 . . .
...

...
...

. . .
...

N1, 1
...

. . .
...

N2, 2
. . .

...
. . .

...
NQ, Q


, (3.5)

with the columns representing the helix layers and the rows representing the conduc-

tors in a layer. For example, the 7-conductor wire shown in Figure 3.2a has one core

and one layer with 6 conductors, so Q = 1 and N1 = 6. Similarly, for the 19-conductor

wire shown in Figure 3.2b, Q = 2, N1 = 6, and N2 = 12. In Figure 3.2b there is

a slight mismatch between the calculated and actual positions of the conductors in
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the second layer. Hence, the analytical model was applied both to the algorithm-

generated and true configurations and it was observed that the difference between

the model outputs was not significant. For modeling, the wire layout is oriented by

defining the neutral axis by a vector connecting the wire centerline and the centerline

for a randomly chosen conductor in the first layer. For the wires tested in this work

(lay angle < 15o), no distortion in the conductor cross sections was observed in either

FEA or optical measurements. However, for wires with larger lay angles, it is under-

stood that that the lay angle can have an effect on the cross sectional shape of the

conductors. To account for this change in cross sectional shape, the algorithm can

be modified to pack ellipses within a circle [22]. The algorithm above is restricted to

conductors with equal diameters, but can be readily modified to model wires having

layers composed of conductors with different diameters [44].

3.2 Stick-slip model

The wire conductor is made of helically-wound metal conductors. Due to its

stranded nature, a wire in bending exhibits two kinematic states: stick state and

slip state. Initially, the wire is in a stick state and bends as a single beam. With

increasing curvature, the axial forces induced in the conductors due to bending exceed

the frictional force and the conductors start to slip against adjacent surfaces, causing

the wire to be in the slip state.

3.2.1 Stick state

Conductors in the stick state are modeled as Euler-Bernoulli beams and the axial

strain in a conductor is the sum of responses from torsion, elongation, and bending

of the wire. The axial strain in the pth conductor in the qth layer is given as
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εp,q = κwrq sin θp,q cos2 αq + εw cos2 αq + τwrq sinαq cosαq, (3.6)

where κw, εw, and τw respectively denote curvature, elongation, and twist in a wire,

rq is distance from the wire center to the qth layer, θp,q is the angular position of the

conductor from the x-axis, and αq is the lay angle of the qth layer. Multiplying (3.6)

with conductor axial rigidity (EA)s gives the axial force as

Tp,q = (EA)s
(
κwrq sin θp,q cos2 αq + εw cos2 αq + τwrq sinαq cosαq

)
. (3.7)

The wires are assumed to be under pure bending. Hence, the wire elongation and twist

are neglected and the conductor axial force Tp,q in (3.7) is directly proportional to rq,

the radial distance of the conductor centerline from the wire centerline. Therefore,

slip begins in the conductors farthest from the neutral plane and progresses towards

the center.

3.2.2 Slip state

In the slip state, the Amontons-Coulomb friction model is used to define the

contact forces between conductors and between the conductors and the insulation.

Helically-wound wires have a small tangential gap between conductors in the same

layer [19] due to imperfections from manufacturing or the loading process. Hence,

only the contact forces between conductors of adjacent layers are modeled and con-

tact forces between conductors in the same helix layer are neglected. A differential

conductor element in the qth layer is selected as shown in Figure 3.3. The static

equilibrium equation is given by
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dFp,q − gp,q − hp,q = 0, (3.8)

dFp,q − µqHp,q − µq−1Gp,q = 0, (3.9)

where µq and Hp,q are the friction coefficient and the normal force, respectively,

between layer q and layer q + 1. Similarly, µq−1 and Gp,q are the friction coefficient

and the normal force, respectively, between layer q − 1 and layer q.

G
p,q

H
p,q

h
p,q

g
p,q

F
p,q
+dF

p,q
F
p,q

Figure 3.3: Static force diagram for a differential element of the pth conductor in the
qth layer subjected to an axial force Fp,q, normal forces Hp,q and Gp,q from adjacent
layers, friction forces hp,q and gp,q resulting from relative sliding of adjacent layers,
and the resulting increment in axial force dFp,q.

The radial force exerted by the insulation Fins is constant throughout the wire

cross section. To satisfy equilibrium between layers, the force exerted by layer q on

layer q − 1 layer is given by

Hp,q−1 = Gp,q
Nq

Nq−1
. (3.10)

Substituting (3.10) in (3.9) and satisfying static equilibrium, the normal forces exerted

on the qth layer by the surrounding layers are given by
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Hp,q =

Q∑
k=q+1

(
Fp,k sinαk

Nk

Nq

)
+ Fins

NQ

Nq

, (3.11)

Gp,q = Hp,q + Fp,q sinαq. (3.12)

Substituting (3.11) and (3.12) in (3.9) one obtains the differential increment in axial

force dFp,q as

dFp,q = (µq + µq−1)

(
Q∑

k=q+1

Fp,k sinαk
Nk

Nq

+ Fins
NQ

Nq

)
dθ + µq−1Fp,q sinαqdθ. (3.13)

Solving (3.13) with initial condition Fp,q (0), the frictional force Fp,q in the pth con-

ductor located in the qth layer is given by

Fp,q = exp (µq−1 sinαqθp,q)

(
Fp,q (0) +

µq + µq−1
µq−1 sinαq

Bp,q

)
− µq + µq−1
µq−1 sinαq

Bp,q, (3.14)

Bp,q =

Q∑
k=q+1

(
Fp,k sinαk

Nk

Nq

)
+ Fins

NQ

Nq

. (3.15)

In the solution procedure, for each increment in curvature κ, Tp,q and Fp,q are

compared to determine if the conductor is in the stick or slip state and the minimum

of (Tp,q, Fp,q) is taken as the conductor axial force. Mathematically, the axial force is

represented as

Fp,q =

{
Tp,q if Tp,q < Fp,q (stick state)

Fp,q otherwise (slip state).
(3.16)

Under elastic bending, the total bending moment induced in an electrical wire is

the sum of moments in the conductors, moments in the insulation, and the moments
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induced by the conductor’s axial forces. At a curvature κ, the total bending moment

induced in a wire is given by

M =

Q∑
q=1

Nq∑
p=1

EIp,qκ+ EIinsκ+

Q∑
q=1

Nq∑
p=1

Fp,qrq sin θp,q. (3.17)

Here, EIp,q is the bending stiffness of the pth strand in the qth layer, EIins is the

bending stiffness of the insulation, Fp,q is the conductor axial force, and rq sin θp,q is

the distance from the conductor center to the wire’s neutral axis. In (3.17), EIp,q is

given [11] by

EIp,q =
cos (αq)

2
EIs

(
1 + cos2 αq +

sinαq
1 + νs

)
, (3.18)

where EIs is the bending stiffness of the conductor assumed as a straight cylindrical

beam, and νs is the Poisson’s ratio of the conductor.

3.2.3 Plastic state

During large deflection bending of a wire, the conductors undergo plastic defor-

mation. The plastic zone begins when the maximum stress along the beam’s cross

section exceeds the material’s yield stress. The plastic zone spreads towards the neu-

tral axis with increasing curvature. Figure 3.4b shows the stress distribution in elastic

and elasto-plastic regions.

A beam having only elastic stress distribution obeys Hooke’s Law. However, in

elasto-plastic stress distribution, the strain in the plastic region is not linearly related

to the stress [38]. Therefore, the beam is assumed to have a laminated structure,

with each lamina having different material properties. For a lamina with thickness

dy, width b (y), and located at a distance y from the neutral axis, the bending stiffness
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Figure 3.4: (a) Cross section of a generic beam showing a layer of differential thickness
dy; (b) stress distribution across a beam’s cross section for elastic and elasto-plastic
bending, showing stress reduction due to plasticity.

is given by

d (EIs) = E (y) b (y) y2dy, (3.19)

and integrating (3.19) across the beam’s cross section, the bending stiffness of the

beam is given by

EIs =

∫ h2

−h1
E (y) b (y) y2dy. (3.20)

Here, the elastic modulus E (y) is the secant modulus calculated from the material

stress-strain curve at a local strain εxx = yκ. The conductors are typically made

with ductile metals, hence the conductor is assumed to have the same stress-strain

relationship in compression and in tension. For a cylindrical conductor with radius

r, the bending stiffness given by (3.20) reduces to

EIs = 2

∫ r

−r
E (y)

(√
r2 − y2

)
y2dy, (3.21)

and discretizing the integral, we have
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EIs = 2
V∑
v=1

Ev

(√
r2 − y2v

)
y2v∆y. (3.22)

Here, V is the total number of laminae in the conductor’s cross section, Ev is the

elastic modulus of the vth layer, yv is the distance of the vth lamina from the neutral

axis, and ∆y is the lamina thickness (∆y � R). The bending stiffness given by

(3.22) is for a straight cylindrical beam. Substituting (3.22) in (3.18) one obtains the

bending stiffness of a helical beam. The total bending moment (3.17) is differentiated

with respect to κ to give

EIw (κ) =

Q∑
q=1

Nq∑
p=1

EIp,q + EIins +

Q∑
q=1

Nq∑
p=1

dFp,qrq
dκ

. (3.23)

At each value of curvature, the homogenized bending stiffness of the wire is evaluated

using (3.23) and is recorded as a lookup table. The lookup table serves as a tool for

use in digital manufacturing software to simulate wires as homogenized rods.

3.3 Large deflection formulation

In a wire subjected to small deflections, the curvature is κ ≈ d2y
dx2

and the bending

moment is M ≈ EIw
d2y
dx2

. For large deflections, elementary beam theory [41] gives the

bending moment as

M = EIwκ = EIw

d2y
dx2[

1 +
(
dy
dx

)2] 3
2

. (3.24)

Here, EIw is the homogenized bending stiffness of the wire. Expanding the denom-

inator in (3.24) using binomial expansion and substituting M with P (l − x) one

obtains
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Figure 3.5: Large deflection bending of a cantilever beam subjected to a point load
at its free end, showing the beam length L and the projected length l.

d2y

dx2
=
P (l − x)

EIw (κ)

∞∑
r=0

(
3
2

r

)(
dy

dx

)2r

, (3.25)

where P is the point load applied at the free end of the cantilever, l is the projection

of the cantilever beam on the x-axis, x is the distance from the free end as shown in

Figure 3.5, and EIw(κ) is a function of curvature κ as shown in (3.23). Solving the

nonlinear differential equation (3.25) [33] using reversion [1], the beam equation y(x)

is derived as

y (x) =

(
P

2EIw(κ)

)(
−x

3

3
+ lx2

)
+

1

2

(
P

2EIw(κ)

)3(
−x

7

7
+ lx6 − 12

5
l2x5 + 2l3x4

)
+ higher order terms.

(3.26)

In the simulation procedure, the force P is increased in steps and at each increment

the shape of the beam is evaluated using (3.26). The bending stiffness EIw varies

with curvature and is determined from a look-up table of EIw versus κ. Curvature

at the fixed end, where slip initiates, is used to determine EIw and at each increment
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in P , the bending stiffness is assumed constant along the beam curved length l. The

tip displacement y(l) is recorded as a function of the tip force P .

3.4 Model calibration and evaluation

The radial force exerted by the insulation Fins, and the interlayer friction coeffi-

cients (µ1, µ2, ..., µN−1, µN) are identified as the model parameters. Because all the

conductors are made with copper, inter-conductor friction coefficients are assumed to

be equal, i.e., µ1 = µ2 = ... = µN−1 = µs, and the friction coefficient between the

insulation and the outermost layer (N th layer) µN is designated as µi. The parame-

ter values are evaluated by calibrating the model to minimize the error between the

model output and the test data. For minimizing the error, an objective function is

defined with µs, µi, and Frad as the function variables and is given by

ε =
n∑
i=1

[Fm,i (µs, µp, Frad)− Fe,i]2 , (3.27)

where ε is the error sum of squares (SSE), n is the total number of observations, Fe,i is

the force measured at displacement di, and Fm,i is the force evaluated by the model at

displacement di. Multivariable unconstrained optimization of the objective function

using the MATLAB function fminunc solves for (µs, µp, Frad) such that the objective

function ε attains a minimum. Table 3.1 summarizes the initial and optimized values

of the three model parameters. Data from testing A2 is used for model calibration

and the data from testing of other wires is used for model validation.

The measured and simulated forces are normalized against the maximum overall

recorded force and plotted versus tip displacement, as shown in Figure 3.6a. The

wire shape is compared at six discrete tip displacement intervals and the measured
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Table 3.1: Initial and optimized values of analytical model parameters: radial force ex-
erted by the insulation (Frad), inter-conductor friction coeffcient (µs), and insulation-
conductor friction coefficient (µp).

Parameter Frad (N) µs µp

Initial value 0.2 0.2 0.2

Optimized value 0.15 0.21 0.10

and simulated wire shapes are shown in Figure 3.6b. For each displacement interval,

dots represent the motion capture markers on the experimental sample, the dashed

line represents a polynomial fit of the markers, and the solid line represents the

shape of the beam simulated by the analytical model. The difference in initial profile

between the measured sample shape and simulated beam shape is due to variability

in preparing the wire sample. Figure 3.6 shows that the model output agrees well

with the experimental measurement.
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Figure 3.6: (a) Measured and simulated force versus displacement curves for cantilever
bending of A2-type wire and (b) measured wire marker locations (dots), polynomial
fits of marker locations (dashed lines), and the simulated wire shapes (solid lines) at
various bending intervals.

The bending stiffness of A-type wires is shown as a function of curvature in Fig-

ure 3.7. As expected, the bending stiffness is highest for A3-type wire which has the

largest diameter. The stick to slip transition in A3-type wire occurs over a higher

range of curvature due to the higher number of conductors.
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difference in stick, slip, and plastic regions of the wires. A3-type wire has a more
gradual transition from stick to slip state due to having two layers compared to a
single layer for A1 and A2-type wires.
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Figure 3.8: Measured and simulated force versus displacement curves for (a) A1-type
wire (sample length = 85 mm) and (b) A3-type wire (sample length = 120 mm).
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Figures 3.8a and 3.8b show the measured force and the simulated force versus tip

displacement for A1 and A3-type wires. Samples of A1 and A2-type wires are 85 mm

long, and A3-type wire samples are 120 mm long. A3-type wire samples are made

longer to reduce the maximum force measured, due to the load cell capacity limit.

The maximum tip displacement is 50 mm for all of the wire types. Therefore, the

force observed at 50 mm displacement for A3-type wire is lower than that for A1 and

A2-type wires.

As mentioned in Chapter 2, B-type wire samples were tested in two different

lengths, 85 mm and 100 mm, to validate the independence of the analytical model on

the sample length. Figures 3.9 and 3.10 show the measured force and the simulated

force as a function of tip displacement for B1 and B2-type wires, respectively. To

compare the model output, stick state bending stiffness for all the wires tabulated in

Table 3.2.
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Figure 3.9: Measured and simulated force versus displacement curves for (a) 85 mm
and (b) 100 mm long samples of B1-type wire.
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Figure 3.10: Measured and simulated force versus displacement curves for (a) 85 mm
and (b) 100 mm long samples of B2-type wire.

Table 3.2: Stick-state bending stiffness of the wires as calculated by the analytical
model.

Wire type Bending stiffness [Nm2]

A1 0.0056

A2 0.0012

A3 0.0005

B1 0.0033

B2 0.0127

Sum of squared errors (SSE) and root of mean squares of error (RMSE) are

chosen as metrics to evaluate the model fit with respect to the experimental data.

The SSE and RMSE values are calculated by

SSE =
n∑
i=1

(
Fmodel,i − F̄exp,i

)2
, (3.28)
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RMSE =

√∑n
i=1

(
Fmodel,i − F̄exp,i

)2
n

, (3.29)

and are shown in Table 3.3.

Table 3.3: Sum of squared errors (SSE) and root of mean squares of error (RMSE)
for the analytical model relative to experimental measurements. All of the wire types
have an error � 1, indicating that the analytical model provides a good fit.

Wire type SSE RMSE

A1 0.0056 0.0059

A2 0.0012 0.0021

A3 0.0005 0.002

B1 0.0033 0.0037

B2 0.0127 0.0057

For evaluation of error metrics, the model output for each wire is compared against

the experimental mean of the corresponding wire. A-type and B2-type wires have

SSE � 1 which shows that the model is a good fit. The analytical model output for

B2-type wire is within the 95% confidence interval of the experimental data, but the

SSE value is high because of a large variance in the test data.

3.5 Comparison with FEA

Due to the high computational costs associated with performing high-fidelity sim-

ulations of wire bending, only A2-type and B2-type were chosen for the FEA study in

Abaqus FEA. The geometry, FE mesh, and deformed shapes of these wires are shown

in Figure 3.11. The conductors are discretized using 8-node hexahedral elements,

where a custom Python script was developed for meshing compressed conductors in
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B2-type wires. The PVC insulation is meshed using 8-node 3D continuum shell ele-

ments, which account for the insulation thickness the same way as 3D solid elements.

The conductor cross section is discretized into 10 elements and the aspect ratio of each

element is less than 3. An explicit integration scheme with a mass scaling factor of

20 is used to perform the simulation. Note that the mass scaling factor and the mesh

size were chosen after a parametric study to ensure kinetic forces are insignificant,

i.e., less than 5% of inertia forces at each time increment. In the cantilever bending

simulation, one end of the wire is fixed by constraining all degrees of freedom, while

the other end is vertically displaced. The friction coefficients, radial force exerted by

the insulation, material properties, and geometrical properties are the same as those

used with the analytical model.
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Figure 3.11: FE models of (a) A2-type and (b) B2-type wires showing portions of the
mesh and simulated bent shape of the wires.

Figure 3.12 shows the measure force, simulated force, and analytical model output

force as a function of tip displacement for A2 and B2-type wires .
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Figure 3.12: Force versus displacement plots showing the experimental data, analyt-
ical model output, and FE model output for wires (a) A2 and (b) B2.

The RMS error between the FE model output and the experiments is 0.0031 for A2-

type wire and 0.0038 for B2-type wire. For the latter, there is a notable difference

between the force outputs of the FE model and the analytical model at higher deflec-

tions. This difference could be due to higher friction between conductors resulting

from a larger contact area with the compressed wires, as well as the different cross

section geometry of compressed conductors. In the analytical model, the compressed

conductor cross sections are modeled as perfect polygons to simplify calculations,

while the polygon edges are rounded in the FE model to improve the fidelity of sim-

ulations. However, outputs of both the analytical model and the FE model are still

within the 95% CI of the experimental data. The wavy nature of the FE model force

output is caused by the mass scaling factor used to reduce the computational cost,

as described by (author?) [39].
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Figure 3.13: Von Mises stress distribution at the fixed end for (a) A2-type and (b)
B2-type wires. The symmetric stress distribution in each wire supports the laminated
stress distribution assumption presented in subsection 3.2.3.

Figure 3.13 shows that the stress profile in the conductors has a laminar form as

proposed in subsection 3.2.3. Stress profiles in A2 are fairly uniform for all the con-

ductors. However the stress profiles in B2-type wires are biased about the horizontal

plane of symmetry. It is conjectured that this bias is due to the polygonal shape of

the conductor cross sections, which interlock to resist twisting of the conductors, thus

resulting in multiple sites of stress concentration.

3.6 Application

The analytical model presented in this chapter can be used to calculate the bend-

ing stiffness of a wire, given its dimensions and material properties. The procedure

is:

1. The wire material properties and the dimensions are input in the form of an

excel sheet.
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2. The axial forces due to bending and friction (3.7), (3.14), (3.15) are calculated

3. An if-else condition is used to determine whether the wire strand is sticking or

slipping w.r.t to the other strands

4. Based on the selected axial force the bending moment (3.17) in the wire is

calculated as a function of curvature

5. An effective bending stiffness is derived from the moment-curvature relation

assuming the wire to be a uniform cylindrical beam.

For calibration of new type of wires, i.e. different material properties, architecture,

in addition to steps 1-5, the following steps need to be followed:

6. The large deflection formulations (equations (14) and (15)) are used to calculate

the force-displacement response

7. The model parameters are tuned to minimize error between the experiment and

the analytical model

The logic flow of the process is presented in Figure 3.14.
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Figure 3.14: Logic flow of the analytical model.

To demonstrate the use of the analytical model, a new wire type called C was cho-

sen from the manufacturer’s specification sheet. C-type wires are made of cylindrical

copper strands wound in PVC insulation, similar to A-type wires. The dimensions of

the wires modeled are shown in Table 3.4.

56



Table 3.4: Wire diameter, conductor area, number of conductors, and lay angles of
the conductors of the five types of wires characterized using the analytical model.

Wire dw (mm) Ac (mm2) Ns αq (o)

C1 1.4 0.38 19 12, -15

C2 1.6 0.54 19 12, -15

C3 1.8 0.79 19 12, -15

C4 2.1 1.28 37 12, -15, 12

C5 2.6 1.96 37 12, -15, 12

The model outputs bending stiffness and the predicted cross section of the wires,

which are presented in Table 3.5. The wire strand layout matches the actual layout

for typical helically wound 2-layered (19 strands) and 3-layered (37 strands) wires.
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Table 3.5: Stick-state bending stiffness and predicted cross section of the five different
sizes of C-type wires.

Wire
Stick state

Cross section
bending stiffness (Nm2)

C1 1.46× 10−3 -1 -0.5 0 0.5 1

[mm]

-1

-0.5

0

0.5

1

[m
m

]

C2 2.75× 10−3 -1 -0.5 0 0.5 1

[mm]

-1

-0.5

0

0.5

1

[m
m

]

C3 6.22× 10−3 -1 -0.5 0 0.5 1

[mm]

-1

-0.5

0

0.5

1

[m
m

]

C4 16.96× 10−3 -1 -0.5 0 0.5 1

[mm]

-1

-0.5

0

0.5

1

[m
m

]

C5 39.87× 10−3 -1 -0.5 0 0.5 1

[mm]

-1

-0.5

0

0.5

1

[m
m

]
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Chapter 4: Wire harness characterization

Overview

In the previous chapters, models and methods were presented for characterizing the

mechanical behavior of individual components. In this chapter methods for charac-

terizing two different types of harness bundles are presented. The taped wire bundle

(TWB) and the conduit wire bundle (CWB). Samples were prepared to account for

various types of wires, conduits, tapes and the method of taping. The objective of this

section is to study and understand the interactions between various components of a

wire harness.
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4.1 Introduction

As mentioned in Chapter 2, a wire harness is made by enclosing a bunch of

wires in a protective covering such as a corrugated tube, twist tube, or tape. In

order to characterize the whole wire harness, two types of harness samples were

designed: taped wire bundles (TWB) and conduit wire bundles (CWB). Depending

on the application, a wire harness may or may not include a protective conduit. In

harnesses without the conduits the wires are taped over. Hence, the TWB and CWB

samples cover both cases with and without protective conduit. Taped wire bundles

are prepared by enclosing a bunch of wires in an insulation tape. Conduit wire bundles

are prepared by enclosing a bunch of wires in a conduit and then taping around the

conduit in different configurations.

4.2 Taped wire bundles

4.2.1 Sample preparation

Taped wire bundle samples were prepared by tightly winding a bunch of electri-

cal wires with insulation tape. Two types of wires and tape were used for sample

preparation and the different bundle configurations tested are shown in Table 4.1.

B1 and B2-type wires were chosen as they are the most commonly used wires in the

automobile as informed by the industry sponsor and for insulation, polyvinyl chloride

(PVC) and polyester (PET) tape was used. The required number of wires (N) are cut

off from the spool, straightened and mounted in drill chucks as shown in Figure 4.1.

Then the insulation tape is wound around the sample in a half-lap configuration. In

a half-lap configuration, half the width of the tape overlaps in each winding. A radial

force is applied during the taping process to ensure the wires are tightly enclosed.
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Table 4.1: Types of taped wire bundles tested as part of this study.

Wire type Insulation Number of wires

B1 PVC
7
12
19

B2 PVC
7
12
19

B1 & B2 PVC
10 B1 & 9 B2
9 B1 & 10 B2

B1 PET 19

B2 PET
7
19

Figure 4.1: Taped wire B1 bundle mounted in drill chucks for taping.

The taped bundles are cut into 140 mm (5.5 in) long samples. One end of

the sample is inserted in a 25.4 mm (1 in) long poly-carbonate tube and cast in

Gorilla® epoxy and cured for 24 hours. The poly-carbonate tube is held in clamps

as shown in Figure 4.1 and mounted on the load frame as mounting the sample di-

rectly would radially compress the wires. The epoxy creates a firm interface between

the wire bundle and the poly-carbonate tube ensuring a perfect cantilever condition
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(slope = 0 at the fixed end). The length of the cantilever beam is 114.3 mm (4.5 in).

Hemispherical motion capture markers are placed along the length of the sample at

0.5 in intervals. The motion capture markers measure the shape of the wire bundles

during the test. Motion capture data is also used to measure the tip displacement

relative to the fixed end.

7-Wire 12-Wire 19-Wire

Direction 
of loading

Figure 4.2: Schematic showing taping wire bundle cross sections for different number
of wires.

The cross section schematic is shown in Figure 4.2. seven-wire and nineteen-

wire bundles form perfect hexagons with a core and one and two layers of wires,

respectively. Twelve-wire and 27-wire bundles form a distorted hexagon with three

wires forming the core and one and two layers surrounding them, respectively.
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Figure 4.3: TWB sample preparation and setup showing the epoxy cast, polycarbon-
ate clamp and the mounting of the sample.

4.2.2 Test setup

A custom inverted cantilever setup was designed to characterize the bending stiff-

ness of taped wire bundles. The setup is similar to the test setup used to characterize

the singles wires presented in Chapter 2. The taped wire bundle test setup is shown

in Figure 4.3. Poly-carbonate clamps are used to mount the samples on the load

frame. The clamps enclose the poly-carbonate tube and are mounted using a 1/4”-28

threaded bolt on to the load frame. The free end of the wire bundle is connected to a

2 lb Futek® load cell using an aramid strand. A counter weight is added to the free

end to ensure the aramid strand is taut. A dSPACE© 1103 control box is used to
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control the load frame motion and record the force as measured by the load cell. A

SIMULINK® control algorithm is written in the ControlDesk software to control the

motion of the load frame. The initial and final shapes of the TWB cantilever bending

is shown in Figure 4.4

a b

Figure 4.4: (a) Initial and (b) final stage of cantilever bending test of taped wire
bundle.

4.2.3 Results

Three samples of each bundle type are tested. The samples are loaded and un-

loaded for three cycles and the load sensor data is sampled at 10 kHz. The noise is

filtered during post-processing using a moving average filter in MATLAB. Figure 4.5

shows the force versus displacement and motion capture data for a B1-type nineteen-

wire bundle. Cycles 2 and 3 show strain hardening. The strain hardening is due to

two reasons: plastic deformation of the wires and the wires slipping against the tape

during loading and locking in position during unloading.

64



0 10 20 30 40 50 60

Displacement [mm]

0

0.5

1

F
/F

m
ax

 [
N

/N
]

Cycle 1: Raw Data
Cycle 1: Smooth Data
Cycle 2: Raw Data
Cycle 2: Smooth Data
Cycle 3: Raw Data
Cycle 3: Smooth Data

a

0 20 40 60 80 100

X position [mm]

-60

-50

-40

-30

-20

-10

0

Y
 p

o
si

ti
o

n
 [

m
m

]

b

Figure 4.5: (a) Normalized force versus displacement and (b) motion capture data
for cantilever bending test of B1-type nineteen wire bundle.

Normalized force of the first cycle loading is plotted as a function of the dis-

placement as shown in Figures 4.6, 4.7, and 4.8. B2-type wire bundles have a higher

bending stiffness than B1-type wire bundles, as B2-type wires are stiffer than B1-type

wire (Chapter 2). Initially, wires are in firm contact with each other and are in a stick

state. As the curvature increases, the wires start to slip against one another and the

stiffness reduces. This change in stiffness can be observed for the TWB samples at

around 2 mm displacement. The force response of nineteen-wire bundles plateaus at

around 35 mm displacement as the wires start to slip against the tape. At this point,

the aramid strand is pulling on the tape and not on the wires. For characterizing the

wire bundles the initial 5 mm region is chosen.
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Figure 4.6: Plot showing the normalized force versus displacement of (a) B1-type and
(b) B2-type seven-wire bundles.
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Figure 4.7: Plot showing the normalized force versus displacement of (a) B1-type and
(b) B2-type twelve-wire bundles.
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Figure 4.8: Plot showing the normalized force versus displacement of (a) B1-type and
(b) B2-type nineteen-wire bundle.

As shown in Table 4.1, in addition to B1 and B2-type wire bundles, mixed wire

bundles were also tested. A schematic of the mixed wire bundles is shown in Fig-

ure 4.9. Two different wire bundles with same number were tested to study the effect

of the wire radial position on the bending stiffness of the wire bundle. Figure 4.9 shows

a symmetric and asymmetric configurations of the wire bundles. In the symmetric

configuration, the wires a evenly distributed across the bundle cross-section and in

the asymmetric configuration the wires are biased towards one particular direction.
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Figure 4.9: Mixed TWB samples showing two different configurations of the wire
bundles.
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Figure 4.10: Normalized force versus displacement plots of two different cases of
mixed wire TWBs.

The normalized force versus displacement plots for the mixed TWB are shown in

Figure 4.9. The force profile shows that the asymmetric bundle has a higher stiffness
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than the symmetric bundle, even though the asymmetric bundle only has nine B2-

type wires. It can be inferred that the radial position of the wire in a wire bundle

affects the bending stiffness of the bundle. This can also be proved from Euler’s beam

theory, which states that the bending stiffness is proportional to the distance form

the neutral plane.
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Figure 4.11: Plot showing the normalized force versus displacement of (a) B1-type
and (b) B2-type nineteen-wire bundle with PET tape.

As shown in Table 4.1, TWB samples were also made with PET tape. nineteen-

wire bundles with B1-type and B2-type wires are prepared and the force versus dis-

placement plot is shown in Figure 4.11. The force response does not show a plateau,

indicating no slip between the tape and the wires. It can be inferred that the glue

used in the PET tape is stronger than the glue used in the PVC tape.

69



4.3 Conduit wire bundles

Conduit wire bundles are prepared by enclosing a bunch of electrical wires in a

conduit and taping over the conduit. The different configurations of conduit wire

bundles tested are shown in Table 4.2. The bundles can be without the insulation

tape or with either coarse taping or half-lap taping. In ’no tape’ configuration, only

the exposed wires are taped, the conduit is not taped and only unslit corrugated tube

is used in that configuration as using a slit conduit without taping results in the wires

getting exposed. In coarse taping, the tape is applied at an interval equal to the tape

width. In half-lap taping, the tape is applied such that half the width of the tape in

a winding overlaps half the width of the previous winding. The protective conduit

can be a slit corrugated tube, an unslit corrugated tube, or a PET twist tube.

Table 4.2: Types of composite wire bundles tested as part of this study.

Case Wire type Number of wires Conduit Taping

1 B1 19
Corrugated

No tape
tube

2 B2 19
Corrugated (a) No tape

tube (b) Coarse tape
(c) Half-lap tape

3 B2 12
Corrugated

No tape
tube

4 B1 & B2
10×B1 Corrugated

No tape
9×B2 tube

5 B1 19
Twist

No tape
tube

6 B2 19
Twist

No tape
tube
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4.3.1 Sample preparation

The test setup and the sample dimensions were chosen based on ASTM D790 [3]

for measuring the flexural properties of unreinforced and reinforced plastics and elec-

trical insulating materials. Conduit wire bundle (CWB) samples are made of wires,

protective conduits, and tape. The required number of electrical wires are cut off the

spool and gently straightened and trimmed to 8 in length. A 6 in long protective

conduit is inserted around the wires such that 1 in of the wire is out of the conduit

on each side. The ends of the CWB are taped to cover any exposed wires. Depending

on the chosen configuration, the conduits are also taped. Spherical motion capture

markers are placed along the length of the CWB at 0.5 in intervals. The CWB sam-

ple can be compared to a human limb, where the wire bundle is similar to the bone

and the conduit is similar to the skin. Hence, the sample is initially straight as the

conduit takes the shape of the wires.

4.3.2 Test setup

The test setup for characterizing CWBs is shown in Figure 4.12. An MTS Cri-

terion 43 load frame is used for the test. The sample is mounted using MTS three-

point-bend fixtures with 10 mm diameter roll pin. The built-in MTS load cell has

a rating of 50 kN, but the maximum force in the test is less than 10 N. Hence a

500 lb load cell is mounted on the load frame using a custom adapter. Data from

the 500 lb load cell is recorded using a dSPACE 1103 data acquisition system. The

loading rate is setup in the MTS TestSuite software which controls the load frame.

The dSPACE system is synced with the load frame to start simultaneously. When
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the test is started, the TestSuite software triggers the dSPACE 1103 system to start

recording.

Figure 4.12: Conduit wire bundle test setup showing the load frame, fixtures, data
acquisition, and motion capture system.

To record the shape of the CWB sample during the test, an OptiTrack motion

capture system with 4 cameras is used. The motion capture system is calibrated to

record any reflections in the test area, hence the test fixtures are covered in anti-

reflective tape. 3 mm diameter spherical markers are placed along the length of the

CWB sample at 0.5 in intervals. As the sample is cylindrical in shape, the motion

capture markers also allow for correcting any twist in the sample during loading.

Procedure of testing a CWB sample:
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1. Cut electrical wires off the spool and gently straighten them

2. Choose a protective conduit of a suitable diameter such that the packing fraction

is approximately 0.7

3. Start taping over the wires and tape on to the tube according to the chosen

configuration, i.e., untaped, half-lap, or coarse tape

4. Setup the motion capture system and calibrate the space around the three-point

bend fixtures

5. Mount the sample on the MTS frame such that the sample overhangs by 1 in

on either side

6. Place 3 mm diameter motion capture markers along the length of the sample

7. Initialize the load frame such that the top fixture touches the sample

8. Set the test parameters in the MTS TestSuite software

9. Start the test and the motion capture system system

10. Once the test ends, export the data as a .xlsx file for post processing

Figure 4.13 shows the initial, fully bent, and final shapes of a CWB sample under

three-point bending.

4.3.3 Results

Three samples of each CWB type are tested under three-point-bending and the

normalized force versus displacement response of three-point bending of conduit wire

bundles is presented in this section. The results show that the wires are a major
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a b c

Figure 4.13: (a) Initial, (b) fully bent, and (c) final shape of a conduit wire bundle
under three-point-bending.

contributor to the bending stiffness of a conduit wire bundle. Figure 4.14 shows

the normalized force versus displacement plot and the motion capture plot of CWB

case 1. The motion capture data shows the shape of the sample at intervals of 10 mm

vertical deflection.
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Figure 4.14: Normalized force versus displacement and motion capture plot of a B1-
type nineteen-wire CWB sample.
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The plateau in force displacement suggests that slip occurs between the wires

and the tape at high deflections. Figure 4.15 shows the normalized force versus

displacement plot of a B2-type nineteen-wire CWB bundle. The force response of the

three types of samples are in same region. This suggests that the wires dominate the

stiffness of the CWBs and the type of tape or conduit has a minimal effect.
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Figure 4.15: Normalized force versus displacement of a B2-type 19-wire CWB sample.
The three cases of no tape, coarse tape, and half-lap tape are shown

Cases 3 and 4 represent the B2-type 12-wire bundles and mixed bundles respec-

tively. The force response of the 19 wire mixed bundle is in between the force response

of cases 1 and 2.

Cases 5 and 6 are for CWBs made with twist tube. The force response of testing

cases 5 and 6 is similar to cases 1 and 2. This reinforces the inference that the wires

have a major effect on the bundle bending stiffness.
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Figure 4.16: Normalized force versus displacement of B2-type twelve-wire sample and
a mixed wire CWB sample.

0 5 10 15 20 25 30 35

Displacement [mm]

0

0.5

1

F
/F

m
ax

 [
N

/N
]

Sample 1

Sample 2

Sample 3

a

0 5 10 15 20 25 30

Displacement [mm]

0

0.5

1

F
/F

m
ax

 [
N

/N
]

Sample 1

Sample 2

Sample 3

b

Figure 4.17: Normalized force versus displacement of B1-type and B2-type nineteen-
wire CWB samples made with twist tube.
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Chapter 5: Conclusion

5.1 Summary of findings

Digital manufacturing allows for faster development time, reduced number of pro-

totypes, and finally allows proper assembly to reduce after market issues. However,

current software lack accurate material properties to model the behavior of flexible

components such as wire harnesses and also lack models to predict the exact behavior

of wire harnesses. To bridge this gap, experimental techniques and analytical models

were developed to accurately characterize and model the mechanical behavior of wire

harnesses under various loading modes such as bending, tension, and torsion.

As a first step, experiments were developed to characterize individual harness

components such as electrical wires, conduits, and insulation tape. Harnesses pri-

marily undergo bending loads and due to the orthotropic nature of electrical wires,

the experimental effort was focused on characterizing the bending behavior of electri-

cal wires and not their tensile behavior. In developing the experimental methods for

characterizing electrical wires, a literature study was conducted focusing on the ex-

perimental effort to characterize wire rope structures such as overhead electrical lines

and suspension bridge cables. The protective conduits and insulation tape show a

similar behavior in tension and bending due to their architecture. Hence the conduits
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and the tape were characterized to measure the tensile modulus. The experiments

were developed based on ASTM standards for characterizing polymers used in the

manufacture of conduits and tape.

An analytical model was also developed to simulate the bending behavior of elec-

trical wires. Due to the large number of electrical wires used by the automobile in-

dustry, developing an analytical model to characterize the bending behavior of wires

with a wire-rope structure helps in complementing the experimental effort. the an-

alytical model was developed based on various models available in the literature for

characterizing the mechanical behavior of cabled structures.

As a final step, experiments were developed to study the mechanical behavior of

using multiple components such as wires, conduits, and tape together. This study

helps in understanding the combined effect as well as to characterize the interactions

between various components. As harnesses predominantly undergo bending deforma-

tion, the experiments were focused on characterizing the bending behavior of wire

harnesses. Two different cases were identified, harnesses with wires taped with in-

sulation tape and harnesses with conduits and insulation tape. To characterize both

cases, taped wire bundle (TWB) and conduit wire bundle (CWB) samples were devel-

oped. The samples were prepared covering different combinations of wires, conduits,

tape, and the methods of taping. The experiments suggests that a harness is similar

to a human limb, where the wires act as a bone and the protective covering acts as

the skin. Hence, the wire contribute to a majority of the bending stiffness of the

harnesses. The purpose of the conduits and tape is to only keep the wires in place.
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5.2 Contributions

• Characterization of electrical wires. Wire harnesses predominantly experi-

ence bending loads and, as such, testing methods were developed to characterize

the bending behavior of electrical wires. A custom cantilever bending test was

developed to characterize the single wire. The force versus displacement data

was used to calibrate the analytical modeling effort of single wires. A motion

capture system was used to record the shape of the wire during bending. The

shape helps in performing a qualitative validation of the analytical model.

• Analytical model. Analytical equations were developed to model the bend-

ing behavior of electrical wires. The equations represent a stick-slip formulation

to model the interaction between the conductor strands and also between the

conductor and the insulation. The model takes into account large deformation

of the wire harnesses by assuming a non-linear relation between the curvature

and bending moment. The model includes an algorithm to estimate the radial

position of conductor strands in an electrical wires from the wire outer diam-

eter, strand diameter, and the number of strands. This algorithm enables the

automation of the wire modeling process by allowing to directly input the wire

dimensions from the manufacturer’s specification sheet.

• Plastic deformation of cabled structures. A formulation was developed

to model the plastic deformation of a helical structure. The model assumes the

conductor strand as a laminated beam with each laminate having a different

Young’s modulus. The modulus of the laminate varies based on the longitudinal
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strain in the laminate and is derived from a look-up table of annealed copper

stress-strain values.
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Appendix A: MATLAB Codes

The following is a list of MATLAB codes used in the preparation of this thesis.

NOTE: The codes do not include the normalization factor used to protect the data.

The idea of attaching the codes is to show the procedure used in processing the raw

data.
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1. Single wire cantilever bend test:

Code for processing the load cell data:

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 clear all
5 close all
6

7 %% Read data from folder
8 Forcefile = ’’;
9 load(Forcefile);

10

11 %% Define X and Y, normalize, downsample, smooth, and find
the peak in cycle 1

12 X = Force_data.X.Data;
13 X = X - X(1);
14 Y = Force_data.Y(3).Data;
15 DS_ratio = 200;
16 Y_D = downsample(Y,DS_ratio);
17 X_D = downsample(X,DS_ratio);
18 Y_DS = smooth(Y_D,0.001,’moving’);
19 L_YD = length(Y_D);
20 [YD_max,YD_m_id] = max(Y_D(1:floor(L_YD/3+L_YD/8)));
21

22 figure;
23 plot(X,Y,’y’);hold on;
24 plot(X_D,Y_D,’r’);
25 plot(X_D,Y_DS,’g’);
26 hold on
27

28 Start = max(find(X_D<=(X_D(YD_m_id)-53)));% find starting
point

29 X_N = X_D(Start:end);
30 X_N = X_N-X_N(1); %Normalize time again
31 Y_N = Y_D(Start:end);
32

33 L_YN = length(Y_N);
34 [Y_Nmax, Y_Nmax_id] = max(Y_N(1:floor(L_YN/3+L_YN/8)));
35 Peak1 = X_N(Y_Nmax_id);
36

37 %% Separate the force data into different cycles
38 j1=1;k1=1;j2=1;k2=1;j3=1;k3=1;
39

40 C_t = 53;
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41 Y1 = 0;
42 Y2 = 0;
43 Y3 = 0;
44 Y4 = 0;
45 Y5 = 0;
46 Y6 = 0;
47 for i=1:length(X_N)
48 if X_N(i)<=X_N(Y_Nmax_id)
49 Y1(j1) = Y_N(i);
50 j1=j1+1;
51 elseif( X_N(i)>X_N(Y_Nmax_id) && X_N(i)<=X_N(Y_Nmax_id)+

C_t)
52 Y2(k1) = Y_N(i);
53 k1=k1+1;
54 elseif( X_N(i)>X_N(Y_Nmax_id)+C_t && X_N(i)<=X_N(

Y_Nmax_id)+2*C_t)
55 Y3(j2) = Y_N(i);
56 j2=j2+1;
57 elseif( X_N(i)>X_N(Y_Nmax_id)+2*C_t && X_N(i)<=X_N(

Y_Nmax_id)+3*C_t)
58 Y4(k2) = Y_N(i);
59 k2=k2+1;
60 elseif( X_N(i)>X_N(Y_Nmax_id)+3*C_t && X_N(i)<=X_N(

Y_Nmax_id)+4*C_t)
61 Y5(j3) = Y_N(i);
62 j3=j3+1;
63 elseif X_N(i)>X_N(Y_Nmax_id)+4*C_t
64 Y6(k3) = Y_N(i);
65 k3=k3+1;
66 end
67 end
68

69 F_I1 = M2R(Y1);
70 F_IS1 = smooth(F_I1,0.05,’moving’);
71

72 F_I2 = M2R(Y2);
73 F_IS2 = smooth(F_I2,0.05,’moving’);
74

75 F_I3 = M2R(Y3);
76 F_IS3 = smooth(F_I3,0.05,’moving’);
77

78 F_I4 = M2R(Y4);
79 F_IS4 = smooth(F_I4,0.05,’moving’);
80

81 F_I5 = M2R(Y5);
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82 F_IS5 = smooth(F_I5,0.05,’moving’);
83

84 F_I6 = M2R(Y6);
85 F_IS6 = smooth(F_I6,0.05,’moving’);
86

87 F_I = horzcat(F_I1,F_I2,F_I3,F_I4,F_I5,F_I6);
88 F_I = F_I - F_I(1);
89 F_IS = horzcat(F_IS1’,F_IS2’,F_IS3’,F_IS4’,F_IS5’,F_IS6’);
90 F_IS = F_IS - F_IS(1);
91 X_N = X_N - X_N(1);
92 figure;
93 plot(X_N,F_I);
94 hold on;
95 plot(X_N,F_IS)
96

97 save ForceData

Code for processing motion capture data:

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 clear all
5 close all
6 warning off
7 %% Read data from folder
8 MoCapfile = ’’; % Motion capture file
9 MoCap = xlsread(MoCapfile);

10 %% Parameters of sample
11 Wire_length_measured = 116.85;
12 Wire_type = ’’; % Wire type
13 Wire_size = ’’; % Wire size
14 Sample = ; % Sample number
15

16 time_i = MoCap(8:end,2);
17 x_i = zeros(length(time_i),8);
18 y_i = zeros(length(time_i),8);
19 z_i = zeros(length(time_i),8);
20 for j = 1:7
21 k(j) = j*2+j;
22 p((k(j)-2):k(j)) = find(MoCap(4,MarkerStart:MarkerEnd)==j

);
23 end
24 for i = 1:7
25 x_i(:,i+1) = MoCap(8:end,MarkerStart+p(3*i-2)-1);
26 y_i(:,i+1) = MoCap(8:end,MarkerStart+p(3*i-2));
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27 z_i(:,i+1) = MoCap(8:end,MarkerStart+p(3*i-2)+1);
28 end
29

30 % Add rigid body to the first column
31 RB_x1 = 27;
32 x_i(:,1) = MoCap(8:end,RB_x1);
33 y_i(:,1) = MoCap(8:end,RB_x1+1);
34 z_i(:,1) = MoCap(8:end,RB_x1+2);
35

36 % Normalize coordinates
37 time_i = time_i - time_i(1);
38 x_i = x_i-x_i(1,1);
39 y_i = y_i-y_i(1,1);
40 z_i = z_i-z_i(1,1);
41

42 L_i = length(y_i)/3+length(y_i)/8;
43 [m1,q1] = min((y_i(1:floor(L_i),1)));% Find the min y which

is the first peak
44 Start_M = max(find(time_i<=(time_i(q1)-53)));
45 if time_i(q1)-53>=0;
46 x = x_i(Start_M:end,:);
47 y = y_i(Start_M:end,:);
48 z = z_i(Start_M:end,:);
49 time = time_i(Start_M:end,:);
50 else
51 x = x_i;
52 y = y_i;
53 z = z_i;
54 time = time_i;
55 end
56

57 % Normalize coordinates according to rigid body
58 x = x-x(1,1);
59 y = y-y(1,1);
60 z = z-z(1,1);
61 time = time - time(1,1);
62 plot(time,y)
63

64 %% Coordinates Rotation: Coordinates rotate to the axis where
stepper motor moves to

65 L = length(y)/3+length(y)/8;
66 [m,q] = min((y(1:floor(L),1)));
67 v1 = [x(q,1),m,z(q,1)];
68 v2 = [0,-norm(v1),0];
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69 R = rotationmatrix(v1,v2); % Use function to find out the
rotational matrix

70

71 % Calculation results: each column is each marker
72 x_r0 = zeros(8,length(time));
73 y_r0 = zeros(8,length(time));
74 z_r0 = zeros(8,length(time));
75

76 for i = 1:8
77 v1_mat = [x(:,i) y(:,i) z(:,i)];
78 v2_mat = R*v1_mat’;
79 x_r0(i,:) = v2_mat(1,:);
80 y_r0(i,:) = v2_mat(2,:);
81 z_r0(i,:) = v2_mat(3,:);
82 end
83

84 % Define grip point
85 x0_ini = x_r0(2,1) + Grip_Point;
86 y0_ini = y_r0(2,1);
87 z0_ini = z_r0(2,1);
88 x0 = x_r0(1,:)+x0_ini;
89 y0 = y_r0(1,:)+y0_ini;
90 z0 = z_r0(1,:)+z0_ini;
91

92 % New data adding grip point
93 x_r0g = [x_r0(1,:); x0; x_r0(2:end,:)];
94 y_r0g = [y_r0(1,:); y0; y_r0(2:end,:)];
95 z_r0g = [z_r0(1,:); z0; z_r0(2:end,:)];
96

97 %% Define pull point
98 % Define x-step in derivative
99 Del_x = 0.0001;

100

101 % Present last marker points
102 x_r0g_end = x_r0g(end,:);
103 y_r0g_end = y_r0g(end,:);
104 z_r0g_end = z_r0g(end,:);
105

106 % Define a point very close to present last marker points
107 x_r0g_n_end = x_r0g(end,:)- Del_x;
108 n = length(time);
109 Del_y = zeros(1,n);
110

111 for i = 1:n
112 f = polyfit(x_r0g(2:end,i),y_r0g(2:end,i),4);
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113 Fit_end = polyval(f,x_r0g_end(i));
114 Fit_n_end = polyval(f,x_r0g_n_end(i));
115 Del_y(1,i) = Fit_end - Fit_n_end;
116 end
117

118 Slope = Del_y/Del_x;
119 x_pl = P2RM*cos(atan(Slope))+x_r0g_end;
120 y_pl = P2RM*sin(atan(Slope))+y_r0g_end;
121 z_p1 = z_r0g_end;
122

123 % Final data adding pull point
124 x_r = [x_r0g;x_pl];
125 y_r = [y_r0g;y_pl];
126 z_r = [z_r0g;z_p1];
127 x_r = x_r’;
128 y_r = y_r’;
129 z_r = z_r’;
130

131 plot(time,y_r)
132 hold on;
133 legend(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’);
134

135 save Motion_Capture

Code for plotting the force - displacement data

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 close all
5 clear all
6

7 %% Data processing
8 load Motion_Capture
9 load ForceData

10

11 % Calculate the net deflection of the tip from the fixed end;
12 tip_deflection = y_r(:,10) - y_r(:,2);
13 tip_deflection = tip_deflection - tip_deflection(1); %

Normalize tip deflection
14 tip_deflection = tip_deflection*1e3; % from [

m] to [mm]
15

16 %% Separate the cycles
17 j = 1;k = 1;n = 1;
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18 [y_max,y_m_index] = max(tip_deflection(1:floor(length(time)
/3+length(time)/8)));

19 Peak_M1 = time(y_m_index);
20 comp = Peak1-Peak_M1;
21

22 for i=1:length(time)
23

24 if(time(i)<Peak_M1+C_t)
25 cycle1_deflection(j) = tip_deflection(i);
26 cycle1_time(j) = time(i);
27 j=j+1;
28 elseif(time(i)>=Peak_M1+C_t && time(i)<Peak_M1+3*C_t)
29 cycle2_deflection(k) = tip_deflection(i);
30 cycle2_time(k) = time(i);
31 k=k+1;
32 elseif(time(i)>=Peak_M1+3*C_t && time(i)<Peak_M1+5*C_t)
33 cycle3_deflection(n) = tip_deflection(i);
34 cycle3_time(n) = time(i);
35 n=n+1;
36 end
37 end
38

39 % time in motion capture is lacking initially, thus
40 % compensate here, which we can see from plot(time,

tip_deflection)
41 cycle1_time = cycle1_time+comp;
42 cycle2_time = cycle2_time+comp;
43 cycle3_time = cycle3_time+comp;
44

45 % If cycle1_time < 0, eliminate these data
46 if cycle1_time(1) < 0;
47 index = find(cycle1_time>=0);
48 cycle1_time_N = cycle1_time(index);
49 cycle1_deflection_N = cycle1_deflection(index);
50 elseif cycle1_time(1) >= 0;
51 cycle1_time_N = cycle1_time;
52 cycle1_deflection_N = cycle1_deflection;
53 end
54 figure;
55 plot(cycle1_time_N,cycle1_deflection_N)
56

57 % To interpolate and call forces from force-time data
58

59 [cycle1_Force, cycle1_Force_S] = ForceDispLookup(
cycle1_time_N);
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60 [cycle2_Force, cycle2_Force_S] = ForceDispLookup(cycle2_time)
;

61 [cycle3_Force, cycle3_Force_S] = ForceDispLookup(cycle3_time)
;

62

63 % Normalize force
64 F_ini = cycle1_Force(1);
65 F_ini_S = cycle1_Force_S(1);
66 cycle1_Force = cycle1_Force - F_ini;
67 cycle2_Force = cycle2_Force - F_ini;
68 cycle3_Force = cycle3_Force - F_ini;
69 cycle1_Force_S = cycle1_Force_S - F_ini_S;
70 cycle2_Force_S = cycle2_Force_S - F_ini_S;
71 cycle3_Force_S = cycle3_Force_S - F_ini_S;
72 for i=1:length(cycle1_Force)
73

74 if(cycle1_Force(i)<0)
75 cycle1_Force(i) = 0;
76 end
77 if(cycle1_Force_S(i)<0)
78 cycle1_Force_S(i) = 0;
79 end
80

81 end
82

83 for i=1:length(cycle2_Force)
84

85 if(cycle2_Force(i)<0)
86 cycle2_Force(i) = 0;
87 end
88 if(cycle2_Force_S(i)<0)
89 cycle2_Force_S(i) = 0;
90 end
91

92 end
93

94 for i=1:length(cycle3_Force)
95

96 if(cycle3_Force(i)<0)
97 cycle3_Force(i) = 0;
98 end
99 if(cycle3_Force_S(i)<0)

100 cycle3_Force_S(i) = 0;
101 end
102
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103 end
104

105 Displ_all = [cycle1_deflection_N cycle2_deflection
cycle3_deflection];

106 Force_all = [cycle1_Force cycle2_Force cycle3_Force];
107 Force_all_S = [cycle1_Force_S cycle2_Force_S cycle3_Force_S];
108 [Peak_L1,Peak_L1_I] = max(cycle1_deflection_N);
109 Peak_L1_I = Peak_L1_I - 45;
110 Displ_1stload = Displ_all(1:Peak_L1_I);
111 Force_1stload = Force_all(1:Peak_L1_I);
112 Force_1stload_S = Force_all_S(1:Peak_L1_I);
113 time_cycles = [cycle1_time_N,cycle2_time,cycle3_time];
114 time_cycles = time_cycles-time_cycles(1);
115 time_1stload = time_cycles(1:Peak_L1_I);
116 %% Plot displacement v/s Force
117

118 Colors = colormap(jet(11));
119 Colors = Colors([1:7,9:11],:);
120 Colors = flipud(Colors);
121 Colors = [Colors;[0 0 0]];
122

123 % All cycles
124 figure;
125 plot(cycle1_deflection_N,cycle1_Force,’r’,’linewidth’,0.5)
126 hold on
127 plot(cycle1_deflection_N,cycle1_Force_S,’r’,’linewidth’,2)
128 hold on
129 plot(cycle2_deflection,cycle2_Force,’b’,’linewidth’,0.5)
130 hold on
131 plot(cycle2_deflection,cycle2_Force_S,’b’,’linewidth’,2)
132 hold on
133 plot(cycle3_deflection,cycle3_Force,’g’,’linewidth’,0.5)
134 hold on
135 plot(cycle3_deflection,cycle3_Force_S,’g’,’linewidth’,2)
136 grid on;
137 xlabel(’Displacement [mm]’);
138 ylabel(’Force [N]’);
139 title([Wire_type ’ ’ Wire_size ’ ’ Wire_length ’ sample ’

num2str(Sample) ’ - cyclic test’ ’ ( test length : ’
num2str(Wire_length_measured) ’ mm) ’],’FontSize’,28,’
FontWeight’,’bold’);

140 legend(’Cycle 1: Raw Data’,’Cycle 1: Smooth Data’,’Cycle 2:
Raw Data’,’Cycle 2: Smooth Data’,’Cycle 3: Raw Data’,’
Cycle 3: Smooth Data’,’Location’,’northwest’);

141 savefig(’Force_Displ.fig’)
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142

143 % Fisrt cycle
144 figure;
145 plot(Displ_1stload,Force_1stload,’r’,’linewidth’,0.5);
146 hold on
147 plot(Displ_1stload,Force_1stload_S,’r’,’linewidth’,2);
148 xlabel(’Displacement [mm]’);
149 ylabel(’Force [N]’);
150 title([Wire_type ’ ’ Wire_size ’ ’ Wire_length ’ sample ’

num2str(Sample) ’ - load 1’],’FontSize’,28,’FontWeight’,’
bold’);

151 legend(’Raw Data’,’Smooth Data’,’Location’,’northwest’);
152 savefig(’Force_Displ_1.fig’)
153

154 %%% Plot Motion capture deformation
155 Y_mat = 0;
156 X_mat = 0;
157

158 for i=1:length(time);
159 j = 1:10 ;
160 if time(i) <= time_1stload(end);
161 Y_mat(i,j) = -(y_r(i,10) - y_r(i,j));
162 X_mat(i,j) = x_r(i,j);
163 end
164 end
165

166

167 Y_mat = Y_mat - Y_mat(1,2);
168 X_mat = X_mat - X_mat(1,2);
169

170 X_mat_final = [X_mat(:,2) X_mat(:,4:8) X_mat(:,10)];
171 Y_mat_final = [Y_mat(:,2) Y_mat(:,4:8) Y_mat(:,10)];
172 k = round(linspace(1,length(Y_mat_final),5));
173 figure
174 for i=1:5
175 j = k(i);
176 plot(X_mat_final(j,:)*1e3,Y_mat_final(j,:)*1e3,’Color’,

Colors(i,:),’MarkerSize’,10);
177 hold on;
178 s(i) = scatter(X_mat_final(j,:)*1e3,Y_mat_final(j,:)*1e3,

’filled’);
179 s(i).MarkerEdgeColor = ’b’;
180 s(i).MarkerFaceColor = Colors(i,:);
181 hold on;
182
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183 end
184 xlabel(’X position [mm]’);
185 ylabel(’Y position [mm]’);
186 title([Wire_type ’ ’ Wire_size ’ MoCap ’ Wire_length ’ sample

’ num2str(Sample)’]);
187 savefig(’MoCap.fig’)
188

189 X_mat_f_1stload = X_mat_final(1:Peak_L1_I,:);
190 Y_mat_f_1stload = Y_mat_final(1:Peak_L1_I,:);
191

192 save data_all
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2. Corrugated tube tensile test

Code for processing and plotting corrugated tube tensile test data:

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 clear all
5 close all
6

7 %% Read and plot data
8 MoCapfile = ’’; % Input file name
9 MoCap = xlsread(MoCapfile);

10

11 time = MoCap(:,1); % Time in [secs]
12 Force = MoCap(:,2); % Force in [lbs]
13 Force_SI = Force*4.4482; % Force in [N]
14 Displ = MoCap(:,3); % Displacement in [in]
15 Displ_SI = Displ*25.4; % Displacement in [mm]
16

17 Force_SI = Force_SI-Force_SI(1);
18 Displ_SI = Displ_SI;
19

20 % Separate the data into 3 cycles
21 for i = 1:length(Force_SI)
22 if Displ_SI(i)<=18.75
23 Force_SI_1(i) = Force_SI(i);
24 Displ_SI_1(i) = Displ_SI(i);
25 elseif Displ_SI(i)>18.75 && Displ_SI(i)<=30.85
26 Force_SI_1(i) = Force_SI(i)+(31.33-30.86);
27 Displ_SI_1(i) = Displ_SI(i);
28 else
29 Force_SI_1(i) = Force_SI(i)+(31.33-30.86)

+(44.19-43.38);
30 Displ_SI_1(i) = Displ_SI(i);
31 end
32 end
33

34 % Load and unload division
35 [Peak_Force,Peak_index] = max(Force_SI);
36

37 j=1;k=1;
38 for i = 1:length(Force_SI)
39 if i<=Peak_index
40 Force_SI_Load(j) = Force_SI(i);
41 Displ_SI_Load(j) = Displ_SI(i);
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42 Force_SI_Load_1(j) = Force_SI_1(i);
43 Displ_SI_Load_1(j) = Displ_SI_1(i);
44 j = j+1;
45 else
46 Force_SI_unload(k) = Force_SI(i);
47 k = k+1;
48 end
49 end
50

51 % Plotting the output
52 figure
53 plot(Displ_SI,Force_SI,’b’);
54 hold on
55 plot(Displ_SI_1,Force_SI_1,’c’);
56 grid on;
57 xlabel(’Displacement [mm]’)
58 ylabel(’Force [N]’)
59 title(’Force v/s Displacement’);
60 ylim([0 60]);
61 savefig(’Force_Displ.fig’)
62

63 figure
64 plot(Displ_SI_Load,Force_SI_Load,’b’);
65 hold on
66 plot(Displ_SI_Load_1,Force_SI_Load_1,’c’);
67 grid on;
68 xlabel(’Displacement [mm]’)
69 ylabel(’Force [N]’)
70 title(’Force v/s Displacement’);
71 ylim([0 60]);
72 savefig(’Force_Displ_Load.fig’)
73

74 save(’Data’,’time’,’Force_SI’,’Displ_SI’);
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3. Twist tube tensile test

Code for processing and plotting twist tube tensile test data:

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 clear all
5 close all
6

7 %% Force-Disp Plot
8 a = xlsread(’’); % raw data file name
9 Disp = a(:,1)-a(1,1);

10 Load = (a(:,2)-a(1,2))*1000;
11

12 %% Elastic region (Calculate stifness of both the linear
regions)

13 j=1;k=1;
14 for i =1:length(Disp)
15

16 if Disp(i)>2 && Disp(i)<8
17 Disp_e1(j) = Disp(i);
18 Force_e1(j) = Load(i);
19 j=j+1;
20 elseif Disp(i)>=10 && Disp(i)<20
21 Disp_e2(k) = Disp(i);
22 Force_e2(k) = Load(i);
23 k=k+1;
24 end
25 end
26

27 Y_modulus_1 = Disp_e1’\Force_e1’;
28 Y_modulus_2 = Disp_e2’\Force_e2’;
29

30 Y_modulus_1 = polyfit(Disp_e1,Force_e1,1);
31 Y_modulus_2 = polyfit(Disp_e2,Force_e2,1);
32

33 lin_Force_e1 = polyval(Y_modulus_1,Disp_e1);
34 lin_Force_e2 = polyval(Y_modulus_2,Disp_e2);
35 %% Load region
36 for i =1:length(Disp)
37

38 if Disp(i) <= 25
39 Disp_load(i) = Disp(i);
40 Force_load(i) = Load(i);
41 else
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42 break;
43 end
44 end
45

46 figure
47 plot(Disp_load,Force_load,’r’);
48 hold on;
49 grid on
50 xlabel(’Displacement [mm]’);
51 ylabel(’Load [N]’);
52 title(’Force v/s Displacement’);
53 savefig([name ’_Load’]);
54

55 figure
56 plot(Disp_load,Force_load,’r--’);
57 hold on;
58 plot(Disp_e1,lin_Force_e1,’b’);
59 plot(Disp_e2,lin_Force_e2,’b’);
60 grid on
61 xlabel(’Displacement [mm]’);
62 ylabel(’Load [N]’);
63 title(’Force v/s Displacement’);
64 savefig([name ’_Elastic’]);
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4. Single wire analytical model

Analytical model code:

1 %%======================== SAI SIDDHARTHA VEMULA
==========================

2 %============== Analytical Model for plastic wire bending
=================

3

4 clc
5 clear all
6 close all
7

8 %% Part 1: Initialization (Defining Inputs)
9

10 % Properties (Wire specific)
11 D_wire = ;
12 D_strand = ; % [m] Conductor strand

radius;
13 K_w = 6; % No of strands in each

layer
14 alpha(1:1:K_w(1)) = 0.2618; % [rads] lay angle of wire

radians
15 layer_num = 1; % No of layers in the

structure
16 Pc = 0.2;
17

18 % Properties (General)
19 ini_length = 85e-3; % [m] Initial length of the

wire
20 ins_t = 0.3e-3; % [m] Insulation thickness
21 L_string = 760e-3; % [m] Axial length of the

bundle
22 E_Cu = 110E9; % [Pa] Elastic modulus of

Copper
23 E_ins = 1000E6; % [Pa] Elastic modulus of

insulation
24

25 % Primary (AVSS) / Annealed steel
26 epsilon_Cu = []; % get form datasheet
27 [epsilon_Cu, index] = unique(epsilon_Cu);
28 E_Cu_t = []; % Get from datasheet
29 % Model parameters
30 mu_cc = 0.2; % [n/a] Cu-Cu coefficicent

of friction
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31 mu_cp = 0.1; % [n/a] Cu-PVC coefficicent
of friction

32 Pc = 0.2; % [N] Normal force applied
by insulation

33

34 %% Part 2a: Moment-Curvature formulation
35

36 % Required calculations
37 Tau = zeros(1,6); % [rads] Twist of the wire

core
38 epsilon_ini = zeros(1,6); % Elongation of the wire

core
39 R_w1 = D_strand; % [mm] Radius of circle for

outer layer.
40 Kappa = linspace(0,35,10000); % [1/m] Curvature of the

wire bundle
41 Area = pi*(D_strandˆ2)/4; % [mmˆ4] 0.5 mmˆ2
42 I_ins = (pi/64)*((D_wire)ˆ4 ... % [mˆ4] MoI of insulation

tube
43 - (D_wire-2*ins_t)ˆ4);
44 EI_ins = E_ins*I_ins; % [Nmˆ4] Stiffness of

insulation tube
45

46 theta_w1 = [0 pi/3 2*pi/3 -pi/3 -2*pi/3 -pi];
47 % [rads] Angular positions of the wire strands
48

49 tic % To estimate the simulation time
50 for i = 1:length(Kappa)
51

52 %================================================= FIRST
LAYER ============

53 %
==========================================================================

54 for j = 1:K_w(1) % No of wire strands in the layer, 1st
layer: 6

55

56 % Change in lay angle during bending
57 alpha_w1(j) = atan((tan(alpha(j))+R_w1*Tau(1))/(1+

epsilon_ini(1)));
58

59 % Estimated elongation in the wire due to bending
60 epsilon_w1(i,j) = (cos(alpha_w1(j))ˆ2)*(epsilon_ini

(1)...
61 + R_w1*sin(theta_w1(j))*Kappa(i))...
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62 + R_w1*sin(alpha_w1(j))*cos(alpha_w1(j))*Tau(1);
63 % Due to elongation [axial strain] +
64 % Due to bending [curvature
65 % Due to twisting [torsional strain] +
66

67 % Maximum Friction contact force
68 Tc_f(i,j) = ((mu_cp+mu_cc)*Pc)/(mu_cc*sin(alpha_w1(j)

))*...
69 (exp(mu_cc*sin(alpha_w1(j))*theta_w1(j))-1);
70

71 % Estimated tension in the wire due to bending
72 Tc_b(i,j) = Area*E_Cu*Kappa(i)*R_w1*sin(theta_w1(j))

...
73 *(cos(alpha_w1(j)))ˆ2;
74

75 % Switching statement (From stick to slip)
76 if abs(Tc_b(i,j))<abs(Tc_f(i,j))
77 Tc(i,j) = Tc_b(i,j); % Stick state
78 else
79 Tc(i,j) = Tc_f(i,j); % Slip state
80 end
81

82 % Moment in the wire due to tension
83 M1(i,j) = Tc(i,j)*cos(alpha_w1(j))*R_w1*sin(theta_w1(

j));
84

85 % Minimum bending stiffness of the strand
86 h = D_strand;
87

88 kappa_no = Kappa(i)*cos(alpha_w1(j))*cos(theta_w1(j))
;

89 kappa_bi = -Kappa(i)*(cos(alpha_w1(j))ˆ2)*cos(
theta_w1(j));

90 epsilon_no(i,j) = (2*D_strand/(3*pi))*kappa_no;
91 epsilon_bi(i,j) = (D_strand/2)*kappa_bi;
92

93 div = 11;
94 y_Cu = linspace(0,h/2,div);
95

96 EJ_min1(i,j) = 0;
97 for ij = 1:length(y_Cu)
98

99 strain_Cu = y_Cu(ij)*Kappa(i);
100 del_y = y_Cu(2)-y_Cu(1);
101
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102 E_Cu_n = interp1(epsilon_Cu, E_Cu_t(index),abs(
strain_Cu)...

103 ,’linear’,’extrap’);
104 EJ_min1(i,j) = (4*(E_Cu_n)*sqrt((h/2)ˆ2 - y_Cu(ij

)ˆ2)...
105 *(y_Cu(ij)ˆ2)*del_y)*cos(alpha_w1(j))*1.06 +

EJ_min1(i,j);
106

107 end
108

109 end
110 %

==========================================================================

111 alpha = alpha_w1;
112

113 EJ_core = E_Cu*pi*(hˆ4)/64; % Stiffness of core
114

115 EJ_core = 0;
116 for ij = 1:length(y_Cu)
117

118 strain_Cu(ij) = y_Cu(ij)*Kappa(i);
119 del_y = y_Cu(2)-y_Cu(1);
120

121 E_Cu_n = interp1(epsilon_Cu, E_Cu_t(index),abs(
strain_Cu(ij))...

122 ,’linear’,’extrap’);
123 EJ_core = (4*(E_Cu_n)*sqrt((h/2)ˆ2 - y_Cu(ij)ˆ2)...
124 *(y_Cu(ij)ˆ2)*del_y) + EJ_core;
125

126 end
127

128 Mom_bend_wir(i) = EJ_core*Kappa(i)+sum(EJ_min1(i,:))*
Kappa(i);

129 Mom_bend_ins(i) = EI_ins*Kappa(i);
130 Mom_bend(i) = Mom_bend_wir(i) + Mom_bend_ins(i);
131

132 % Moment due to wire tension
133 Mom_tension(i) = sum(M1(i,:));
134

135 % Total Moment
136 Mom(i) = Mom_bend(i) + Mom_tension(i);
137

138 % Estimated bending moment
139 EJ_est(i) = Mom(i)/Kappa(i);
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140

141 end
142 EJ_est(1) = EJ_est(2);
143 EJ_est_emp = gradient(Mom);
144 toc;
145

146 % Moment - Curvature
147 figure
148 plot(Kappa,Mom,’b’)
149 hold on
150 grid on
151 xlabel(’Curvature [1/m]’);
152 ylabel(’Moment [Nm]’);
153 title(’Moment v/s Curvature’);
154

155 % Equivalent Stiffness - Curvature
156 figure
157 subplot(211)
158 plot(Kappa,EJ_est,’b’);
159 hold on
160 xlabel(’Curvature [1/m]’);
161 ylabel(’Bending Stifnness [Nmˆ2]’);
162 title(’Linear Plot’)
163 subplot(212)
164 semilogx(Kappa,EJ_est,’b’);
165 hold on
166 xlabel(’Curvature [1/m]’);
167 ylabel(’Bending Stifnness [Nmˆ2]’);
168 title(’Log Plot’)
169

170 figure
171 semilogx(Kappa,EJ_est*1e3,’b’);
172 hold on
173 xlabel(’Curvature [1/m]’);
174 ylabel(’Bending Stifnness [10ˆ-ˆ3 Nmˆ2]’);
175 title(’Linear Plot’)
176

177 %% Part 3a: Force-Displacement conversion
178

179 tic
180 iter = 1000;
181 Load = linspace(0,0.5,iter);
182

183 defl_req = 0.050; % [m] Desired deflection
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184 l = ini_length; % [m] Initial value of l =
wire length

185 for j = 1:length(Load)
186

187 Load_new(j) = Load(j); % [N] Applied load
in newtons

188 M(j) = Load_new(j)*l; % [Nm] Estimated
moment

189

190 % Estimated stiffness [Nmˆ4]
191 EJ_new(j) = interp1(Mom,EJ_est,M(j),’linear’,’extrap’);
192 curv_new(j) = interp1(Mom,Kappa,M(j),’linear’,’extrap’);
193 % EJ_new(j) = median(EJ_est);
194

195 a = Load_new(j)/(2*EJ_new(j));
196

197 % Length projected on x-axis [m]
198 l = fminsearch(@(l_xproj)x_projection(l_xproj,a,

ini_length)...
199 ,ini_length);
200

201 % Beam position function
202 x_posn(j,:) = linspace(0,l,100);
203 dydx = @(x1) a.*x1.*(2.*l-x1) + 0.5*(a.*x1.*(2.*l-x1))

.ˆ3...
204 + (3/8).*(a.*x1.*(2.*l-x1)).ˆ5 + (51/280).*(a.*x1.*(2.*l-

x1)).ˆ7;
205 for i = 1:size(x_posn,2)
206 y_posn(j,i) = quadgk(dydx,0,x_posn(j,i),...
207 ’RelTol’,1e-8,’AbsTol’,1e-13);
208 end
209

210 % Termination condition
211 if y_posn(j,end)>defl_req % deflection > desired

deflection
212 break;
213 end
214

215 end
216 toc
217

218 %% Part 3b: Plots
219 % Load-displacement plot
220 figure
221 plot(y_posn(:,end)*1e3,Load_new,’b-’);
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222 hold on;
223 grid on;
224 xlabel(’Vertical deflection [mm]’);
225 ylabel(’Force [N]’);
226 title(’Force v/s Deflection’);
227

228 %% ============================== THE END
=================================

Large deflection function:

1 function L = x_projection(l,a,ini_length)
2

3 L_est = @(x) sqrt(1+(a.*x.*(2.*l-x) + 0.5*(a.*x.*(2.*l-x)
).ˆ3 + ...

4 (3/8).*(a.*x.*(2.*l-x)).ˆ5 + (51/280).*(a.*x.*(2.*l-x
)).ˆ7).ˆ2);

5 L2 = quadgk(L_est,0,l,’RelTol’,1e-8,’AbsTol’,1e-13);
6

7 L = abs(L2-ini_length);
8

9 end
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5. Taped wire bundle characterization

For processing the motion capture data, code similar to the single wire experi-

ment is used.

Code for plotting the force - displacement data:

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 clear all
5 close all
6

7 %% Data processing
8 load Motion_Capture
9 load ForceData

10

11 %%% Calculate the net deflection of the tip from the fixed
end;

12

13 tip_deflection = y_r(:,9) - y_r(:,1);
14 tip_deflection = tip_deflection - tip_deflection(1);%

Normalize tip deflection
15 tip_deflection = tip_deflection*1e3;% from unit m to mm
16

17 %% devide cycles
18 j = 1;k = 1;n = 1;
19 [y_max,y_m_index] = max(tip_deflection(1:floor(length(time)

/3+length(time)/8)));
20 Peak_M1 = time(y_m_index);
21 comp = Peak1-Peak_M1;
22

23 for i=1:length(time)
24

25 if(time(i)<Peak_M1+C_t)
26 cycle1_deflection(j) = tip_deflection(i);
27 cycle1_time(j) = time(i);
28 j=j+1;
29 elseif(time(i)>=Peak_M1+C_t && time(i)<Peak_M1+3*C_t)
30 cycle2_deflection(k) = tip_deflection(i);
31 cycle2_time(k) = time(i);
32 k=k+1;
33 elseif(time(i)>=Peak_M1+3*C_t && time(i)<Peak_M1+5*C_t)
34 cycle3_deflection(n) = tip_deflection(i);
35 cycle3_time(n) = time(i);
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36 n=n+1;
37 end
38 end
39

40 % time in motion capture is lacking of the first 0.2 seconds,
thus

41 % compensate here, which we can see from plot(time,
tip_deflection)

42 cycle1_time = cycle1_time+comp;
43 cycle2_time = cycle2_time+comp;
44 cycle3_time = cycle3_time+comp;
45

46 % If cycle1_time < 0, eliminate these data
47 if cycle1_time(1) < 0;
48 index = find(cycle1_time>=0);
49 cycle1_time_N = cycle1_time(index);
50 cycle1_deflection_N = cycle1_deflection(index);
51 elseif cycle1_time(1) >= 0;
52 cycle1_time_N = cycle1_time;
53 cycle1_deflection_N = cycle1_deflection;
54 end
55 figure;
56 plot(cycle1_time_N,cycle1_deflection_N)
57

58 %%%% To interpolate and call forces from force-time data
59

60 [cycle1_Force, cycle1_Force_S] = ForceDispLookup(
cycle1_time_N);

61 [cycle2_Force, cycle2_Force_S] = ForceDispLookup(cycle2_time)
;

62 [cycle3_Force, cycle3_Force_S] = ForceDispLookup(cycle3_time)
;

63

64 % %%%% Normalize force
65 F_ini = cycle1_Force(1);
66 F_ini_S = cycle1_Force_S(1);
67 cycle1_Force = cycle1_Force - F_ini;
68 cycle2_Force = cycle2_Force - F_ini;
69 cycle3_Force = cycle3_Force - F_ini;
70 cycle1_Force_S = cycle1_Force_S - F_ini_S;
71 cycle2_Force_S = cycle2_Force_S - F_ini_S;
72 cycle3_Force_S = cycle3_Force_S - F_ini_S;
73 for i=1:length(cycle1_Force)
74

75 if(cycle1_Force(i)<0)
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76 cycle1_Force(i) = 0;
77 end
78 if(cycle1_Force_S(i)<0)
79 cycle1_Force_S(i) = 0;
80 end
81

82 end
83

84 for i=1:length(cycle2_Force)
85

86 if(cycle2_Force(i)<0)
87 cycle2_Force(i) = 0;
88 end
89 if(cycle2_Force_S(i)<0)
90 cycle2_Force_S(i) = 0;
91 end
92

93 end
94

95 for i=1:length(cycle3_Force)
96

97 if(cycle3_Force(i)<0)
98 cycle3_Force(i) = 0;
99 end

100 if(cycle3_Force_S(i)<0)
101 cycle3_Force_S(i) = 0;
102 end
103

104 end
105

106 Displ_all = [cycle1_deflection_N cycle2_deflection
cycle3_deflection];

107 Force_all = [cycle1_Force cycle2_Force cycle3_Force];
108 Force_all_S = [cycle1_Force_S cycle2_Force_S cycle3_Force_S];
109 [Peak_L1,Peak_L1_I] = max(cycle1_deflection_N);
110 Peak_L1_I = Peak_L1_I - 45;
111 Displ_1stload = Displ_all(1:Peak_L1_I);
112 Force_1stload = Force_all(1:Peak_L1_I);
113 Force_1stload_S = Force_all_S(1:Peak_L1_I);
114 time_cycles = [cycle1_time_N,cycle2_time,cycle3_time];
115 time_cycles = time_cycles-time_cycles(1);
116 time_1stload = time_cycles(1:Peak_L1_I);
117 %% Plot displacement v/s Force
118

119 Colors = colormap(jet(11));
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120 Colors = Colors([1:7,9:11],:);
121 Colors = flipud(Colors);
122 Colors = [Colors;[0 0 0]];
123 figure;
124 plot(cycle1_deflection_N,cycle1_Force,’r’,’linewidth’,0.5)
125 hold on
126 plot(cycle1_deflection_N,cycle1_Force_S,’r’,’linewidth’,2)
127 hold on
128 plot(cycle2_deflection,cycle2_Force,’b’,’linewidth’,0.5)
129 hold on
130 plot(cycle2_deflection,cycle2_Force_S,’b’,’linewidth’,2)
131 hold on
132 plot(cycle3_deflection,cycle3_Force,’g’,’linewidth’,0.5)
133 hold on
134 plot(cycle3_deflection,cycle3_Force_S,’g’,’linewidth’,2)
135 grid on;
136 xlabel(’Displacement [mm]’);
137 ylabel(’Force [N]’);
138 legend(’Cycle 1: Raw Data’,’Cycle 1: Smooth Data’,’Cycle 2:

Raw Data’,’Cycle 2: Smooth Data’,’Cycle 3: Raw Data’,’
Cycle 3: Smooth Data’,’Location’,’northwest’);

139 savefig(’Force_Displ_allcycles.fig’)
140

141 figure;
142 plot(Displ_1stload,Force_1stload,’r’,’linewidth’,0.5);
143 hold on
144 plot(Displ_1stload,Force_1stload_S,’r’,’linewidth’,2);
145 xlabel(’Displacement [mm]’);
146 ylabel(’Force [N]’);
147 legend(’Raw Data’,’Smooth Data’,’Location’,’northwest’);
148 savefig(’Force_Displ_1stload.fig’)
149

150 %% Plot Motion capture deformation
151 Y_mat = 0;
152 X_mat = 0;
153

154 for i=1:length(time);
155 j = 1:10 ;
156 if time(i) <= time_1stload(end);
157 Y_mat(i,j) = -(y_r(i,10) - y_r(i,j));
158 X_mat(i,j) = x_r(i,j);
159 end
160 end
161

162
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163 Y_mat = Y_mat - Y_mat(1,2);
164 X_mat = X_mat - X_mat(1,2);
165

166 X_mat_final = [X_mat(:,2) X_mat(:,4:8) X_mat(:,10)];
167 Y_mat_final = [Y_mat(:,2) Y_mat(:,4:8) Y_mat(:,10)];
168 k = round(linspace(1,length(Y_mat_final),5));
169 figure
170 for i=1:5
171 j = k(i);
172 plot(X_mat_final(j,:)*1e3,Y_mat_final(j,:)*1e3,’Color’,

Colors(i,:),’MarkerSize’,10);
173 hold on;
174 s(i) = scatter(X_mat_final(j,:)*1e3,Y_mat_final(j,:)*1e3,

’filled’);
175 s(i).MarkerEdgeColor = ’b’;
176 s(i).MarkerFaceColor = Colors(i,:);
177 hold on;
178

179 end
180

181 xlabel(’X position [mm]’);
182 ylabel(’Y position [mm]’);
183 title([Wire_type ’ ’ Wire_size ’ MoCap ’ Wire_length ’ sample

’ num2str(Sample)’]);
184 savefig(’MoCap.fig’)
185

186 %% Save data file
187 save data_all

108



6. Composite wire bundle characterization

Code for processing the CWB three point bending test data:

1 % ==== SAI SIDDHARTHA VEMULA
2 % ==== Ohio State University
3 clc
4 clear all
5 close all
6

7 %% b.Read data from folder
8 Forcefile = ’’;
9 load(Forcefile);

10 %% c.Define X and Y, normalize, downsampling, smooth; and
find the peak in cycle 1, then find the starting point

11 X = Force_data.X.Data;
12 X = X - X(1);
13 Y = Force_data.Y(2).Data;
14 figure;
15 plot(X,Y);
16

17 DS_ratio = 20;
18 Y_D = downsample(Y,DS_ratio);
19 X_D = downsample(X,DS_ratio);
20

21 m = -0.21082; c = 0.002846;
22 F_D = Y_D*m + c;
23 figure;
24 plot(X_D,F_D,’r’);
25

26 [F_max,F_m_id] = max(F_D);
27 F_m_id = 25426;
28 delta_time = 58.8;
29 Start = max(find(X_D<=(X_D(F_m_id)-delta_time)));
30 Finish = max(find(X_D<=(X_D(F_m_id)+60)));
31

32 [F_min, F_min_id] = min(F_D);
33

34 X_N = X_D(Start:Finish);
35 X_N = X_N-X_N(1); %Normalize time again
36 F_N = F_D(Start:Finish);
37 F_N = F_N-F_N(1);
38

39 %% d.Define displacement based on crosshead speed 0.5mm/s for
30mm displacement

40 j=1;k=1;
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41 for i = 1:length(X_N)
42

43 if X_N(i)<=delta_time;
44 X_N_load(j) = X_N(i);
45 F_N_load(j) = F_N(i);
46 j = j+1;
47 else
48 X_N_Unload(k) = X_N(i);
49 F_N_Unload(k) = F_N(i);
50 k = k+1;
51 end
52 end
53

54 limit = (X_D(F_m_id)-X_D(Start))*0.5;
55

56 Load_N = linspace(0,limit,length(X_N_load));
57 Unload_N = linspace(limit,0,length(X_N_Unload));
58 Disp_N = [Load_N Unload_N];
59

60 % moving average filtered
61 F_NS_1l = smooth(F_N_load,0.05,’moving’)’;
62 F_NS_1ul = smooth(F_N_Unload,0.05,’moving’)’;
63 F_NS_1 = [F_NS_1l F_NS_1ul];
64 F_NS_1 = F_NS_1-F_NS_1(1);
65

66 %% e.Output Plots
67 figure;
68 plot(Disp_N,F_N,’b’);
69 hold on;
70 % plot(Disp_N,F_NS,’r’);
71 plot(Disp_N,F_NS_1,’r’);
72 xlim([0 35]);
73 ylim([0 10]);
74 xlabel(’Displacement [mm]’);
75 ylabel(’Force [N]’);
76 title(’Force v/s Displacement’);
77 legend(’Raw Data’,’Smooth Data’);
78 savefig(’Force_Displ.fig’)
79

80 figure;
81 plot(Load_N,F_N_load,’b’);
82 hold on;
83 % plot(Disp_N,F_NS,’r’);
84 plot(Load_N,F_NS_1l,’r’);
85 xlim([0 35]);
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86 ylim([0 10]);
87 xlabel(’Displacement [mm]’);
88 ylabel(’Force [N]’);
89 title(’Force v/s Displacement : Loading’);
90 legend(’Raw Data’,’Smooth Data’);
91 savefig(’Force_Load.fig’)
92

93 save ForceData
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Appendix B: Cosserat simulation of wire harnesses

B.1 Introduction

Potential future work of this research may include the development of analytical

equations to model the harness as a homogenized entity such as a slender rod or a

cylinder. Simulation of slender objects by modeling them as elastic rods has been

explored by researchers in the field of computer graphics. These model are typically

used to accurately simulate flexible objects in video games and VR environments.

One such model includes the simulation of rods based on Cosserat theory. Pai [31]

was the first to use Cosserat model in the field of computer graphics. He simulated

the shape of sutures in laparoscopy for a surgical simulation system by modeling the

sutures as one dimensional objects in a 3D space. His model was extended by Bertails

et al. [4] to include the effect of dynamics and collision. Both these models use an

implicit formulation. Gregoire and Schomer [14] modeled a cable as discretized linear

elements with the position denoted by Cartesian coordinates and orientation denoted

by quaternions. Their model was extended by Spillman and Teschner [37] to include

dynamics.
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B.2 Modeling framework

An effort was made as part of this thesis to use the Cosserat model proposed by

Spillman and Teschner [37] to model the harness as a homogenized cylinder. The

harness is assumed to be made of linear rods connected together. The position of the

rod is denoted by x and the orientation of the rod is denoted by q . Figure B.1 shows

the proposed framework for simulating the harness shape.

Figure B.1: Proposed harness simulation framework.
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Figure B.2: A discrete Cosserat rod.

The initial shape of the harness is provided by the user. Based on the initial

shape of the harness and the change in the boundary conditions the shape is updated

according to the equation of the motion:

[
M −J (xi)

T

J (xi) α

]{
∆x
∆λ

}
= −

{
0

Constraints

}
. (B.1)

Where, the M is the mass matrix, J is the constrain Jacobian , α is the compliance

matrix, x is the position vector, λ is the Lagrange multiplier and λ = −αC(x), and

C(x) is the constraint matrix. The constrain matrix is made of two equations:

C = −
{
p i + x i − p i+1 − x i+1

2
li
=(q̄iqi+1 − q̄0i q0i+1)

}
. (B.2)

Where, x i and x i+1 denote the initial position of the ith and the (i + 1)th node

respectively, similarly p i and p i+1, q0i & q0i+1 and qi & qi+1 denote the initial and final

quaternions of the ith and the (i + 1)th elements respectively. The first constraint

equation ensures the length of the element is constant after deformation and the

second constraint equation ensures the updated quaternion has unit magnitude.
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B.3 Preliminary results

As part of a preliminary investigation into the modeling of harnesses using Cosserat

theory, a simple simulation was performed by ignoring the affect of rotation. The

study involved simulating a chain being lifted off a table by holding it at the centre.

The results are shown in Figure B.3.
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Figure B.3: (a) The initial and final shape of a chain being lifted off a table and (b)
the variation in the chain length.

The preliminary results show a good agreement with expected shape and the

variation in the chain length is also minimal. This model can potentially be extended

to simulating the wire harness by including the effect of rotation.
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Variation Simulation and Robust Design for Flexible Cables and Hose. Journal

of Engineering Manufacture, 227(5):681 – 689, 2013.

[16] John H Hollomon. Tensile deformation. Aime Trans, 12(4):1–22, 1945.

[17] K.J. Hong, A.D. Kiureghian, and J.L. Sackman. Bending behavior of helically

wrapped cables. Journal of Engineering Mechanics, 131(5):500–511, 2005.

[18] W. Huang and R. Xu. Two personification strategies for solving circles packing

problem. Science in China Series E: Technological Sciences, 42(6):595–602, 1999.

[19] K. Inagaki, J. Ekh, and S. Zahrai. Mechanical analysis of second order heli-

cal structure in electrical cable. International Journal of Solids and Structures,

44(5):1657–1679, 2007.

[20] T. Inoue, Y. Kawakita, H. Kawabe, Y. Kohtake, M. Furusyo, K. Ohuchi, and

M. Kaji. The development of a method to estimate the bending reliability of

wiring harness. SAE Transactions, 109(7):252–256, 2000.

[21] W.G. Jiang. A concise finite element model for pure bending analysis of simple

wire strand. International Journal of Mechanical Sciences, 54(1):69–73, 2012.

[22] F.J. Kampas, J.D. Pintér, and I. Castillo. Optimal packing of general ellipses in

a circle. In Modeling and Optimization: Theory and Applications, pages 23–37.

Springer, 2016.

[23] B. S. Kim, K. Park, and Y. W. Kim. Endurance Analysis of Automotive Ve-

hicle’s Door W/H System Using Finite Element Analysis. Journal of Software

Engineering and Applications, 2(5):375–382, 2009.

118



[24] A. Labuschagne, N.J van Rensburg, and A.J. Van der Merwe. Comparison of

linear beam theories. Mathematical and Computer Modelling, 49(1-2):20–30,

2009.

[25] J. Lanteigne. Theoretical estimation of the response of helically armored cables

to tension, torsion, and bending. Journal of Applied Mechanics, 52(2):423–432,

1985.

[26] S.W.S. Ltd. Wires and cables for automobiles, April 2016.

[27] K. G. McConnell and W. P. Zemke. The measurement of flexural stiffness of mul-

tistranded electrical conductors while under tension. Experimental Mechanics,

20(6):198–204, 1979.

[28] B. L. Narayana, W. G. Strang, and A. Bhatia. Non-Linear Finite Element

Analysis of Typical Wiring Harness Connector and Terminal Assembly Using

ABAQUE/CAE and ABAQUS STANDARD. In ABAQUS Users’ Conference,

2006.

[29] Inc. DBA OptiTrack NaturalPoint. Camera placement, 2016.

[30] Inc. DBA OptiTrack NaturalPoint. Flex 13 parameters, 2016.

[31] Dinesh K Pai. Strands: Interactive simulation of thin solids using cosserat mod-

els. In Computer Graphics Forum, volume 21, pages 347–352. Wiley Online

Library, 2002.

[32] K.O. Papailiou. On the bending stiffness of transmission line conductors. IEEE

Transactions on Power Delivery, 12(4):1576–1588, 1997.

119



[33] L.A. Pipes. The reversion method for solving nonlinear differential equations.

Journal of Applied Physics, 23(2):202–207, 1952.

[34] A. Pradhan. Current trends in automotive wire harness design. In Proceed-

ings of the International Conference on Mechanical, Production and Automobile

Engineering (ICMPAE 2011), Pattaya, Thailand, pages 28–29, 2011.
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