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Abstract
This paper presents a computationally efficient and robust nonlinear modeling framework for
smart materials. The framework describes a smart material system through a new 3D inversion
scheme for coupled nonlinear constitutive equations which can be integrated with the variational
form of governing equations. Building on the Newton technique, the inversion scheme can be
applied to any nonlinear smart material with a differentiable direct constitutive model. To further
improve computational efficiency, the inversion scheme is integrated with a reduced dimensional
(2D) model for smart composite structures. The resulting coupled 2D framework is applied to an
aluminum-Galfenol composite plate that operates in actuation mode, and is solved using
multiphysics finite element software. Major and minor magnetostriction curves are obtained for
the actuator displacements at the tip of the Galfenol element by applying unbiased and biased
magnetic fields. A significant advantage in numerical convergence and computational time, an
almost six-time speedup for a dynamic simulation case, is demonstrated via comparison with an
existing approach for magnetostrictive material modeling. The framework is suitable for fast
design and optimization of nonlinear smart material structures.

Keywords: inverse model, active composite plates, iron-gallium alloys, Galfenol, constitutive
model, magnetostriction
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1. Introduction

Smart materials exhibit controllable changes in shape and
properties in response to external stimuli. Such changes are
accompanied with coupling of different physical effects and
conversion of energy from one type to another. For instance,
piezoelectric and electrostrictive materials convert electrical
energy to mechanical energy and vice versa; magnetostrictive
materials exhibit coupling of magnetic and mechanical
effects; shape-memory alloys and polymers respond to ther-
mal activation by changing their crystal structure and mac-
roscopic dimensions; and pH sensitive polymers swell in
response to changes in external pH. The coupling of physical
effects in smart materials enables tuning of material

properties, thus making smart materials attractive for design
of sensors [1], actuators [2], energy harvesters [3], and
vibration controlling devices [4]. See [5, 6] for more infor-
mation on smart materials.

Smart materials typically exhibit nonlinear and hysteretic
behavior, even though certain smart materials can be char-
acterized using linear models within a specified operational
regime. For instance, piezoelectric materials like PZT, PVDF,
and BaTiO3, when poled, exhibit approximately linear
behavior for low to moderate inputs [7]. Within a specified,
restricted operating regime, these linear constitutive models
(e.g., [8]) are beneficial for efficient transducer design.
However, smart materials like magnetostrictives, electro-
strictives, and shape memory materials exhibit higher order of
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nonlinearity and hysteresis, which cannot be adequately
described with linear constitutive models.

Magnetostrictive materials are a class of smart materials
that exhibit nonlinear magnetomechanical coupling. These
materials undergo dimensional changes when exposed to a
magnetic field, and conversely, exhibit changes in magneti-
zation when subjected to mechanical stresses. Two common
magnetostrictive materials are terbium-dysprosium-iron
(Terfenol-D) and iron-gallium (Galfenol). Terfenol-D pro-
duces relatively large magnetostriction ( 1600» ppm) at a
moderate magnetic field ( 200» kAm–1), making it well sui-
ted for actuator designs; see for example Chakrabarti and
Dapino [9]. Because Terfenol-D is brittle, it always requires
stress biasing to avoid tension. On the other hand, Galfenol
exhibits moderate magnetostriction (≈350 ppm) at low
magnetic fields (≈8 kAm–1), possesses high tensile strength
( 500» MPa), and experiences a limited variation in magne-
tomechanical properties for temperatures between −20 °C
and 80°C (see [10]). When composed of less than 20 at.%
gallium, Galfenol retains the machinability and ductility of
iron. As such, it can be produced in sheets or wires, as well as
welded, threaded or extruded into unprecedented 3D struc-
tures that are both active and load-bearing.

The intrinsic nonlinearity and hysteresis manifested by
magnetostrictive materials and other nonlinear smart materials
necessarily result in complex transducer models. Several
methods exist that can efficiently model nonlinear coupled
systems. At one extreme, phenomenological approaches fit a
curve or surface to measurement data, which provides effi-
ciency but ignores the underlying physics. At the other
extreme, microscopic models provide an accurate description
of the physical phenomena by considering all possible ener-
gies. However, owing to their relative complexity, these
models are often associated with high computational cost and
require sophisticated computational techniques for analysis.
For instance, Pérez-Aparicio and Sosa [11] presented a fully
coupled, three-dimensional finite element algorithm for
magnetostrictive materials based on a continuum physics
formulation that takes nonlinear and dynamic effects into
account through Maxwell stress tensor and equation of
motion. Also, several techniques were proposed in micro-
magnetics to solve the Landau–Lifshitz equation [12] that
describes the evolution of magnetization in a ferromagnetic
material. To this end, a Gauss-Seidel projection method was
proposed by Wang et al [13] and a boundary-corrected
algorithm for general geometries was developed by García-
Cervera et al [14]. Built on a fast multipole method, Van de
Wiele et al [15] presented a numerical finite difference
scheme that employs far and near field interactions to describe
the interactions between finite difference cells.

Finally, a third kind of approach, macroscopic modeling,
uses an intermediate approach by relating the macroscopic
response of a material to simplified descriptions of its
microscopic behavior. Macroscopic models, therefore, strike
a balance between computational speed, accuracy, and pre-
dictive ability. For magnetostrictive materials, in particular,
classical macroscopic models include the Preisach model
[16], Globus model [17], Jiles-Atherton model [18], and

Stoner-Wohlfarth model [19]. These models are compared in
detail in [20]. For Terfenol-D, Carman and Mitrovic [21]
formulated a model by expanding the Gibbs free energy in a
truncated Taylor series, the coefficients of which were
determined experimentally. Zheng and Sun [22] included
higher order terms in the expansion to improve the applic-
ability of the model for larger magnetic field inputs.
Armstrong [23] proposed an incremental hysteretic magne-
toelastic constitutive theory of pseudo-cubic magnetostrictive
alloys that can be applied to Terfenol-D and, with some
modifications, to Galfenol. The bulk magnetization and
magnetostriction are calculated from the expected values of a
large collection of magnetic moments. The probability density
function is a Boltzmann distribution, where minimum energy
orientations are more probable. The Armstrong model is
computationally intensive, as it searches for global energy
minima. Atulasimha et al [24] improved efficiency by con-
sidering only 98 fixed orientations. Evans and Dapino [25]
greatly enhanced the computational speed by formulating the
energy functions around local minima along Galfenol’s six
easy crystallographic directions. The computational cost of
this model was further reduced by Chakrabarti [26].

In characterization of smart materials, intensive physical
quantities such as stress and magnetic field are often used as
independent variables. Extensive conjugate quantities such as
strain and magnetic flux density are used as dependent vari-
ables. The macroscopic constitutive models described above
follow this scheme, and we refer to these models as the direct
models (in a mathematical sense). However, in certain design
and control situations, inverse models are necessary, wherein
stresses must be determined from specified magnetic fields
and strains. This inversion typically involves an iterative
procedure, and requires sophisticated criteria to find physical
solutions, especially, when multiple mathematical solutions
exist. Chakrabarti and Dapino [27] proposed an inverse model
that describes the full nonlinear coupling in 3D Galfenol
transducers. However, this model is susceptible to conv-
ergence issues, which are drastically alleviated by further
developments presented by Deng and Dapino [28]. None-
theless, both of these models are built on the direct model
given in [26], which is prone to singularities. These can
burden computation, especially when the model is integrated
into finite element solvers. Tari et al [29] addressed this
shortcoming through a reformulation of this direct model with
an exact solution procedure.

In addition, much effort has recently been devoted to
developing sophisticated 3D nonlinear models that improve the
accuracy and scope of the transducer devices built with such
materials, as in [30–32]. However, for certain geometries and
applications, reduced dimensional constitutive models are both
sufficiently accurate and computationally efficient. For instance,
Mindlin [33] developed a first-order plate theory for high fre-
quency piezoelectric crystals. Reddy [34] developed a third
order plate theory for laminated composites with integrated
sensors and actuators that works reasonably well even for thick
composites. Kannan and Dasgupta [35] presented a two-
dimensional, quasi-static, finite-element scheme to model non-
linear magnetostrictive material systems. Datta et al [36, 37]
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used classical laminated plate theory with the Armstrong model
to characterize laminated sensors and actuators in the absence
of current-induced magnetic fields. As far as capturing the
dynamic behavior of smart materials, Shu et al [38] recently
developed a 1D nonlinear model that simulates the dynamic
response of Galfenol-driven unimorph actuators.

In this paper, we develop a computational framework that
consists of a globally convergent inverse model, which can
effectively and efficiently solve for system unknowns in a
finite element scheme to design smart material systems. The
inversion scheme is general, and can be applied to any non-
linear smart material with a given direct model. To illustrate
the model, Galfenol is taken as an example, and analytical
Jacobian terms corresponding to the direct model developed
by Tari et al [29] are derived. Subsequently, this model is
integrated with a finite element software to model a magne-
tostrictive material based composite actuator with thin plate
geometry. Utilizing a reduced 2D formulation for this appli-
cation, we demonstrate the improvement in computational
efficiency and numerical robustness.

The rest of the paper is organized as follows. In the
following section, a 3D system model for embedded smart
composites is studied, and an inverse system model for smart
materials is presented. A recent magnetomechanical direct
model is reviewed in section 3 for which the exact strain
derivative terms are derived analytically in section 4. A
reduced 2D system model for embedded smart composites is
given in section 5. To demonstrate the computational fra-
mework, a Galfenol-aluminum plate actuator is considered as
a case study in section 6, and the simulation results are given
accordingly. Finally, discussions and conclusions are given.

2. 3D system model for embedded smart composites

Consider a composite structure consisting of (i) smart material
domain, i.e., an active domain and (ii) non-smart material
domain, i.e., a passive domain. The structural behavior of the
composite is governed by 3D Navier’s equation along with
constitutive equations that describe the material behavior
specific to each domain. Referring, for example, to [30], the
3D weak form of Navier’s equation is
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where t is the time, ρ is the density, c represents the damping
coefficient, and T and fB denote, respectively, the stress tensor
and external body force acting on the domain Vtot; the traction
vector t acts on the boundary V ;tot¶ and S and u represent,
respectively, the strain tensor and displacement vector at each
point in the domain Vtot with the fact that

S u u
1

2
. 2T=  + ( ) ( )

Stresses are evaluated using material specific constitutive
equations. The passive domain (typically non-magnetic
metals such as steel, brass, and aluminum) is governed by
Hooke’s law, i.e.,

T C S , 3p p p= ( )

where the subscript p signifies the passive domain, and Cp is
the second rank modulus tensor.

Experimentally, active materials are controlled by field
(e.g., electric field, magnetic field, or temperature gradient)
and stress as independent variables, and flux density (e.g.,
current density, magnetic flux, or entropy) and strain are
measured as dependent variables. We refer to the constitutive
models that follow this scheme as direct models, and write,
for example, the constitutive model for strain in the general
form

S S T, , 4a a= ( ) ( )

where Sa and Ta are the strain and stress in the active domain;
and  represents the external field vector that can include
quantities such as electric field, magnetic field, or temperature
gradient. When the stress and external field quantities are
unknown, the resulting system is fully coupled. For such a
case, additional constitutive equations and balance laws (e.g.,
Maxwell’s equations for a magnetomechanical system) are
required to complete the mathematical model. However, the
focus of this work is on systems, for which the field is fully
defined, and stress is unknown. We refer to such systems as
weakly coupled systems.

In practice, the constitutive relationship (4) is quite
nonlinear, and not amenable to a closed form solution for the
stress tensor Ta as a function of strain and field. Hence, when
using equation (1) to solve for the displacements, an inversion
procedure is inevitable. In what follows, we develop a unified
inversion procedure for arbitrary smart materials, and
demonstrate its application through magnetostrictive
materials.

2.1. Inversion procedure for weakly coupled constitutive model

For convenience, let stress and strain tensors be written in
contracted vector notation. For instance, the symmetric stress
tensor is written as T T T T T TT ; ; ; ; ;1 2 3 4 5 6= [ ] with the con-
vention that T T1 11= , T T2 22= , T T3 33= , T T4 12= , T T5 23= ,
and T T6 13= .

Let S S S S S SS T, ; ; ; ; ;1 2 3 4 5 6 =( ) [ ] be a given con-
tinuous and differentiable direct model for the strain vector,
which takes field and stress vectors as input. Finally, let *
and S* denote any discrete external field and strain vectors
specified from experimental measurements or finite element
simulations. The goal of the inverse model is to find the
unknown stress vector T* that, together with * , would give
rise to S*. That is, find T that satisfies

S T S, 0. 5* * - =( ) ( )

3

Smart Mater. Struct. 26 (2017) 045010 H Tari et al



Our approach to solving the foregoing equation is based
on the Newton method. We expand the direct strain model S
in a first order Taylor’s series as

S T T S T
S T

T
T, ,

,
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  
+ D » +

¶
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where TD is an incremental stress vector, and J is the Jacobian
matrix. To find T, we employ the foregoing equation, and write
a recursive formula based on the Newton method as
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where i is the iteration index. When the Jacobian terms are
known, the algorithm initiates at given start solution stress
vector T 0( ), and gets corrected in successive iterations, until
the algorithm is terminated when the residual error is below a
predetermined threshold. At this point, T* is obtained.

Calculation of the iterative formula(7) hinges on the
material Jacobian of the direct model S T,( ), which is mat-
erial specific. In what follows, we demonstrate the application
of this iterative formula to magnetostrictive materials due to
their inherent nonlinearity. We give a brief review of the dis-
crete energy-averaged model for Galfenol, and derive its
Jacobian terms analytically as required for calculation of the
inverse model.

3. Review of calculation of 3D magnetostriction and
magnetic flux density for Galfenol

Tari et al [29] presented an exact solution procedure for a
reformulation of the discrete energy-averaged model, pro-
posed by Evans and Dapino [25], that computes the macro-
scopic 3D magnetic flux density B and strain S by minimizing
the Gibbs free energy that is defined locally about each easy
crystallographic direction. Magnetocrystalline (anisotropy),
magnetoelastic (magnetomechanical coupling), and magnetic
field (Zeeman) energies constitute the Gibbs free energy in
the vicinity of the kth easy direction written as

G
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where K and K0 are anisotropy energy constants;
m m mm ; ;1 2 3= [ ] is the magnetization direction having unit

magnitude; r is the number of easy crystallographic directions
(c: the 100á ñ family of six directions for Galfenol); 0m and Ms

are, respectively, the vacuum permeability and saturation
magnetization; and the magnetic stiffness matrix is given by
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where 100l and 111l are magnetostriction constants.

The macroscopic 3D strain vector is defined as weighted
sums of the response due to the r minimum energy directions
as

k k
S sT sT , 10

k

r

1

2

hysål lx= + = +
=



( )

where
k

hysx and
k
l denote, respectively, the averaged hysteretic

volume fraction and the magnetostriction tensor written in
vector notation for the kth domain; s stands for the 6×6
mechanical compliance matrix. Letting Ω be a smoothing
factor, the former is calculated as a Boltzmann-type, energy-
weighted average as
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and the magnetostriction tensor components are given as
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where u v, 1, 2, 3Î { }, and c0 is a nondimensional phenom-
enological parameter.

The unit magnitude, minimum energy directions
km are

calculated from the inhomogeneous eigenvalue problem

k k
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k
M aK I m c H, 13s0g m- = +( ) ( )

k k
bm m 1, 13=· ( )

where kg is the unknown Lagrange multiplier corresponding to
the kth minimum energy direction.

Letting Q be the orthogonal matrix containing the
eigenvectors of K (with the eigenvalues 1l , 2l , and 3l ), Tari
et al [29] reported that
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where kg is obtained from the sixth-order polynomial:
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When equation (15) has multiple real solutions, the one
that results in the lowest Gibbs energy is selected.

4. Strain Jacobian components

The inverse model, developed in section 2.1, requires strain
Jacobian terms. In this section, we derive the Jacobian terms
for the direct model discussed in section 3. For convenience,
the derivative components are derived in indicial with the
subscript i 1, ,6Î ¼{ }.

Differentiating equation (10) with respect to Ti gives,
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where ie is the six-dimensional unit vector with one as its ith
component; the derivative of the averaged hysteretic volume
fractions is found from differentiating equation (11) which
after simplification may be written as
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and the derivative of the magnetostriction in the direction of
the kth easy axis is found from equation (12) as
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Finally, differentiating the inhomogeneous eigenvalue
problem (13) with respect to stress, and solving the resulting
equations for the emerging unknown derivatives, one obtains
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which after a simplification procedure can be combined as
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where ‘∣ ∣’ stands for the matrix determinant; ‘·’ and ‘́ ’ are,
respectively, vector dot and cross product operators. Note that
the derivative of the stiffness matrix with respect to stress is
directly available from equation (9).

5. Reduced 2D system model for embedded smart
composites

The computational efficiency of the inverse model is further
improved by reducing the 3D system model described in
section 2 to a 2D model for thin composite plate structures.
For the analysis of thin composite plates, the conventional
modeling approach is based on equivalent single layer the-
ories, which are derived from 3D continuum theories by
making suitable assumptions concerning the kinematics of
deformation or the stress state through the thickness of the
laminate. These theories allow the reduction of a 3D problem
to a suitable 2D problem [39]. The simplest form of laminate
plate theory is the classical plate theory, where the time-
dependent 3D cartesian displacements are approximated
using asymptotic expansion along the thickness (z-direction),
i.e.,

u x y z t u x y t z x y t a, , , , , , , , 21x0 f= +( ) ( ) ( ) ( )
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which reduces the dependence of displacement components
u v, , and w to 2D. Here, u0, v0, and w0 are the leading order
displacement terms; and xf and yf denote rotations about the y
and x axes, respectively. Assuming that the deformation has
only bending and in-plane stretching components (i.e.,
transverse normal and transverse shear effects are negligible),
these rotations are represented as
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As the thickness increases, higher order approximations
need to be considered. However, classical plate theories work
well for composite plates with small thickness ratios (r 0.1 )
[34]. Considering this assumption, the displacement forms
described by equations (21)–(22) constitute a reduced plane
strain problem, in which the strain components S S,zz xz, and
Syz are neglected. The remaining strain components can be
written as
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The variational form for 2D plate theory is derived by
substituting stress, displacement, and strain expressions (21)–
(24) into 3D Navier’s equation (1) as

u

t
c

u

t t
c

t
u

v

t
c

v

t t
c

t
v

w

t
c

w

t
w

u

t
c

u

t t
c

t

v

t
c

v

t t
c

t

N S N S N S M S

M M S M S x y

N u N u M
w

n

M
w

s
Q w s t

d d

d d 0,

25

o
o

o
o x x

o

o
o

o
o y y

o

o
o

o
o

o

o o x x
x

o o y y
y

xx xx xy xy yy yy xx xx

xy yy xy yy yy

nn on ns os nn
o

ns
o

n o

2

2 1

2

2 1

2

2 1

2

2 1

2

2

1

2

2 1 2

2

2 2

1

2

2 1 2

2

2 2

0 0 0 1

1 1

e

e

ò ò

ò

r r
f f

d

r r
f f

d

r d

r r
f f

df

r r
f f

df

d d d d

d d

d d
d

d
d

¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶

¶
+

¶

¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶
¶

+
¶

¶
+

¶

¶

+ + + +

+ +

- + -
¶
¶

-
¶
¶

+ =

t W

¶W

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

¯ ¯

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

]

ˆ ˆ ˆ

ˆ ˆ

( )

( ) ( ) ( ) ( )

( ) ( )

where eW represents the total plate area; e¶W represents the
boundary to ;eW τ represents the time over which the dynamic
system is studied. Also, the density terms , ,o 1r r and 2r ,
damping coefficient terms c c, ,0 1 and c2, and stress resultants
N N N M M, , , ,xx yy xy xx yy, and Mxy are defined as
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where ttot is the total plate thickness, and the boundary terms
N N M, ,nn ns nn
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with , ,nn nss sˆ ˆ and nzŝ as the specified stress components on the
portion of the boundary e¶W .

Note that the integrals(26)–(28) can be directly calcu-
lated when the geometry and material properties are specified.
However, the stress resultant terms are calculated utilizing the
inverse model developed in section 2.1.

In what follows, the aforementioned mathematical fra-
mework is applied to a Galfenol-aluminum composite struc-
ture, and relevant simulation results are presented.

6. Case study: Galfenol-aluminum structure for
actuator applications

Figure 1 depicts a schematic view of a Galfenol-aluminum
composite structure. The material parameters for aluminum
are: E=69GPa, 0.3n = , and 2700 kgr = m–3; and those
for Galfenol are tabulated in table 1.

The actuator geometry presented in this paper mirrors the
sample utilized in the experimental set-up presented in [40]. The
composite plate actuator, consisting of embedded magnetos-
trictive domain, was manufactured using ultrasonic additive
manufacturing [41]. To obtain a bending actuator configuration,
the plate was excited using 1D magnetic fields along the Gal-
fenol length, and cantilevered boundary conditions were
imposed at the clamped edge. The input alternating and bias
magnetic fields of different amplitudes and frequencies (ranging
from 0.1 to 500Hz) were generated using a conductive coil and
the displacement data at the tip of the Galfenol patch (labeled in
figure 1) was collected. The measured data was subsequently
reproduced within a reasonable tolerance, using a dynamic 2D
plate model which employed the inversion procedure presented
in [27]. Additionally, this model assumed approximately uni-
form magnetic fields throughout the Galfenol volume, which is
a reasonable assumption for a plate actuator undergoing small
deformations.

In what follows, our novel inversion scheme and the 2D
plate model developed in sections 2 and 5 are utilized to study
the actuator displacements. Through this application, we
demonstrate the computational efficiency and numerical
robustness of the proposed computational framework through a
comparison with the aforementioned existing approach.

6.1. Solution methodology

The actuator system presented in figure 1 is analyzed using
the 2D weak form described by equations (25)–(30). The 2D
equations are implemented in the finite element software
COMSOL Multiphysics (version 4.3b), and the constitutive
model for Galfenol along with the inversion scheme presented

Figure 1. Schematic of a Galfenol-aluminum composite structure.
The x–y plane of the coordinate system is coincident with the bottom
plane of the Galfenol strip, and the x–z plane is a plane of
symmetry (y 00 = ).
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in section 2.1 are coded as MATLAB m-files and supplied to
COMSOL.

A 1D harmonic magnetic field of the form H t =( )
H H tsin 2b a pw- ( ) is given as input to the system and the
displacements at the tip of the Galfenol patch are analyzed.
To generate complete magnetostriction curves, unbiased
magnetic field input (Hb = 0) of amplitude Ha = 15 kAm–1

greater than the saturation field H 10sat » kAm–1 is applied.
To obtain the displacement-field minor loops, a biased
magnetic field with Hb = 3.5 kA m–1 and Ha = 3.25 kAm–1

is supplied as input.
Note that no matter what the input field is, the Galfenol

patch elongates, and since the centroid of the patch is placed
above the neutral axis of the entire plate, it causes the plate to
always deflect downward. This is schematically shown in

figure 2(b) for a typical input field. Further results are ela-
borated in the following section.

6.2. Simulation results

Figure 3 depicts the dynamic actuation simulation results,
obtained using the proposed model, with unbiased input
magnetic field at various frequencies for two periods. At the
lowest frequency (0.1 Hz), as expected, hysteresis is minimal
but gets pronounced as the field frequency increases. Hys-
teresis makes the plate actuator a nonconservative system. To
be precise, the displacement vanishes at zero field for both
periods as in figures 3(a)–(d). In contrast, as shown in
figures 3(e) and (f), there is a nonzero displacement at zero
field at nonzero time.

Figure 2. (a) A schematic plot of 1D magnetic field input: H t H H tsin 2b a pw= -( ) ( ), and (b) schematic deflected plate configurations
(dimensions in inches) at different fractions of time period (T) corresponding to the frequency ω.

Figure 3. Dynamic actuation results, obtained using the proposed model, with 1D unbiased magnetic field input H t t15 sin 2pw= -( ( ) ( )
kA m–1) for two periods at frequencies: (a) and (b) 0.1Hz; (c) and (d) 100Hz; and (e) and (f) 350Hz. The displacement–field curves are for
the last period.
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In addition, figures 3(b), (d), and (f) show that the plate
actuator exhibits an approximately linear response in the
‘burst’ region, which forms the basis for the early linear
formulations for magnetostrictive transducers. Exploiting the
linearity can potentially improve the computational effi-
ciency, but would limit the operational regime of the plate
actuator. This motivated our nonlinear solution methodology.

The actuator response to bias input at different fre-
quencies are demonstrated in figure 4, in which an appropriate
bias field maps the domain of the input field such that the
actuator is operating in the burst region for its entire opera-
tional regime. As a further advantage, field biasing can pro-
duce bi-directional strains about the bias point, while this is
not feasible for the unbiased plate actuator.

In what follows, efficiency and effectiveness of the pro-
posed inverse model are compared to those of the existing
approach [27]. The same COMSOL framework discussed

above is used for both models except that separate MATLAB
subroutines for each inverse model are used. Recall that the
proposed inverse model employs the inversion scheme pre-
sented in section 2.1 along with the exact analytical Jacobian
terms developed in section 4 for the constitutive material
model reviewed in section 3. In contrast, the existing inverse
model employs the quasi-Newton method with approximate
Jacobian terms for the constitutive material model presented
in [26]. In addition, the maximum allowable number of
iterations for the proposed and existing models are taken,
respectively, 50 and 500 in the MATLAB subroutines.

6.2.1. Simulation time comparison. The simulation cases
discussed above are repeated with the existing inverse model.
For all simulations, a physics controlled mesh is used wherein
the plate is discretized with triangular mesh elements of size
varying from 0.0762 to 0.17018mm, thus having 5946

Figure 4. Dynamic actuation results with biased 1D magnetic field input H t t3.50 3.25 sin 2pw= -( ) ( ) kA m–1 at different frequencies: (a)
50Hz, (b) 200Hz, (c) 350Hz, and (d) 500Hz.

Table 1. Parameters for the direct model, given in section 3, for Galfenol.

Par. Ms (kA m–1) E (GPa) λ100 (ppm) λ111 (ppm) c0 ρ (kg m–3)
Value 1273.24 74.50 173.33 −6.67 0.33 7870.00
Par. K (kJ m–3) K100 (J m

–3) Ω (J) G (GPa) ν c (N s m–1)
Value 30.00 −250.00 1200.00 120.00 0.30 0.10
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DOFs. The simulations were performed on a quad core 64 bit
desktop computer, and the runtimes are tabulated in table 2.
Note that the static runtimes correspond to the single initial
time instant, and the dynamic simulation runtimes correspond
to the averaged time taken to complete one periodic cycle for
all of the frequencies discussed above.

As per table 2, the proposed inverse model gives
dynamic simulation results in almost six times faster than
the existing inverse model does. This noticeable time
advantage makes the proposed inverse model an effective
and efficient tool for the fast design of plate actuators.

6.2.2. Convergence comparison. The proposed model offers
a significant improvement in convergence for dynamic
simulations. COMSOL solves for the system state at each
instant starting from the initial solution, which is the previous
system state. We observed that the proposed model is able to
handle large variation in response between reasonably large
time steps, while the existing model requires a very close
estimate of the initial solution. This wider convergence zone
is attributed to the employment of the analytical strain
derivative terms, developed in section 4, by the proposed
model.

The existing model was not convergent for any of the
cases shown in figure 3. There are two sources of non-
convergence for the existing model. The first source
originates from the singularity issues manifested by the
material model [26] as pointed out by Tari et al [29]. The
other source is the employment of approximate Jacobian
terms for the material model together with the quasi-Newton
technique. This approximation is not sufficient to find the
optimal direction for minimizing the residual error in each
iteration. For convenience, field input and strain output plots
using both models are shown in figure 5 for the unbiased
harmonic magnetic field of frequency 100Hz over a duration
of t 0.02 s= . The figure demonstrates that the existing model
converges to a mathematical solution, which is nonphysical.
The inversion scheme in the existing model exhausted the
maximum allowable number of iterations (500) and failed to
sufficiently minimize the residual error. Thus, the best

obtained solution is reported. In contrast, the proposed model
only needed 50 iterations to converge and it always
converged to the optimal solution within 50 iterations.

6.2.3. Sensitivity to input data. Figure 6 illustrates the plate’s
response obtained using the proposed model for a non-smooth
input field. The existing model performed satisfactorily until
t 0.02 s= , after which COMSOL’s nonlinear simulation
solver took too much time to converge to a solution satisfying
the non-local Navier equation, so no result is shown. In
contrast, the proposed model is robust in the presence of the
sharp corner at t 0.02 s= , as demonstrated in figure 6(b).

To further benchmark the proposed model, we devised
trapezoidal and rectangular periodic magnetic field inputs of
50Hz shown in figures 7(a) and (c). The plate’s responses
obtained using the proposed model for the two inputs are
depicted in figures 7(b) and (d), respectively. As before, the
proposed model is able to converge at the sharp corners.

7. Summary

A computationally efficient and robust nonlinear modeling
framework for smart material systems was presented. A new
3D inversion scheme for nonlinear modeling of smart mat-
erial based transducers, and a reduced 2D model for smart
composite plate structures constitute the framework. The
framework was integrated with a finite element software to
analyze an aluminum plate embedded with a Galfenol strip.
For Galfenol, analytical 3D strain derivative terms for a recent
model were derived. The resulting nonlinear finite element
framework was utilized to obtain major and minor magne-
tostriction curves corresponding to the tip of the Galfenol

Figure 5. Plots of (a) unbiased 1D harmonic magnetic field input, and (b) the plate’s response at the tip at 100Hz.

Table 2. Simulation runtimes for the existing and proposed models.

Model Existing Proposed

Static (hh:mm) 00:09 00:02
Dynamic (hh:mm) 30:06 05:09
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patch with applying unbiased and biased magnetic fields,
respectively. Compared to an existing model, the proposed
model gave dynamic simulation results in almost six times
faster. Additionally, when an unbiased input field was
applied, the proposed model converged accurately to the
physical solution, while the existing model converged to a
mathematical solution that was nonphysical. The significant
advantages in computational time and numerical convergence

exhibited by the proposed model are ideal for fast design of
plate actuators.
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obtained using the proposed model, respectively.
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Appendix A. Derivation of ∂G
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The derivative of the Gibbs free energy (equation (8)) with
respect to stress has a major role in the analytical reduction of
the derivative of the volume fractions with respect to stress
presented already by equation (17). Therefore, a step by step
derivation procedure for such a key term is given as follows.

With letting tr () denote the trace of a matrix, we rewrite
the Gibbs free energy given by equation (8) as
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which is obtained from differentiating equation (13b) with
respect to stress.
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