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ABSTRACT
A globally convergent and fully coupled magnetomechanical

model for 3D magnetostrictive systems is presented. In magne-
tostrictive actuators, magnetic field and stress inputs generate
magnetic flux density and strain. We refer to models that follow
this scheme as direct models (no relation to the direct magne-
tomechanical effect). In certain design and control situations, in-
verse models are necessary in which the magnetic field and stress
are found from specified magnetic flux density and strains. This
inversion typically involves an iterative procedure, which may be
prone to convergence issues. An inverse model approach is pro-
posed for arbitrary magnetostrictive materials. The inversion re-
quirement is a continuous and second order differentiable direct
model for any chosen magnetostrictive material. The approach is
globally convergent, which makes it ideal for use in finite element
frameworks. The premise of the proposed iterative system model
is to constitute a recursive correction formula based on second
order approximations of a novel scalar error function which al-
lows to achieve a faster convergence rate. A continuation ap-
proach is then used to achieve global convergence for arbitrary
input parameters. To illustrate, Galfenol is chosen as the mag-
netostrictive material, and analytical derivations of the Jacobian
and Hessian matrices are presented. Finally, the computational
efficiency of the proposed approach is shown to compare favor-
ably against existing models.

∗Address all correspondence to this author.

NOMENCLATURE
xi The ith element of vector x.
[x1;x2] Column vector x with elements x1 and x2.
Ai j The (i, j)th element of matrix A.
|A| Determinant of matrix A.
tr(A) Trace of matrix A.
I The 3×3 Identity matrix.
R The set of the real numbers.
× Vector cross product operator.
· Vector dot product operator.
T Vector/matrix transpose operator.

1 Introduction
Magnetostrictive materials undergo dimensional changes

when exposed to a magnetic field, and exhibit magnetization
changes when they experience external stress fields. Two com-
mon magnetostrictive materials are terbium-dysprosium-iron
and iron-gallium alloys, known commonly as Terfenol-D and
Galfenol, respectively. The former has relatively large mag-
netostriction (≈ 1600 ppm) at a moderate magnetic field (≈
200 kA/m), making it well suited for actuator designs; see for
example Chakrabarti and Dapino [1]. Referring to Ref. [2],
Galfenol exhibits moderate magnetostriction (≈ 350 ppm) at
low magnetic fields (≈ 8 kA/m); possesses high tensile strength
(≈ 500 MPa); and demonstrates limited variation in magnetome-
chanical properties for temperatures between -20 and 80 ◦C. If
composed of less than 20% gallium, Galfenol retains the machin-
ability and ductility of iron, thus it can easily be produced in
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sheets or wires; welded, threaded or extruded into unprecedented
complex geometries to gain significant load-bearing capabilities.
In contrast, Terfenol-D is brittle thus always requiring stress bi-
asing to avoid tension. As per Ref. [3], Galfenol exhibits very
low hysteresis, and a high Curie temperature (675 ◦C). Also, the
constituent materials for the production of Galfenol are rather
inexpensive. See Atulasimha and Flatau [4] for a review of iron-
gallium alloys.

To date, several methods exist to efficiently model the be-
havior of magnetostrictive materials for arbitrary combination
of applied stress and magnetic fields. At one extreme, a phe-
nomenological approach fits a curve or surface to measure-
ment data, which provides efficiency but ignores the under-
lying physics. At the other extreme, micromagnetic models
consider all known energies and are very accurate. Macro-
scopic models use an intermediate approach by relating the
macroscopic response of the material to simplified descriptions
of the microscopic behavior. Macroscopic models, therefore,
strike a balance between efficiency, accuracy, and predictive ca-
pability. The classical macroscopic models are the Preisach
model [5], Globus model [6], Jiles-Atherton model [7], and
Stoner-Wohlfarth model [8]. Ref. [9] compares these models in
detail.

For Terfenol-D, in particular, Carman and Mitrovic [10]
formulated a model by expanding the Gibbs free energy in a
truncated Taylor series, and found the coefficients experimen-
tally. Later, Zheng and Sun [11] took higher order terms in
the expansion into account to improve the applicability of the
model for larger magnetic field inputs. Recently, a fully cou-
pled 3D energy-averaged model was presented by Chakrabarti
and Dapino [1].

Armstrong [12] proposed an incremental hysteretic
magnetoelastic constitutive theory of pseudo-cubic ferro-
magnetostrictive alloys that can be applied to both Terfenol-D
and Galfenol. The bulk magnetization and magnetostriction are
the expected values of a large collection of magnetic moments.
The probability density function is a Boltzmann distribution,
where minimum energy orientations are more probable. The
Armstrong model is computationally inefficient, as it searches
for global energy minima. Atulasimha et al. [13] improved
efficiency by considering only 98 fixed orientations. Evans and
Dapino [14] greatly enhanced the previous model by solving
for the local minima along only six easy directions of Galfenol.
The computational cost of this model was further reduced by
Chakrabarti [15]. However, this model is prone to singularities,
which can burden computation, especially when the model is
integrated into finite element solvers. Tari et al. [16] recently
addressed this shortcoming through a reformulation of the model
with an exact solution procedure.

In magnetostrictive actuators, magnetic field and stress in-
puts generate magnetic flux density and strain. The aforemen-
tioned models follow this scheme, and we call such models as

direct models. However, in certain design and control situa-
tions, inverse models are necessary in which the magnetic field
and stress are found from specified magnetic flux density and
strains. This inversion typically involves an iterative procedure.
Chakrabarti and Dapino [17] proposed an inverse model, based
on the direct model given in Ref. [15], that describes the full non-
linear coupling in 3D Galfenol transducers. However, this model
is susceptible to convergence issues, which is drastically allevi-
ated by the further developments of Deng and Dapino [18].

The premise of the foregoing iterative system models is to
constitute recursive correction formulae based on first order ap-
proximations of some specified error functions. However, the
aim of this paper is to achieve a faster convergence rate by taking
second order approximations into account. To do this, we formu-
late the problem in an optimization framework through defining
a novel scalar error function, which allows to effectively incor-
porate Hessian (matrix of the second order derivatives) of the
direct model in the formulation. A continuation approach is then
used to achieve global convergence for arbitrary input parame-
ters. The inversion requirement is a continuous and second order
differentiable direct model for any chosen magnetostrictive ma-
terial. The approach is globally convergent, which makes it ideal
for use in finite element frameworks. While the method is devel-
oped for arbitrary magnetostrictive materials, Galfenol is chosen
to illustrate the inverse model, and compact analytical deriva-
tions of the Jacobian and Hessian matrices corresponding to the
direct model given by Tari et al. [16] are presented. Finally, con-
vergence rate of the proposed approach is compared successfully
to that of Deng and Dapino [18] for the chosen material.

The rest of the paper is organized as follows. A globally
convergent system model for arbitrary magnetostrictive materi-
als is outlined next. A brief review of a recent direct model for
Galfenol is reviewed in Section 3. The derivative terms of this
direct model that are required by the inverse model are derived
analytically in Section 4, which is followed by a discussion on
the proposed model performance. Finally, conclusions are given.

2 Magnetostrictive System Model featuring Continu-
ation
Let H = [H1;H2;H3] be the magnetic field vector, and

T = [T1;T2;T3;T4;T5;T6] be the symmetric stress tensor writ-
ten in contracted vector notation with the convention T1 = T11,
T2 = T22, T3 = T33, T4 = T12, T5 = T23, and T6 = T13. Let, fur-
ther, B(H,T) = [B1;B2;B3] and S(H,T) = [S1;S2;S3;S4;S5;S6]
be given continuous and differentiable direct models for, respec-
tively, magnetic flux density and strain vectors, which take mag-
netic field and stress vectors as input. Finally, let B∗ and S∗ de-
note any discrete magnetic flux density and strain vectors speci-
fied from measurements or finite element simulations.

The goal is to find the unknown magnetic field and stress
vectors H∗ and T∗ that give rise to B∗ and S∗. That is, the goal is
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to find H and T that satisfy the equations

[
B(H,T)−B∗

S(H,T)−S∗

]
= 0. (1)

Our strategy to solving the foregoing system of equations
rests on “continuation”, which is an iterative approach that offers
global convergence; see Refs. [19,20] for applications of contin-
uation to kinematic design and analysis of rigid mechanisms. Let
us rewrite the foregoing vector of error functions as a homotopy

[
B(H,T)−Bτ

S(H,T)−Sτ

]
,[

B(H,T)− ((1− τ)B(H0,T0)+ τB∗)
S(H,T)− ((1− τ)S(H0,T0)+ τS∗)

]
= 0,

(2)

where H0 and T0 are known start solutions, and τ ∈ [0,1] is the
continuation parameter. The idea of the continuation is to break
the problem into a series of more manageable subproblems, and
to solve them sequentially. In doing so, the solutions to the pre-
vious subproblem is used as the start solutions to the current sub-
problem. In essence, continuation initiates at the start solutions
H0 and T0 at τ = 0, and traces the solution curves of H(τ) and
T(τ) as τ is incremented, until τ = 1 at which point the desired
solutions H∗ and T∗ are obtained.

To solve each subproblem effectively, we solve the mini-
mization problem

Minimize f (H,T)
H∈R3, S∈R6

, (3)

where f is the scalar objective error function

f (H,T) =
1
2

w2
b [B(H,T)−Bτ ]T [B(H,T)−Bτ ]

+
1
2

w2
s [S(H,T)−Sτ ]T [S(H,T)−Sτ ] ,

(4)

where wb and ws are weighting factors chosen to effectively com-
bine the error contributions of magnetic flux density and strain,
respectively. Expanding f in a second order Taylor’s series as

f (H+∆H,T+∆T)≈

f (H,T)+

[J f ]T︷ ︸︸ ︷[
∂ f (H,T)

∂H
;

∂ f (H,T)
∂T

]T

[∆H;∆T]

+
1
2
[∆H;∆T]T

[H f ]︷ ︸︸ ︷ ∂ 2 f (H,T)
∂H∂H

∂ 2 f (H,T)
∂H∂T

∂ 2 f (H,T)
∂T∂H

∂ 2 f (H,T)
∂T∂T

 [∆H;∆T],

(5)

and minimizing it for the incremental magnetic field and stress
vectors ∆H and ∆T, may give a recursive correction formula
based on the damped Newton method as

[H(i+1);T(i+1)] = [H(i);T(i)]−αi[H f (i)]−1[J f (i)], (6)

where i is the iteration index, and J f and H f are called the Ja-
cobian (gradient vector for 1D inputs) and Hessian matrices, re-
spectively. When the derivative terms are known, the algorithm
initiates at given start solutions H(0) and T(0), which get cor-
rected at successive iterations, until the algorithm is terminated
when the residual error is below a predetermined threshold. At
this point, the desired Hτ and Tτ are obtained for each subprob-
lem.

For convenience, the derivatives in eq. (5) or (6) are derived
in indicial where it is assumed that the subscripts p,q∈{1, . . . ,3}
and i, j ∈ {1, . . . ,6}. For brevity, f (H,T), B(H,T) and S(H,T)
are abbreviated, respectively, as f , B, and S. Accordingly, the
first order derivatives are

∂ f
∂Hp

= wh

(
w2

b [B−Bτ ]T
∂B

∂Hp
+w2

s [S−Sτ ]T
∂S

∂Hp

)
, (7a)

∂ f
∂Ti

= wt

(
w2

b [B−Bτ ]T
∂B
∂Ti

+w2
s [S−Sτ ]T

∂S
∂Ti

)
, (7b)

and the second order derivative are
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∂ 2 f
∂Hp∂Hq

= w2
h

(
w2

b [B−Bτ ]T
∂ 2B

∂Hp∂Hq
+w2

b
∂BT

∂Hp

∂B
∂Hq

+w2
s [S−Sτ ]T

∂ 2S
∂Hp∂Hq

+w2
s

∂ST

∂Hp

∂S
∂Hq

)
, (8a)

∂ 2 f
∂Ti∂Tj

= w2
t

(
w2

b [B−Bτ ]T
∂ 2B

∂Ti∂Tj
+w2

b
∂BT

∂Ti

∂B
∂Tj

+w2
s [S−Sτ ]T

∂ 2S
∂Ti∂Tj

+w2
s

∂ST

∂Ti

∂S
∂Tj

)
, (8b)

∂ 2 f
∂Hp∂Ti

= whwt

(
w2

b [B−Bτ ]T
∂ 2B

∂Hp∂Ti
+w2

b
∂BT

∂Hp

∂B
∂Ti

+w2
s [S−Sτ ]T

∂ 2S
∂Hp∂Ti

+w2
s

∂ST

∂Hp

∂S
∂Ti

)
, (8c)

where wh and wt are scaling factors for magnetic field and stress
vectors. Note that the derivatives of the direct magnetic flux den-
sity and stress models present in the foregoing equations must be
known. These terms are material specific, and in the following,
we take Galfenol as a case study, and after a brief review of a di-
rect model for Galfenol, the corresponding derivative terms are
presented analytically.

3 Review of calculation of 3D magnetostriction and
magnetic flux density for Galfenol
Tari et al. [16] recently proposed an exact solution proce-

dure for a reformulation of the discrete energy-averaged model,
proposed by Evans and Dapino [14], that computes the macro-
scopic 3D magnetic flux density B and strain S by minimizing the
Gibbs free energy that is defined locally about each easy crystal-
lographic direction. Magnetocrystalline (anisotropy), magnetoe-
lastic (magnetomechanical coupling), and magnetic field (Zee-
man) energies constitute the Gibbs free energy in the vicinity of
the kth easy direction written as

k
G=

1
2

k
m ·K k

m −(K
k
c +µ0MsH)· k

m +
k

K0, k ∈ ±{1, . . . ,
r
2
},
(9)

where K and K0 are anisotropy energy constants; m =
[m1;m2;m3] is the magnetization direction having unit magni-
tude; r is the number of easy crystallographic directions (c: the
⟨100⟩ family of six directions for Galfenol); µ0 and Ms are, re-
spectively, the vacuum permeability and saturation magnetiza-
tion; and the magnetic stiffness matrix is given by

K =−3

λ100T1 λ111T4 λ111T6
λ111T4 λ100T2 λ111T5
λ111T6 λ111T5 λ100T3

 , (10)

where λ100 and λ111 are magnetostriction constants.
The macroscopic 3D magnetic flux density and strain vec-

tors are defined as weighted sums of the response due to the r
minimum energy directions as

B = µ0(H+M) = µ0(H+Ms

±r/2

∑
k=±1

k

ξ hys
k
m), (11)

S = sT+λλλ = sT+
±r/2

∑
k=±1

k

ξ hys

k
λλλ , (12)

where
k

ξ hys and
k
λλλ denote, respectively, the averaged hysteretic

volume fraction and the magnetostriction tensor written in vector
notation for the kth domain; s stands for the 6× 6 mechanical
compliance matrix. Letting Ω be a smoothing factor, the former
is calculated as a Boltzman-type, energy-weighted average as

k

ξ hys= exp

−
k
G
Ω

 ±r/2

∑
n=±1

exp

( n
G
Ω

)
, (13)

and the magnetostriction tensor components are given as

k
λ uu=

3
2

λ100(
k

mu
k

mu −c0),

k
λ uv= 3λ111

k
mu

k
mv, u ̸= v,

(14)

where u,v ∈ {1,2,3}, and c0 is a nondimensional stiffness pa-
rameter.

The unit magnitude, minimum energy directions
k
m are cal-

culated from the inhomogeneous eigenvalue problem

(K−
k
γ I)

k
m = K

k
c +µ0MsH, (15a)

k
m · k

m = 1, (15b)
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where
k
γ is the unknown Lagrange multiplier corresponding to

the kth minimum energy direction.

Letting Q be the orthogonal matrix containing the eigenvec-
tors of K (with the eigenvalues λ1, λ2, and λ3), Tari et al. [16]
reported that

k
m= Q


1

λ1−
k
γ

0 0

0 1

λ2−
k
γ

0

0 0 1

λ3−
k
γ

QT(K
k
c +µ0MsH), (16)

where
k
γ is obtained from the sixth order polynomial:

k
γ 6 +2(λ̄2 + λ̄3)

k
γ 5 +

(
λ̄ 2

2 +4λ̄2λ̄3 + λ̄ 2
3 − Q̄1

−Q̄2 − Q̄3
) k

γ 4 +2
(
λ̄ 2

2 λ̄3 + λ̄2λ̄ 2
3 − λ̄2Q̄1

−λ̄3Q̄1 − λ̄3Q̄2 − λ̄2Q̄3
) k

γ 3 +
(
λ̄ 2

2 λ̄ 2
3 − λ̄ 2

2 Q̄1

−4λ̄2λ̄3Q̄1 − λ̄ 2
3 Q̄1 − λ̄ 2

3 Q̄2 − λ̄ 2
2 Q̄3

) k
γ 2

−2λ̄2λ̄3Q̄1
(
λ̄2 + λ̄3

) k
γ −λ̄ 2

2 λ̄ 2
3 Q̄1 = 0,

(17)

with
k
γ= λ1−

k
γ , λ̄2 = λ2 − λ1, λ̄3 = λ3 − λ1, and

[
√

Q̄1;
√

Q̄2;
√

Q̄3]
T = QT(K

k
c +µ0MsH). When eq. (17)

has multiple real solutions, the one that results in the lowest
Gibbs energy is selected.

4 Derivative terms for the direct model for Galfenol

This section presents analytical derivations of the Jacobian
and Hessian terms for the direct model given in the previous sec-
tion for Galfenol. Note that the same indicial notation, as before,
is adopted.

4.1 Jacobian terms

The Jacobian terms can be obtained from differentiating
eqs. (11) and (12) with respect to Hp and Ti as

∂B
∂Hp

= µ0
p
e +µ0Ms

±r/2

∑
k=±1

∂
k

ξ hys

∂Hp

k
m +

k

ξ hys
∂

k
m

∂Hp

 , (18a)

∂B
∂Ti

= µ0Ms

±r/2

∑
k=±1

∂
k

ξ hys

∂Ti

k
m +

k

ξ hys
∂

k
m

∂Ti

 , (18b)

and

∂S
∂Hp

=
±r/2

∑
k=±1

∂
k

ξ hys

∂Hp

k
λλλ +

±r/2

∑
k=±1

k

ξ hys
∂

k
λλλ

∂Hp
, (19a)

∂S
∂Ti

= s
i
e +

±r/2

∑
k=±1

∂
k

ξ hys

∂Ti

k
λλλ +

±r/2

∑
k=±1

k

ξ hys
∂

k
λλλ

∂Ti
, (19b)

where
p
e and

i
e are, respectively, 3- and 6-dimensional unit vectors

with one as their pth and ith components.
The derivatives of the averaged hysteretic volume fractions

occurring in eqs. (18) and (19) are found upon differentiating
eq. (13) with respect to field and stress, respectively, and simpli-
fying the results as

∂
k

ξ hys

∂Hp
=

µ0

Ω

k

ξ hys

(
Ms

k
mp −Mp

)
, (20a)

∂
k

ξ hys

∂Ti
=

1
Ω

k

ξ hys

(
k
λ i −λ i

)
. (20b)

The remaining derivative terms in eq. (18) can be obtained
by differentiating the inhomogeneous eigenvalue problem (15)
with respect to field and stress, and solving the resulting equa-
tions as

∂
k
m

∂Hp
= [K−

k
γ I]−1(

∂
k
γ

∂Hp

k
m +µ0Ms

p
e), (21a)

∂
k
m

∂Ti
= [K−

k
γ I]−1(

∂
k
γ

∂Ti

k
m −∂K

∂Ti

k
m), (21b)

where
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∂
k
γ

∂Hp
=−µ0Ms

p
e ·[K−

k
γ I]−1 k

m
k
m ·[K−

k
γ I]−1 k

m
, (22a)

∂
k
γ

∂Ti
=

∂K
∂Ti

k
m ·[K−

k
γ I]−1 k

m
k
m ·[K−

k
γ I]−1 k

m
. (22b)

Following a simplification procedure, the foregoing results
can be combined as

∂
k
m

∂Hp
=−µ0Ms

k
Γ

k
m ×

[
[K−

k
γ I](

k
m ×

p
e)
]
, (23a)

∂
k
m

∂Ti
=

k
Γ

k
m ×

[
[K−

k
γ I](

k
m ×∂K

∂Ti

k
m)

]
, (23b)

where

k
Γ=

|K−
k
γ I|−1

k
m ·[K−

k
γ I]−1 k

m
.

Finally, the remaining derivative terms in eq. (19) can be
obtained by differentiating eq. (14) with respect to field and stress
as

∂
k
λ uu

∂Hp
= 3λ100

k
mu

∂ k
mu

∂Hp
,

∂
k
λ uv

∂Hp
= 3λ111

 k
mu

∂ k
mv

∂Hp
+

k
mv

∂ k
mu

∂Hp

 , u ̸= v, (24a)

∂
k
λ uu

∂Ti
= 3λ100

k
mu

∂ k
mu

∂Ti
,

∂
k
λ uv

∂Ti
= 3λ111

 k
mu

∂ k
mv

∂Ti
+

k
mv

∂ k
mu

∂Ti

 , u ̸= v. (24b)

4.2 Hessian terms
The Hessian terms can be obtained from differentiating

eq. (18) with respect to Hp and Ti as

∂ 2B
∂Hp∂Hq

= µ0Ms

±r/2

∑
k=±1

 ∂ 2
k

ξ hys

∂Hp∂Hq

k
m +

∂
k

ξ hys

∂Hp

∂
k
m

∂Hq

+
k

ξ hys
∂ 2 k

m
∂Hp∂Hq

+
∂

k

ξ hys

∂Hq

∂
k
m

∂Hp

 ,

(25)

∂ 2B
∂Ti∂Tj

= µ0Ms

±r/2

∑
k=±1

∂ 2
k

ξ hys

∂Ti∂Tj

k
m +

∂
k

ξ hys

∂Ti

∂
k
m

∂Tj

+
k

ξ hys
∂ 2 k

m
∂Ti∂Tj

+
∂

k

ξ hys

∂Tj

∂
k
m

∂Ti

 ,

(26)

and

∂ 2B
∂Hp∂Ti

= µ0Ms

±r/2

∑
k=±1

 ∂ 2
k

ξ hys

∂Hp∂Ti

k
m +

∂
k

ξ hys

∂Hp

∂
k
m

∂Ti

+
k

ξ hys
∂ 2 k

m
∂Hp∂Ti

+
∂

k

ξ hys

∂Ti

∂
k
m

∂Hp

 ,

(27)

and differentiating eq. (19) with respect to Hp and Ti as

∂ 2S
∂Hp∂Hq

=
±r/2

∑
k=±1

 ∂ 2
k

ξ hys

∂Hp∂Hq

k
λλλ +

∂
k

ξ hys

∂Hp

∂
k
λλλ

∂Hq

+
k

ξ hys
∂ 2

k
λλλ

∂Hp∂Hq
+

∂
k

ξ hys

∂Hq

∂
k
λλλ

∂Hp

 ,

(28)
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∂ 2S
∂Ti∂Tj

=
±r/2

∑
k=±1

∂ 2
k

ξ hys

∂Ti∂Tj

k
λλλ +

∂
k

ξ hys

∂Ti

∂
k
λλλ

∂Tj

+
k

ξ hys
∂ 2

k
λλλ

∂Ti∂Tj
+

∂
k

ξ hys

∂Tj

∂
k
λλλ

∂Ti

 ,

(29)

and

∂ 2S
∂Hp∂Ti

=
±r/2

∑
k=±1

 ∂ 2
k

ξ hys

∂Hp∂Ti

k
λλλ +

∂
k

ξ hys

∂Hp

∂
k
λλλ

∂Ti

+
k

ξ hys
∂ 2

k
λλλ

∂Hp∂Ti
+

∂
k

ξ hys

∂Ti

∂
k
λλλ

∂Hp

 .

(30)

The second order derivatives of the averaged hysteretic vol-
ume fractions in the foregoing equations may be obtained from
differentiating eq. (20) with respect to field and stress as

∂ 2
k

ξ hys

∂Hp∂Hq
=

µ0

Ω

∂
k

ξ hys

∂Hq

(
Ms

k
mp −Mp

)
+Ms

k

ξ hys
∂

k
mp

∂Hq


− µ0Ms

Ω

k

ξ hys

±r/2

∑
n=±1

∂
n

ξ hys

∂Hq

n
mp +

n

ξ hys
∂

n
mp

∂Hq

 ,

(31)

∂ 2
k

ξ hys

∂Ti∂Tj
=

1
Ω

∂
k

ξ hys

∂Tj

(
k
λ i −λ i

)
+

k

ξ hys
∂

k
λ i

∂Tj


− 1

Ω

k

ξ hys

±r/2

∑
n=±1

∂
n

ξ hys

∂Tj

n
λ i +

n

ξ hys
∂

n
λ i

∂Tj

 ,

(32)

and

∂ 2
k

ξ hys

∂Hp∂Ti
=

µ0

Ω

∂
k

ξ hys

∂Ti

(
Ms

k
mp −Mp

)
+Ms

k

ξ hys
∂

k
mp

∂Ti


− µ0Ms

Ω

k

ξ hys

±r/2

∑
n=±1

∂
n

ξ hys

∂Ti

n
mp +

n

ξ hys
∂

n
mp

∂Ti

 .

(33)

To obtain a most simplified version of the remaining sec-
ond order derivative terms in eqs. (25)-(27), we differentiate the
inhomogeneous eigenvalue problem (15) twice with respect to
field and stress, and solve the resulting equations for the emerg-
ing intermediate unknowns, and after a detailed simplification
procedure, we finally have

∂ 2 k
m

∂Hp∂Hq
=−

k
Γ |K−

k
γ I|

 ∂
k
m

∂Hp
· ∂

k
m

∂Hq

 [K−
k
γ I]−1 k

m

−
k
Γ

k
m ×[K−

k
γ I]

 k
m ×

 ∂
k
γ

∂Hp

∂
k
m

∂Hq
+

∂
k
γ

∂Hq

∂
k
m

∂Hp

 ,

(34)

∂ 2 k
m

∂Ti∂Tj
=−

k
Γ |K−

k
γ I|

∂
k
m

∂Ti
· ∂

k
m

∂Tj

 [K−
k
γ I]−1 k

m +
k
Γ

k
m ×

[K−
k
γ I]

 k
m ×

[∂K
∂Ti

− ∂
k
γ

∂Ti
I]

∂
k
m

∂Tj
+[

∂K
∂Tj

− ∂
k
γ

∂Tj
I]

∂
k
m

∂Ti

 ,

(35)

and

∂ 2 k
m

∂Hp∂Ti
=−

k
Γ |K−

k
γ I|

 ∂
k
m

∂Hp
· ∂

k
m

∂Ti

 [K−
k
γ I]−1 k

m

+
k
Γ

k
m ×[K−

k
γ I]

 k
m ×

[∂K
∂Ti

− ∂
k
γ

∂Ti
I]

∂
k
m

∂Hp
− ∂

k
γ

∂Hp

∂
k
m

∂Ti

 .

(36)

Finally, the remaining unknown derivative terms in
eqs. (28)-(30) are obtained from differentiating eq. (24) with re-
spect to field and stress as
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∂ 2
k
λ uu

∂Hp∂Hq
= 3λ100

 k
mu

∂ 2 k
mu

∂Hp∂Hq
+

∂ k
mu

∂Hp

∂ k
mu

∂Hq

 ,

∂ 2
k
λ uv

∂Hp∂Hq
= 3λ111

 k
mu

∂ 2 k
mv

∂Hp∂Hq
+

∂ k
mu

∂Hp

∂ k
mv

∂Hq
+

k
mv

∂ 2 k
mu

∂Hp∂Hq
+

∂ k
mv

∂Hp

∂ k
mu

∂Hq

 , u ̸= v,

(37)

∂ 2
k
λ uu

∂Ti∂Tj
= 3λ100

 k
mu

∂ 2 k
mu

∂Ti∂Tj
+

∂ k
mu

∂Ti

∂ k
mu

∂Tj

 ,

∂ 2
k
λ uv

∂Ti∂Tj
= 3λ111

 k
mu

∂ 2 k
mv

∂Ti∂Tj
+

∂ k
mu

∂Ti

∂ k
mv

∂Tj
+

k
mv

∂ 2 k
mu

∂Ti∂Tj
+

∂ k
mv

∂Ti

∂ k
mu

∂Tj

 , u ̸= v,

(38)

and

∂ 2
k
λ uu

∂Hp∂Ti
= 3λ100

 k
mu

∂ 2 k
mu

∂Hp∂Ti
+

∂ k
mu

∂Hp

∂ k
mu

∂Ti

 ,

∂ 2
k
λ uv

∂Hp∂Ti
= 3λ111

 k
mu

∂ 2 k
mv

∂Hp∂Ti
+

∂ k
mu

∂Hp

∂ k
mv

∂Ti
+

k
mv

∂ 2 k
mu

∂Hp∂Ti
+

∂ k
mv

∂Hp

∂ k
mu

∂Ti

 , u ̸= v.

(39)

5 Inverse model performance
No other inverse model corresponding to the direct model

that is reviewed in Section 3 has been reported in the litera-
ture. However, for a slightly different direct model, i.e. that
of Ref. [15], Deng and Dapino [18] proposed an inverse model,
which is based on the quasi-Newton method. To gain a sense of
performance of the proposed inverse model, we compare its rate
of convergence against that of Deng and Dapino [18], but provide
no timing information since the direct models are of different for-
mulations. See Ref. [16] for details. For a fair comparison, we

set the continuation parameter τ to one in the proposed model,
so as to disable continuation.

To generate comparative data, magnetic field and stress
spaces are specified, with the constraint that the sampled stress
tensor must have a von Mises stress smaller than 500 MPa, which
is a rough estimate of the ultimate strength of Galfenol. Each
space is discretized and fed to the direct model given in Section
3, to produce magnetic induction and strain spaces. To bench-
mark the inverse models, these datasets are fed to the inverse
models to see whether the original magnetic field and stress in-
puts are returned up to a tolerance of 10−9.

As for the direct model parameters, Evans [14] collected
magnetic induction and strain measurements, for uniaxial actua-
tion and sensing, of textured Fe81.5Ga18.5 grown in ⟨100⟩ along
the rod axis with the Free Stand Zone Melt method (FSZM) at
Etrema Products Inc. For this dataset, Tari et al. reported the
direct model parameters, which are tabulated in Table 1.

TABLE 1: Parameters for the direct model, given in Section 3,
for ⟨100⟩ Fe81.5Ga18.5 grown with FSZM (Tari et al. [16]).

Par. Ms (kA/m) E (GPa) λ100 (ppm) λ111 (ppm)

Value 1242.20 74.49 172.31 0.00

Par. c0 K (kJ/m3) K100 (J/m3) Ω (J)

Value 0.38 35.58 412.18 1330.00

Figure 1 illustrates the direct and inverse model simulations
for 1D magnetic field and stress inputs. The solid curves on sub-
figures (a,b) and (d,e) represent the direct model simulations for
actuation and sensing cases, respectively. As explained above,
equally spaced points are chosen on these curves, and are fed to
the two inverse models, i.e. the proposed model and the existing
model by Deng and Dapino [18].

Sub-figures 1 (c) and (f) depict the maximum number of iter-
ations that the two inverse models take, respectively, at constant
magnetic field and stress states. Both the existing and proposed
inverse models are able to solve the inverse magnetomechanical
problem effectively. Nonetheless, the existing approach has a
few failures for this 1D case. In addition, the proposed approach
converges in fewer iterations than the existing approach. This
faster rate of convergence is expected, as the proposed model
employs exact derivative terms, while the existing approach em-
ploys approximate terms, development of which is a premise of
the quasi-Newton method.

It is worth indicating that, for a 1D case and at constant stress
values, an ideal inversion procedure must be independent of the
sign of the field inputs. This is demonstrated in sub-figure 1 (c),
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FIGURE 1: Direct and inverse model simulations for ⟨100⟩ Fe81.5Ga18.5 grown with FSZM for 1D (a,b,c) actuation, and (d,e,f) sensing.
The existing inverse model is that of Deng and Dapino [18].

as the iteration counts for both inversion models are symmetric
about the origin.

5.1 Choice of the iterative step size α
For both the quasi-Newton method and the damped Newton

method, the step size α , present for example in eq. (6), must be
calculated at each iteration. There is a variety of line search al-
gorithms for this purpose, but they fall into two major categories:
exact and approximate. For the simulations, an exact line search
based on Golden Section Search (see, for example, Ref. [21]) is
used. However, an approximate line search is often sufficient,
and can save much computational time. This will be the subject
of future work.

5.2 Choice of start solution
Start solutions have a major role in the success of iterative

techniques, such as quasi- or damped Newton methods. Even
if chosen within the convergence zone, an ill-conditioned start
solution may lead to a long runtime. As shown in previous sec-
tions, the exact derivative terms, even if compact, are unwieldy,
and computationally expensive to evaluate. Even if they lead to
minimal number of iterations, they are most efficient when used
for local rather than global convergence. Therefore, it is more
efficient to carry on a preprocessing step in which a less robust

but faster approach such as quasi-Newton method is used to gen-
erate a reasonable approximate solution. Then, feeding this so-
lution as a start solution to the main algorithm would save com-
putational time. Alternatively, one may use continuation, which
is self-constructive, as it automatically generates a reasonably
well-conditioned start solution through solving a series of inter-
mediate sub-problems.

For the simulations, zero start solutions are used. However,
the inverse model is devised for use in a finite element frame-
work. In such a case, the system state is known at some instant,
and this state is a good candidate as a start solution for the next
state. This feature is useful for control applications.

6 Conclusions
In certain design and control situations, inverse models are

necessary in which the magnetic field and stress are found from
specified magnetic flux density and strains. This inversion typ-
ically involves an iterative procedure, which may be prone to
convergence issues.

In this paper, a fully coupled magnetomechanical system
model for arbitrary magnetostrictive materials was presented.
The model requirement is a continuous and second order differ-
entiable direct model for any chosen magnetostrictive material.
The approach is globally convergent, which makes it ideal for
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use in finite element frameworks. The premise of the existing
iterative system models is to constitute recursive correction for-
mulae based on first order approximations of some specified er-
ror functions. However, to achieve a faster convergence rate, we
formulated the problem in an optimization framework through
defining a novel scalar error function, and took second order ap-
proximations into account. A continuation approach was then
developed to achieve global convergence for arbitrary input pa-
rameters.

The inverse model is valid for arbitrary magnetostrictive ma-
terials. To illustrate, Galfenol was chosen as the magnetostrictive
material, and fully compact analytical derivations of the Jaco-
bian and Hessian matrices were presented. The convergence rate
of the proposed approach was compared successfully to an ex-
isting system model, which is based on quasi-Newton method.
An efficient line search algorithm and a carefully developed start
solution are needed. As for the latter, start solutions are obvi-
ated when using continuation, which generates them automati-
cally. Alternatively, when using the model in a finite element
framework, the current system state can be used as a reasonable
candidate for the start solution.
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A Detailed derivation of a selection of the Derivative
Terms
The derivatives of the Gibbs free energy (eq. (9)) have major

roles in the analytical reduction of the derivation of the subse-
quent derivative terms, which have already been presented in the
foregoing sections. Therefore, a step by step derivation proce-
dure for such key terms is given as follows.

First, we rewrite the Gibbs free energy given by eq. (9) as

k
G=

1
2

k
m ·K k

m −(K
k
c +µ0MsH)· k

m +
k

K0

+
3
2

c0λ100 tr(T), k ∈ ±{1, . . . ,
r
2
},

(40)

which leaves the direct model unchanged, as we are shifting the
base energy of all of the easy axes the same amount. Differenti-
ating the foregoing equation with respect to field and stress gives

∂
k
G

∂Hp
=

∂
k
m

∂Hp
·K k

m −µ0Msmp − (K
k
c +µ0MsH) · ∂

k
m

∂Hp

=
∂

k
m

∂Hp
· (K k

m −K
k
c −µ0MsH)−µ0Msmp

=
k
γ ∂

k
m

∂Hp
· k
m −µ0Msmp =−µ0Msmp, (41)

and

∂
k
G

∂Ti
=

∂
k
m

∂Ti
·K k

m +
1
2

k
m ·∂K

∂Ti

k
m −∂

k
m

∂Ti
· (K k

c +µ0MsH)

+
3
2

c0λ100
∂ tr(T)

∂Ti

=
∂

k
m

∂Ti
·K k

m +
1
2

k
m ·∂K

∂Ti

k
m −∂

k
m

∂Ti
· (K−

k
γ I)

k
m

+
3
2

c0λ100
∂ tr(T)

∂Ti

=
1
2

k
m ·∂K

∂Ti

k
m +

3
2

c0λ100
∂ tr(T)

∂Ti

=−


3
2 λ100(mk

i mk
i − c0), i ∈ {1,2,3}

3λ111
k

m1
k

m2, i = 4

3λ111
k

m2
k

m3, i = 5

3λ111
k

m3
k

m1, i = 6

=−
k
λ i, (42)

where we use the identities

∂
k
m

∂Hp
· k
m=0,

∂
k
m

∂Ti
· k
m=0,

which originate from differentiating eq. (15b) with respect to
field and stress.
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