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Highlights

• A globally convergent, fully coupled 3D model for smart materials is presented.
• Jacobian and Hessian of a magnetostrictive Galfenol model are derived analytically.
• A fully coupled magnetostrictive composite plate actuator is simulated in 3D.
• A significant advantage in numerical convergence and robustness is achieved.

Abstract

A globally convergent and fully coupled 3D inverse model for smart materials is presented. In practice, stress and field (electric,
magnetic, or temperature) are applied to smart materials whereas strain and flux density (electric, magnetic, or temperature) are
measured. We refer to constitutive models that follow this scheme as direct models. In certain design and control situations,
however, inverse models are necessary in which the field and stress are found from specified flux density and strain. This inversion
typically involves an iterative procedure, which may be prone to convergence issues. An inverse model approach is proposed for
arbitrary smart materials. The inversion requirement is a continuous and second order differentiable direct model for any chosen
smart material. The approach is globally convergent, which makes it ideal for use in finite element frameworks. The premise of the
proposed iterative system model is to constitute a recursive correction formula based on second order approximations of a novel
scalar error function which offers a faster convergence rate. A continuation approach is then used to achieve global convergence
for arbitrary input parameters. Magnetostrictive Galfenol is chosen to illustrate the effectiveness of the inverse model, and compact
analytical derivations of the Jacobian and Hessian matrices are presented. The convergence rate of the proposed approach is superior
to that of an existing inverse model. Finally, the inverse model’s robustness is demonstrated through integration of the model into
a finite-element framework to simulate a magnetostrictive composite plate actuator in full 3D.
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1. Introduction

Smart materials convert energy from one type to another, resulting in controllable changes in material properties
along with sensing, actuation, and other forms of coupled response. For instance, piezoelectric and electrostrictive
materials convert electrical energy to mechanical energy and vice versa; magnetostrictive materials exhibit coupling
of magnetic and mechanical effects; shape-memory alloys and polymers respond to thermal activation by changing
their crystal structure and macroscopic dimensions; and pH sensitive polymers swell in response to changes in external
pH. See Smith [1] and Leo [2] for more information on smart materials.

Smart materials typically exhibit nonlinear and hysteretic behavior, which varies substantially between the mate-
rials. For instance, when piezoelectric materials like PZT, PVDF, and BaTiO3 are poled, they exhibit approximately
linear behavior for low to moderate inputs [3]. These materials can be efficiently characterized using linear models
within a specified range of operation. In contrast, shape memory materials, electrostrictives, and magnetostrictives
exhibit saturation nonlinearity and hysteresis, thus accurate description of their behavior requires complex constitu-
tive models. Nonlinear smart material models have been formulated considering phenomenological, microscopic, and
macroscopic viewpoints. Phenomenological models fit a curve or surface to measurement data, which provides effi-
ciency but ignores the underlying physics. In contrast, microscopic models provide a more accurate description of the
physical phenomena by considering all possible energies. This, however, tends to entail high complexity and compu-
tational cost. On the other hand, macroscopic models use an intermediate approach by relating the bulk response of a
material to simplified descriptions of its microscopic behavior. This approach strikes a balance between computational
speed, accuracy, and generality.

Many different models have been developed for smart materials. For instance, Stebner and Brinson [4] presented a
3D constitutive model that describes evolution of elastic and transformation strains during thermo-mechanical shape
memory alloy loading events assuming a symmetric, isotropic material response. See Cisse et al. [5] for a very re-
cent review of constitutive models and modeling techniques for shape memory alloys. Keip et al. [6] presented a
two-scale computational homogenization framework for the simulation of electro-active solids at finite strains. Linder
and Zhang [7] presented 3D finite elements with embedded strong discontinuities to model failure in electromechan-
ical coupled materials. Zheng and Zhang [8] studied adaptive finite-element methods for time-harmonic eddy current
problems in the case of 3D isotropic and linear magnetic materials. Greif et al. [9] developed a mixed finite-element
method for the numerical discretization of 2D and 3D stationary incompressible magnetohydrodynamics problems.
Caloz et al. [10] studied the influence of geometry on the skin effect in electromagnetism. Dong et al. [11] analyzed
convergence and stability of three finite-element iterative methods for 2D and 3D stationary incompressible magneto-
hydrodynamics.

Terbium–dysprosium–iron (Terfenol-D) and iron–gallium (Galfenol) are the recent magnetostrictive materials.
Terfenol-D produces relatively large magnetostriction (≈1600 ppm) at a moderate magnetic field (≈200 kA/m),
making it well suited for actuator designs; see for example Chakrabarti and Dapino [12]. Because Terfenol-D is brittle,
it always requires stress biasing to avoid tension. On the other hand, Galfenol exhibits moderate magnetostriction
(≈350 ppm) at low magnetic fields (≈8 kA/m), possesses high tensile strength (≈500 MPa), and experiences a
limited variation in magnetomechanical properties for temperatures between −20 and 80 ◦C (see Ref. [13]). When
composed of less than 20 at.% gallium, Galfenol retains the machinability and ductility of iron. As such, it can
be produced in sheets or wires, as well as welded, threaded or extruded into unprecedented 3D structures that are
both active and load-bearing. Several techniques were proposed in micromagnetics to solve the Landau–Lifshitz
equation [14] that describes the evolution of magnetization in a ferromagnetic material. For example, Gauss–Seidel
projection method was proposed by Wang et al. [15] and a boundary-corrected algorithm for general geometries
was developed by Garcı́a-Cervera et al. [16]. On the other hand, the Preisach model [17], Globus model [18],
Jiles–Atherton model [19], and Stoner–Wohlfarth model [20] are some of the classical models for magnetostrictives.
Liorzou et al. [21] compared the pros and cons of these models in detail. For Terfenol-D, Carman and Mitrovic [22]
formulated a model by expanding the Gibbs free energy in a truncated Taylor series, the coefficients of which
were determined experimentally. Zheng and Sun [23] included higher order terms in the expansion to improve
the applicability of the model for larger magnetic field inputs. Armstrong [24] proposed an incremental hysteretic
magnetoelastic constitutive theory of pseudo-cubic magnetostrictive alloys that can be applied to Terfenol-D and,
with some modifications, to Galfenol. The Armstrong model is computationally intensive, as it searches for global
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energy minima. Evans and Dapino [25], and later Chakrabarti [26], greatly enhanced the computational speed by
formulating the energy functions around local minima along Galfenol’s six easy crystallographic directions.

In practice, stress and field (electric, magnetic, or thermal) are the independent variables to characterize smart mate-
rials, and strain and flux density (electric, magnetic, or thermal) are the dependent variables, which would be measured.
We refer to the constitutive models that follow this scheme as direct models in a mathematical sense. In certain design
and control situations, inverse models are necessary, wherein stresses and fields must be determined from specified
strains and flux densities. This inversion typically involves an iterative procedure, and requires sophisticated criteria
to find physical solutions, especially, when multiple mathematical solutions exist. Chakrabarti and Dapino [27] pro-
posed an inverse model that describes the full nonlinear coupling in 3D magnetic transducers. However, this model
is susceptible to convergence issues, which are drastically alleviated by further developments presented by Deng and
Dapino [28]. Nonetheless, both of these models are built on the direct model given in Ref. [26], which is prone to
singularities. These can burden computation, especially when the model is integrated into finite-element solvers. Tari
et al. [29] addressed this shortcoming through a reformulation of this direct model with an exact solution procedure.
In addition, Tari et al. [30] recently presented an efficient inverse model for a partially coupled magnetomechanical
system, in which stresses must be found for given field values. The model was successfully applied to a composite
magnetostrictive plate operating in actuation mode.

The goal of this paper is to generalize the aforementioned pieces of work and present a fast and globally convergent
inverse model for fully coupled and arbitrary smart materials with any given direct models. Our strategy to have such
an inverse model rests on “continuation”. The idea of continuation on the solution of a highly nonlinear problem is
to break the problem (say, the target problem) into a series of more manageable subproblems through a subdivision
of the underlying parameters, and solve them sequentially. That is, the parameters are subdivided into a series of
ordered subsets, each of which would define a subproblem. The first subset specifies the start subproblem, and the last
subset determines the target problem. The subdivision is generally done such that the start subproblem is relatively
much less intense to solve. The solution obtained for the start subproblem is marked as the start solution, and is used
for the solution of the subsequent subproblem using an iterative approach. This is repeated until the solution to the
target problem is obtained. The idea of continuation has been employed in a variety of disciplines. For instance, Tari
et al. [31,32] applied continuation to kinematic design and analysis of rigid mechanisms. Accordingly, a significant
speed in the design process was achieved through avoiding the computation for the majority of mathematically
valid solutions, which are in fact nonphysical solutions. Additionally, Banerjee et al. [33] presented a continuation
based approach for large-scale inverse identification of linear elastic material properties in the context of steady-state
elastodynamics. They demonstrated that their approach can significantly accelerate the solution convergence. Ligurský
and Renard [34] recently presented a continuation algorithm for the solution of discretized evolution problems with
application to plane quasi-static contact problems with friction. A set of model examples was used to successfully
demonstrate their algorithm’s performance.

The aforementioned existing inverse models constitute recursive correction formulae based on first order approx-
imations of some specified error functions. However, the aim of this paper is to achieve a faster convergence rate by
taking second order approximations into account. To do this, we formulate the problem in an optimization framework
through the definition of a novel scalar error function, which allows to effectively incorporate Hessian (matrix of the
second order derivatives) of the direct model in the formulation. Thus, the inversion requirement is a continuous and
second order differentiable direct model for any chosen smart material. The resulting approach is globally conver-
gent, which makes it ideal for use in finite-element frameworks. The proposed methodology generalizes that of Tari
and Dapino [35], specialized for magnetostrictives, to arbitrary smart materials. To illustrate the inverse model, the
magnetostrictive Galfenol is chosen and compact analytical derivations of the Jacobian and Hessian matrices corre-
sponding to the direct model given by Tari et al. [29] are presented. The proposed model’s effectiveness is compared
successfully to that of Deng and Dapino [28] for the chosen material with 1D input data. Additionally, the inverse
model is integrated into a finite-element framework to simulate an aluminum–Galfenol composite plate actuator. Tari
et al. [30] recently presented a reduced 2D model for this composite plate with the assumption that the magnetic field
distribution throughout the Galfenol volume is approximately uniform for the small deformations, thus they assumed
that the magnetic field is known. However, we lift this assumption in this work, and simulate this composite plate
actuator in full 3D.

The rest of the paper is organized as follows. A globally convergent inverse model for arbitrary smart materials
is outlined next. A brief review of a recent direct model for magnetostrictive Galfenol is given in Section 3. The
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first and second order derivative terms of this direct model, required by the proposed inverse model, are derived
analytically in Section 4. The performance of the inverse model is benchmarked for special and general input data;
model’s insensitivity to special input data is compared with that of an existing inverse model in Section 5 with 1D
input data, and its robustness for general input data is demonstrated in Section 6 with a fully coupled, 3D simulation
of a magnetostrictive composite plate actuator. Finally, conclusions are given.

2. Smart material inverse model

Let T and F denote, respectively, stress and field (electric, magnetic, or thermal), and S(F , T) and B(F , T) denote,
respectively, strain and flux density (electric, magnetic, or thermal), which constitute a given direct model for any
arbitrary smart material. Also, let B∗ and S∗ denote any discrete flux and strain tensors specified from measurements
or finite-element simulations. In addition, for the sake of convenience, let all of the tensors be written in an equivalent
vector form. For example, the symmetric stress tensor is written as T = [T1; T2; T3; T4; T5; T6] with the convention
that T1 = T11, T2 = T22, T3 = T33, T4 = T12, T5 = T23, and T6 = T13.

The goal is to find the unknown field (F∗) and stress (T∗) that give rise to B∗ and S∗. In other words, the goal is to
find F and T that satisfy the equations

B(F , T) − B∗

S(F , T) − S∗


= 0. (1)

It is well known that if a small perturbation is made to the input parameters of a system of equations, then the
solutions to the perturbed system will perturb only slightly. This is the premise of the continuation technique, thus
we use it to ensure global convergence in solving the foregoing system of equations (see, e.g., Refs. [31] and [32] for
more on continuation). Let us rewrite the foregoing vector of error functions as a linear homotopy

B(F , T) − Bτ

S(F , T) − Sτ


,


B(F , T) − ((1 − τ)B(F0, T0) + τB∗)

S(F , T) − ((1 − τ)S(F0, T0) + τS∗)


= 0, (2)

where F0 and T0 are known start solutions, and τ ∈ [0, 1] is the continuation parameter. Continuation initiates at the
start solutions F0 and T0 at τ = 0, and traces the solution curves of F(τ ) and T(τ ) as τ is incremented, until τ = 1
at which point the desired solutions F∗ and T∗ are obtained.

To solve each subproblem effectively, we solve the minimization problem

Minimize f (F , T)
F∈R3, T∈R6

, (3)

where R is the set of the real numbers, and f is the scalar, continuous objective error function defined as

f (F , T) ,
1
2
w2

b


B(F , T) − Bτ

T B(F , T) − Bτ

+

1
2
w2

s


S(F , T) − Sτ

T S(F , T) − Sτ

, (4)

where [ ]
T is the vector or matrix transpose operator, and wb and ws are weighting factors chosen to effectively

combine the error contributions of flux density and strain, respectively. With [ ; ] as column vector operator, and
expanding f in a second order Taylor’s series as

f (F + ∆F , T + ∆T) ≈ f (F , T)+

[J f
]
T  

∂ f (F , T)

∂F
;
∂ f (F , T)

∂T

T

[∆F;∆T]

+
1
2
[∆F;∆T]

T

[F f
]  

∂2 f (F , T)

∂F∂F
∂2 f (F , T)

∂F∂T
∂2 f (F , T)

∂T∂F
∂2 f (F , T)

∂T∂T

 [∆F;∆T], (5)
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and minimizing it for the incremental field and stress vectors ∆F and ∆T, may give a recursive correction formula
based on the damped Newton method as

[F(i + 1); T(i + 1)] = [F(i); T(i)] − αi [F f (i)]−1
[J f (i)], (6)

where i is the iteration index, αi is the step size, and J f and F f are called the Jacobian (gradient vector for 1D inputs)
and Hessian matrices, respectively. When the derivative terms are known, the algorithm initiates at given start solutions
F(0) and T(0), which get corrected at successive iterations, until the algorithm is terminated when the residual error
is below a predetermined threshold. At this point, the desired F τ and Tτ are obtained for each subproblem. Note that
the notion of time is implicit to the increments ∆F and ∆T. Therefore, in a dynamics case, these increments need to
be small enough to capture the dynamics of the system.

For convenience, the derivatives in Eq. (5) or (6) are derived in indicial where it is assumed that the subscripts
p, q ∈ {1, . . . , 3} and i, j ∈ {1, . . . , 6}. For brevity, f (F , T), B(F , T) and S(F , T) are abbreviated, respectively, as
f , B, and S. Accordingly, the first order derivatives are

∂ f

∂F p
= wh


w2

b


B − Bτ

T ∂B
∂F p

+ w2
s


S − Sτ

T ∂S
∂F p


, (7a)

∂ f

∂Ti
= wt


w2

b


B − Bτ

T ∂B
∂Ti

+ w2
s


S − Sτ

T ∂S
∂Ti


, (7b)

and the second order derivatives are

∂2 f

∂F p∂Fq
= w2

h


w2

b


B − Bτ

T ∂2B
∂F p∂Fq

+ w2
b
∂BT

∂F p

∂B
∂Fq

+ w2
s


S − Sτ

T ∂2S
∂F p∂Fq

+ w2
s

∂ST

∂F p

∂S
∂Fq


, (8a)

∂2 f

∂Ti∂T j
= w2

t


w2

b


B − Bτ

T ∂2B
∂Ti∂T j

+ w2
b
∂BT

∂Ti

∂B
∂T j

+ w2
s


S − Sτ

T ∂2S
∂Ti∂T j

+ w2
s
∂ST

∂Ti

∂S
∂T j


, (8b)

∂2 f

∂F p∂Ti
= whwt


w2

b


B − Bτ

T ∂2B
∂F p∂Ti

+ w2
b
∂BT

∂F p

∂B
∂Ti

+ w2
s


S − Sτ

T ∂2S
∂F p∂Ti

+ w2
s

∂ST

∂F p

∂S
∂Ti


, (8c)

where wh and wt are scaling factors for field and stress vectors. Note that the derivatives of the direct flux density
and stress models present in the foregoing equations must be known. These terms are material specific, and, in the
following section, we take Galfenol as a case study, and after a brief review of a direct model for Galfenol, the
corresponding derivative terms are presented analytically.

3. Review of calculation of 3D magnetostriction and magnetic flux density for Galfenol

Tari et al. [29] recently proposed an exact solution procedure for a reformulation of the discrete energy-averaged
model, proposed by Evans and Dapino [25], that computes the macroscopic 3D magnetic flux density B and strain S by
minimizing the Gibbs free energy that is defined locally about each easy crystallographic direction. Magnetocrystalline
(anisotropy), magnetoelastic (magnetomechanical coupling), and magnetic field (Zeeman) energies constitute the
Gibbs free energy in the vicinity of the kth easy direction written as

k
G=

1
2

k
m ·K

k
m −(K

k
c +µ0 MsH)·

k
m +

k
K0, k ∈ ±


1, . . . ,

r

2


, (9)

where “·” is the vector dot product operator; K and K0 are anisotropy energy constants; m = [m1; m2; m3] is the
magnetization direction having unit magnitude; r is the number of easy crystallographic directions (c: the ⟨100⟩ family
of six directions for Galfenol); µ0 and Ms are, respectively, the vacuum permeability and saturation magnetization;
and the magnetic stiffness matrix is given by

K = −3

λ100T1 λ111T4 λ111T6
λ111T4 λ100T2 λ111T5
λ111T6 λ111T5 λ100T3

 , (10)

where λ100 and λ111 are magnetostriction constants.
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The macroscopic 3D magnetic flux density and strain vectors are defined as weighted sums of the response due to
the r minimum energy directions as

B = µ0(H + M) = µ0


H + Ms

±r/2
k=±1

k

ξhys
k
m


, (11)

S = sT + λ = sT +

±r/2
k=±1

k

ξhys

k
λ, (12)

where
k

ξhys and
k
λ denote, respectively, the averaged hysteretic volume fraction and the magnetostriction tensor written

in vector notation for the kth domain; s stands for the 6 × 6 mechanical compliance matrix. Letting Ω be a smoothing
factor, the former is calculated as a Boltzmann-type, energy-weighted average as

k

ξhys =

exp


−

k
G
Ω


±r/2
n=±1

exp


−

n
G
Ω

 , (13)

and the components of the magnetostriction tensor
k
λ are

k
λuu =

3
2
λ100(

k
mu

k
mu −c0),

k
λuv = 3λ111

k
mu

k
mv, u ≠ v,

(14)

where u, v ∈ {1, 2, 3}, and c0 is a nondimensional stiffness parameter.

The unit magnitude, minimum energy directions
k
m are calculated from the inhomogeneous eigenvalue problem

(K−
k
γ I)

k
m = K

k
c +µ0 MsH, (15a)

k
m ·

k
m = 1, (15b)

where
k
γ is the unknown Lagrange multiplier corresponding to the kth minimum energy direction, and I is the 3 by 3

identity matrix.
Letting Q be the orthogonal matrix containing the eigenvectors of K (with the eigenvalues λ1, λ2, and λ3), Tari

et al. [29] reported that

k
m= Q



1

λ1−
k
γ

0 0

0
1

λ2−
k
γ

0

0 0
1

λ3−
k
γ


QT(K

k
c +µ0 MsH), (16)

where
k
γ is obtained from the sixth order polynomial:

k
γ

6

+ 2(λ̄2 + λ̄3)
k
γ

5

+


λ̄2

2 + 4λ̄2λ̄3 + λ̄2
3 − Q̄1 − Q̄2 − Q̄3

 k
γ

4

+ 2

λ̄2

2λ̄3 + λ̄2λ̄
2
3 − λ̄2 Q̄1 − λ̄3 Q̄1 − λ̄3 Q̄2 − λ̄2 Q̄3

 k
γ

3
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+


λ̄2

2λ̄
2
3 − λ̄2

2 Q̄1 − 4λ̄2λ̄3 Q̄1 − λ̄2
3 Q̄1 − λ̄2

3 Q̄2 − λ̄2
2 Q̄3

 k
γ

2

− 2λ̄2λ̄3 Q̄1

λ̄2 + λ̄3

 k
γ −λ̄2

2λ̄
2
3 Q̄1 = 0, (17)

with
k
γ= λ1−

k
γ , λ̄2 = λ2 − λ1, λ̄3 = λ3 − λ1, and [


Q̄1;


Q̄2;


Q̄3] = QT(K

k
c +µ0 MsH). When Eq. (17) has

multiple real solutions, the one that results in the lowest Gibbs free energy is selected.

4. Derivative terms for the direct model for Galfenol

This section presents analytical derivations of the Jacobian and Hessian terms for the direct model given in the
previous section for Galfenol. As before, the same indicial notation is adopted.

4.1. Jacobian terms

The Jacobian terms can be obtained from differentiating Eqs. (11) and (12) with respect to Hp and Ti as

∂B
∂ Hp

= µ0
p
e +µ0 Ms

±r/2
k=±1

∂
k

ξhys

∂ Hp

k
m +

k

ξhys
∂

k
m

∂ Hp

 , (18a)

∂B
∂Ti

= µ0 Ms

±r/2
k=±1

∂
k

ξhys

∂Ti

k
m +

k

ξhys
∂

k
m

∂Ti

 , (18b)

and

∂S
∂ Hp

=

±r/2
k=±1

∂
k

ξhys

∂ Hp

k
λ +

±r/2
k=±1

k

ξhys
∂

k
λ

∂ Hp
, (19a)

∂S
∂Ti

= s
i
e +

±r/2
k=±1

∂
k

ξhys

∂Ti

k
λ +

±r/2
k=±1

k

ξhys
∂

k
λ

∂Ti
, (19b)

where
p
e and

i
e are, respectively, 3- and 6-dimensional unit vectors with one as their pth and i th components.

The derivatives of the averaged hysteretic volume fractions occurring in Eqs. (18) and (19) are found upon
differentiating Eq. (13) with respect to field and stress, respectively, and simplifying the results as

∂
k

ξhys

∂ Hp
=

µ0

Ω

k

ξhys


Ms

k
m p − M p


, (20a)

∂
k

ξhys

∂Ti
=

1
Ω

k

ξhys


k
λi − λi


. (20b)

The remaining derivative terms in Eq. (18) can be obtained by differentiating the inhomogeneous eigenvalue
problem (15) with respect to field and stress, and solving the resulting equations as

∂
k
m

∂ Hp
= [K−

k
γ I]−1

 ∂
k
γ

∂ Hp

k
m +µ0 Ms

p
e

 , (21a)

∂
k
m

∂Ti
= [K−

k
γ I]−1

∂
k
γ

∂Ti

k
m −

∂K
∂Ti

k
m

 , (21b)
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where

∂
k
γ

∂ Hp
= −µ0 Ms

p
e ·[K−

k
γ I]−1 k

m
k
m ·[K−

k
γ I]−1 k

m
, (22a)

∂
k
γ

∂Ti
=

∂K
∂Ti

k
m ·[K−

k
γ I]−1 k

m

k
m ·[K−

k
γ I]−1 k

m
. (22b)

Following a simplification procedure, the foregoing results can be combined as

∂
k
m

∂ Hp
= −µ0 Ms

k
Γ

k
m ×


[K−

k
γ I](

k
m ×

p
e)


, (23a)

∂
k
m

∂Ti
=

k
Γ

k
m ×


[K−

k
γ I]


k
m ×

∂K
∂Ti

k
m


, (23b)

where “×” is the vector cross product operator, and making use of the matrix determinant operator “| |”

k
Γ=

|K−
k
γ I|−1

k
m ·[K−

k
γ I]−1 k

m
.

Finally, the remaining derivative terms in Eq. (19) can be obtained by differentiating Eq. (14) with respect to field
and stress as
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 , u ≠ v. (24b)

4.2. Hessian terms

The Hessian terms can be obtained from differentiating Eq. (18) with respect to Hp and Ti as
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and differentiating Eq. (19) with respect to Hp and Ti as
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The second order derivatives of the averaged hysteretic volume fractions in the foregoing equations may be obtained
from differentiating Eq. (20) with respect to field and stress as
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To simplify the remaining second order derivative terms in Eqs. (25)–(27), we differentiate the inhomogeneous
eigenvalue problem (15) twice with respect to field and stress, and solve the resulting equations for the emerging
intermediate unknowns. After a simplification procedure, we finally have
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and
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Finally, the remaining unknown derivative terms in Eqs. (28)–(30) are obtained from differentiating Eq. (24) with
respect to field and stress as
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and
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5. Inverse model performance for 1D input data

We benchmark the performance of the proposed inverse model for special and general input data. The model’s
insensitivity to special input data is assessed in this section with 1D input data, and its robustness for general input
data is demonstrated in the next section with a fully coupled, 3D simulation of a magnetostrictive composite plate
actuator.

We compare the convergence rate of the proposed inverse model with that of the quasi-Newton based inverse model
presented by Deng and Dapino [28]. The latter does not offer the continuation feature, therefore, for a fair comparison,
we disable continuation in the proposed model by setting the continuation parameter τ to one. To generate comparative
data, 1D magnetic field and stress spaces are specified, with the constraint that the sampled stress tensor must have a
von Mises stress smaller than 500 MPa, which is a rough estimate of the ultimate strength of Galfenol. Each space is
then discretized and fed to the direct model, given in Section 3, to produce magnetic induction and strain spaces. To
benchmark the two inverse models, these datasets are fed to each inverse model to see whether the original magnetic
field and stress inputs are returned up to a tolerance of 10−9.

As for the direct model parameters, Evans and Dapino [25] collected magnetic induction and strain measurements,
for uniaxial actuation and sensing, of textured Fe81.5Ga18.5 grown in ⟨100⟩ along the rod axis with the Free Stand Zone
Melt method (FSZM) at Etrema Products Inc. For this dataset, Tari et al. [29] reported the direct model parameters,
which are tabulated in Table 1.
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Table 1
Parameters for the direct model, given in Section 3, for ⟨100⟩ Fe81.5Ga18.5 grown with FSZM (Tari et al. [29]).

Par. Ms (kA/m) E (GPa) λ100 (ppm) λ111 (ppm)

Value 1242.20 74.49 172.31 0.00

Par. c0 K (kJ/m3) K100 (J/m3) Ω (J)

Value 0.38 35.58 412.18 1330.00

Fig. 1 illustrates the direct and inverse model simulations for 1D magnetic field and stress inputs. This follows the
1D uniaxial actuation and sensing experiment conducted by Evans and Dapino [25], in which a magnetostrictive rod
is exposed to load and magnetic field along its main axis, and the magnetic induction and strain are measured. The
solid curves in subfigures (a), (b), (d), and (e) represent the direct model simulations for actuation and sensing cases.
As explained above, equally spaced points are chosen on these curves, and are fed to the two inverse models, i.e. the
proposed model and the existing model by Deng and Dapino [28].

When the stress is held constant but the magnetic field is changing in one dimension, the inversion procedure
must be independent of the sign of the field inputs. This is demonstrated in Fig. 1(c), as the iteration counts for
both inversion models are symmetric about the origin. In addition, Fig. 1(c) and (f) depict the maximum number of
iterations that the two inverse models take, respectively, at constant stress and magnetic field states. Both the existing
and proposed inverse models are able to solve the inverse magnetomechanical problem effectively. Nonetheless, the
existing approach has a few failures for this 1D case. Furthermore, the proposed approach converges in significantly
fewer iterations than the existing approach. This faster rate of convergence is expected, as the proposed model employs
exact derivative terms, while the existing approach employs approximate terms, development of which is a premise of
the quasi-Newton method.

5.1. Choice of the iterative step size α

For both the quasi-Newton method and the damped Newton method, the step size α, present for example in Eq.
(6), must be calculated at each iteration. There is a variety of line search algorithms for this purpose, but they fall
into two major categories: exact and approximate. For the simulations, an exact line search based on Golden Section
Search (see, for example, Ref. [36]) is used. However, an approximate line search is often sufficient, and can save
much computational time. This will be the subject of future work.

5.2. Choice of start solution

Start solutions have a major role in the success of iterative techniques, such as quasi- or damped Newton methods.
Even if chosen within the convergence zone, an ill-conditioned start solution (i.e., one with a high condition number)
may lead to a long runtime. As shown in previous sections, the exact derivative terms, even if compact, are unwieldy,
and computationally expensive to evaluate. Even if they lead to minimal number of iterations, they are most efficient
when used for local rather than global convergence. Therefore, it is more efficient to carry on a preprocessing
step in which a less robust but faster approach such as quasi-Newton method is used to generate a reasonable
approximate solution. Then, feeding this solution as a start solution to the main algorithm would save computational
time. Alternatively, one may use continuation, which is self-constructive, as it automatically generates a reasonably
well-conditioned start solution through solving a series of intermediate subproblems.

For the simulations, zero start solutions are used. However, the inverse model is devised for use in a finite-element
framework. In such a case, the system state is known at some instant, and this state is a good candidate as a start
solution for the next state. This feature is useful for control applications. In what follows, the integration of the
proposed inverse model within a finite-element framework is demonstrated.

6. Fully coupled simulation of a magnetostrictive composite plate actuator

The Galfenol–aluminum composite actuator shown in Fig. 2 is the schematic view of the sample utilized in the
experimental set-up by Santapuri et al. [37].
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Fig. 1. Direct and inverse model simulations for ⟨100⟩ Fe81.5Ga18.5 grown with FSZM for 1D (a), (b), and (c) actuation; and (d), (e), and (f)
sensing. The existing inverse model is that of Deng and Dapino [28], and also Hx, Tx, Bx and Sx are the x-component of the magnetic field, stress,
magnetic induction and strain, respectively.

Fig. 2. Schematic of a Galfenol–aluminum composite structure. The x–y plane of the coordinate system is coincident with the bottom plane of the
Galfenol strip, and the x–z plane is a plane of symmetry (y0 = 0).

In the experiment, the plate was excited using 1D magnetic fields along the Galfenol length, and Cauchy boundary
conditions were imposed at the clamped edge. Input alternating and bias magnetic fields of different amplitudes and
frequencies (ranging from 0.1 to 250 Hz) were generated using a conductive coil, and the displacement data at the
tip of the Galfenol patch (labeled in Fig. 2) was collected. Tari et al. [30] recently presented a reduced 2D model
for this composite plate with the assumption that the magnetic field distribution throughout the Galfenol volume is
approximately uniform for the small deformations, thus they assumed that the magnetic field is known. However, we
lift this assumption in this work, and simulate this composite actuator in full 3D.

6.1. The governing equations

The governing equations describe structural behavior, electromagnetic behavior, and material constitutive behavior.
Following Tari et al. [30], the structural behavior is described by the weak form of the 3D Navier’s equation as

Vtot


ρ

∂2u
∂t2 · δu + c

∂u
∂t

· δu + T · δ S


dV =


∂Vtot

t · δu d∂V +


Vtot

fB · δu dV, (40)

where t is the time, ρ is the density, c represents the damping coefficient, and T and fB denote, respectively, the stress
tensor and external body force acting on the mechanical domain Vtot ; the traction vector t acts on the boundary ∂Vtot ;
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Table 2
Galfenol parameters from Tari et al. [30].

Par. Ms (kA/m) E (GPa) λ100 (ppm) λ111 (ppm) c0 ρ (kg/m3)

Value 1273.24 74.50 173.33 −6.67 0.33 7870.00

Par. K (kJ/m3) K100 (J/m3) Ω (J) G (GPa) ν c (N.s/m)

Value 30.00 −250.00 1200.00 120.00 0.30 0.10

and S and u represent, respectively, the strain tensor and displacement vector at each point in the domain Vtot with the
fact that

S =
1
2


∇u + ∇uT


. (41)

Following Chakrabarti and Dapino [27], the magnetic behavior is described by the weak form of a modified form
of Ampere’s law as

VB


H · δ B + σ

∂A
∂t

· δA


dV =


∂VB

(H × n) · δA d∂V +


VB

Js · δA dV, (42)

where VB is the electromagnetic domain and ∂VB is its boundary with the outer normal n; Js is the source current
density (applied through a coil) and σ is the conductivity of the material; and finally, H is the magnetic field vector, B
is the magnetic flux density vector, and A is the magnetic potential vector defined by

B = ∇ × A. (43)

Finally, the passive material behavior is governed by the constitutive Hooke’s law

Tp = Cp · Sp, (44)

where the subscript p signifies the passive domain, and Cp is the second rank modulus tensor.

6.2. Solution approach

As employed by Tari et al. [30], the material parameters for aluminum are E = 69 GPa, ν = 0.3, and
ρ = 2700 kg/m3; and those for Galfenol are tabulated in Table 2.

The equations given in the foregoing subsection are implemented in finite-element software COMSOL
Multiphysics (version 4.4), and the constitutive model for Galfenol, given in Section 3, together with the inversion
scheme developed in Section 2 are coded as MATLAB m-files and supplied to COMSOL. In particular, the weighting
factors are taken as wb = 1, ws = 106, wh = 103, and wt = 106. Depicted in Fig. 3, the actuator consists of the plate,
a drive coil, and air volume sufficiently large so that the magnetic potential is negligible at the outer boundaries. The
coil is the COMSOL’s multi-turn circular coil with 800 turns and wire cross-sectional area of 10−6 m2. In addition,
user-controlled mesh is used: general physics for the plate, and free tetrahedral for the remaining constituents, so that
the system attained total of 155,607 degrees of freedom. A harmonic current of the form I (t) = I0 sin(2πωt) A is
given as input to the coil, which creates magnetic field mainly along the plate length. The composite plate’s behavior
is simulated using COMSOL’s BDF time-dependent solver for different values of input current amplitude I0 and
frequency ω. As demonstrated in the following subsections, the model is convergent for the entire simulation cases.

6.3. Simulation results

Fig. 4 illustrates the Galfenol tip displacement curves obtained from the simulations for the input current amplitude
of I0 = 0.8 A and frequency of ω = 50 Hz for two periods. As expected, there is negligible displacement in the y
direction, while maximum displacement is observed in the z direction. Also, there is a positive displacement in the
x direction, while a negative displacement in the z direction, as the Galfenol strip elongates and bends the plate
downward.
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Fig. 3. Magnetostrictive plate actuator setup in COMSOL: (a) geometry, and (b) mesh.

Fig. 4. Galfenol tip displacements with I0 = 0.8 A and ω = 50 Hz for two periods: (a) and (b) x-component; (c) and (d) y-component; and
(e) and (f) z-component.

Fig. 5 depicts the obtained magnetic flux density and magnetic field simulation data for the running case. Even
though the driving coil creates an external magnetic field predominantly along the x direction, the magnetic field and
flux density components along all of the three x , y, and z axes inside Galfenol are at present. This is due to the stress
effects in response to the Galfenol elongation, and also the boundary conditions imposed at the interface between the
Galfenol strip and aluminum plate. In addition, the z components of the magnetic field and flux density shown in
Fig. 5(c) are linearly dependent. This was expected as, the Galfenol strip is rather thin in the z direction compared to
the other directions. This linear dependence paves the way for model reduction and gaining computational efficiency
in the future.

6.3.1. Effect of change of input current amplitude
Fig. 6 shows the obtained displacement, magnetic flux density, and magnetic field simulation data for the input

current amplitudes of I0 ∈ {0.6, 0.8, 1.0} A and frequency of ω = 50 Hz for two periods. As shown in Fig. 6(c),
Galfenol tip’s displacement in the y direction, as expected, is zero and independent of the current amplitude. However,
an increase in the current amplitude does increase the deflection in the remaining directions. For instance, Galfenol
tip’s maximum absolute displacement is (0.081;0;0.493) µm for I0 = 0.6 A, and increases 84% and 63% for the
two consecutive 0.2 A increase in the current magnitude, i.e. I0 = 0.8 A and I0 = 1.0 A, respectively. Likewise,
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Fig. 5. Magnetic flux density–magnetic field curves at the Galfenol tip with I0 = 0.8 A and ω = 50 Hz for two periods: (a) x-component,
(b) y-component, and (c) z-component.

Fig. 6. Displacement–current and magnetic flux density–magnetic field simulation curves at the Galfenol tip for different current magnitudes at
ω = 50 Hz for two periods: (a) and (b) x-component; (c) and (d) y-component; and (e) and (f) z-component.

an increase in the current magnitude increases magnetic flux density. Shown in Fig. 6(b), (d), and (f), the maximum
magnetic flux density obtained at the Galfenol tip is B = (0.062; 0.058; 0.051) T, which increases 33% and 24% for
the same aforementioned increases in the current magnitude.

6.3.2. Effect of change of input current frequency
Fig. 7 illustrates the obtained displacement, magnetic flux density, and magnetic field simulation data for the input

current frequencies of ω ∈ {50, 100, 150} Hz and amplitude of I0 = 0.8 A for two periods. Similar to current
amplitude, Galfenol tip’s displacement in the y direction is zero and independent of the current frequency. On the
other hand, while an increase in the current amplitude noticeably increases the x and z deflection components, an
increase in the current frequency only marginally increases these deflection components but substantially intensifies
hysteresis, which is signified by the enclosed area in each diagram.

The input current frequency has a similar effect on magnetic flux density; As shown in Fig. 7(b) and (d), an
increase in the current frequency increases hysteresis in the x and y magnetic flux density components. Nevertheless,
the z component of magnetic flux density is rather independent of the current frequency. This is due to the slenderness
of the Galfenol strip in the z direction.

7. Conclusions

A fully coupled inverse model for arbitrary smart materials was presented. The model requirement is a continuous
and second order differentiable direct model for any chosen smart material. The approach is globally convergent,
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Fig. 7. Displacement–current and magnetic flux density–magnetic field simulation curves at the Galfenol tip for different frequencies at I0 = 0.8 A
for two periods: (a) and (b) x-component; (c) and (d) y-component; and (e) and (f) z-component.

which makes it ideal for use in finite-element frameworks. The premise of the existing iterative system models is
to constitute recursive correction formulae based on first order approximations of some specified error functions.
However, to achieve a faster convergence rate, we formulated the problem in an optimization framework through
defining a novel scalar error function, and took second order approximations into account. A continuation approach
was then developed to achieve global convergence for arbitrary input parameters.

Magnetostrictive Galfenol was chosen to illustrate the effectiveness of the inverse model, and fully compact
analytical derivations of the Jacobian and Hessian matrices were presented for an existing Galfenol model. The
convergence rate of the proposed approach was found to be superior to that of an existing inverse model, which is
based on quasi-Newton method. An efficient line search algorithm and a carefully developed start solution are needed
to gain further efficiency. As for the latter, start solutions are obviated when using continuation, which generates them
automatically. Alternatively, when using the model in a finite-element framework, the current system state can be used
as a reasonable candidate for the start solution.

In addition, the inverse model’s robustness was successfully benchmarked through integrating the model into a
finite-element framework to simulate an aluminum–Galfenol composite plate actuator. In contrast to an earlier work,
we did not make any assumption regarding the distribution of magnetic field inside the magnetostrictive material, and
rather conducted a full 3D, fully coupled simulation.
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Appendix. Detailed derivation of a selection of the derivative terms

The derivatives of the Gibbs free energy (Eq. (9)) have major roles in the analytical reduction of the derivation of
the subsequent derivative terms, which have already been presented in the foregoing sections. Therefore, a step by
step derivation procedure for such key terms is given as follows.

First, letting tr() stand for the trace of a matrix, we rewrite the Gibbs free energy given by Eq. (9) as
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which leaves the direct model unchanged, as we are shifting the base energy of all of the easy axes the same amount.
Differentiating the foregoing equation with respect to field and stress gives
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where we use the identities

∂
k
m

∂ Hp
·

k
m= 0 and

∂
k
m

∂Ti
·

k
m= 0, (A.4)

which originate from differentiating Eq. (15b) with respect to field and stress.
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