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ABSTRACT

This paper investigates the use of Galfenol (FeGa) composite beams as solid-state, adaptive vibration ab-
sorbers that have an electrically-tunable stiffness. The study encompasses the manufacture of these structures
by ultrasonic additive manufacturing (UAM) and the formulation of a continuous model for the beams’ bend-
ing vibrations. The beams’ 1st and 3rd resonant frequencies are calculated as a function of base acceleration,
Galfenol volume fraction, and DC magnetic field. The effects of an axial force, viscoelastic material damping,
beam nonuniformity, and Galfenol’s nonlinear behavior are incorporated. Autoresonant feedback control is
used as a numerical technique to maintain the resonant state under changes in the inputs. The model is
validated by comparing (1) calculated and analytical frequency responses and (2) calculated and measured
resonant frequencies and modes shapes of a Galfenol/Al 6061 composite beam that was manufactured using
UAM. The modeling results show that by varying the DC magnetic field, the resonant frequency can be
tuned between 3 % and 51 % for Galfenol/Al 6061 composites containing from 10 % to 100 % Galfenol by
volume, respectively. The magnitude of this change will increase for composites that have a softer matrix.
The axial force was found to have only a small effect on the maximum resonant frequency tunability, but,
for high Galfenol volume fractions, was also found to broaden the region over which tuning can occur.

Keywords: ultrasonic additive manufacturing, Galfenol, adaptive vibration absorber, autoresonant feed-
back control, stiffness tuning

1. INTRODUCTION

Vibration absorbers are a common solution when undesirable vibration or transmitted forces cannot be
reduced through direct design modifications (e.g., by introducing additional damping or shifting natural
frequencies away from operating conditions). While conventional absorbers must be designed for a specific
operating condition and vibrating structure, adaptive vibration absorbers (AVAs) can tune their response
in conjunction with changes in operating conditions. A number of smart materials can provide a compact,
solid-state source of stiffness change. Piezoelectric, magnetorheological, and magnetostrictive materials have
been investigated.1,2

Key factors in the selection of an active material for AVAs include the tunability of the material’s resonant
frequency, its durability, and its mechanism for generating stiffness changes. Considering these factors,
Galfenol (Fe100−xGax, 13 ≤ x ≤ 29 at %) is an attractive material due to its non-contact, high speed
operation, ∼ 500 MPa tensile strength,3 and ability to increase its elastic modulus 160% above a baseline
value,4 which is comparable to Terfenol-D (161%)5 and PZT (155%).6,7 This elastic modulus change is a
direct result of the magnetoelastic coupling in the material. As Galfenol is stressed from a demagnetized
state, both purely elastic and magnetoelastic strain occur as the magnetic state of the material changes,
thereby reducing the material’s effective elastic modulus relative to the magnetically-saturated state.

Recent advancements in manufacturing technology have enabled the development of composites con-
taining active materials. By harnessing Galfenol’s robustness and its electrically-tunable elastic modulus,
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load-bearing composites that provide a controllable stiffness can be realized. One enabling technology is
ultrasonic additive manufacturing (UAM), a metal layering technique for creating multimaterial compos-
ites containing seamlessly-embedded smart materials. UAM is a low temperature rapid prototyping process
based on solid-state welding of metal foils to themselves or to a metallic substrate. In UAM, a sonotrode
applies transverse ultrasonic vibration (>20 kHz) to the tape–substrate pair creating a scrubbing action that
shears asperities and disperses surface contaminants and oxides. The resulting nascent surfaces metallically
bond under an applied normal force. A 9 kW UAM machine and a schematic of the ultrasonic weld head
are shown in Figure 1. Metallic tapes are welded additively to form bulk 3D geometries, which may include
complex internal channels created through periodic machining.

Figure 1. Very high power UAM machine installed in the Center for Ultrasonic Additive Manufacturing at The Ohio
State University, and schematic of the ultrasonic system (motion during welding shown by arrows).

The manufacture of layered structures by UAM is computer controlled and automatic. A tape feed
mechanism supplies the metal foils to the weld head and cuts them at the beginning and end of each pass.
Embedding smart materials is presently done by combining this automatic process for layering of the matrix
along with manual placement of the smart materials. Galfenol is best embedded as sheet stock or wires.
Depending on the thickness of the Galfenol features relative to the typical foil thickness (0.15 mm or 0.006
in), grooves are machined in the matrix to partially bury the material under the surface of the build. This
is done via the built-in CNC mill or laser etching system.

The use of Galfenol for stiffness tuning applications was previously investigated by Datta et al.,4 who
measured and modeled material-level changes in Galfenol’s elastic modulus in response to stress and mag-
netic field inputs. Scheidler and Dapino8,9 calculated, using a lumped parameter approach, the resonant
frequency tunability of a composite beam containing Galfenol. Clamped-clamped and clamped-free bound-
ary conditions were considered, but the effect of an axial force was neglected. For nonlinear systems that
do not permit the formulation of an eigenvalue problem, the conventional approach for calculating resonant
frequencies is to approximate the nonlinear frequency response using a large number of time domain simula-
tions. This approach, which is computationally intensive, especially for multi-degree-of-freedom systems, was
used by Scheidler and Dapino.8,9 In this paper, the resonant frequency of the continuous beam is efficiently
calculated numerically with autoresonant feedback control.

Autoresonant feedback control was born from the study of vibro-impact systems, which operate near
resonance.10 In high quality factor (Q-factor) systems, resonance is very sensitive to changes in the system’s
parameters and inputs, and occurs at the boundary of stability for some linear systems and for frequency-
controlled excitation of nonlinear systems. Autoresonant feedback control resolves these limitations by
exciting the system with a vibration signal that is shifted by the resonant phase φ∗ to automatically reach and
maintain resonance under changes in natural frequency. Sokolov and Babitsky11 detailed the characteristics
of single- and two-degree-of-freedom autoresonant systems, showing the flatness and single-valuedness of
the amplitude versus phase curves that govern phase-controlled systems. Autoresonant feedback control
has been utilized in various applications, but primarily for ultrasonically-assisted machining.12 Recently,
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Twiefel13 applied autoresonant feedback control numerically to efficiently conduct parametric studies on the
mode shape of a piezoelectric beam.

The objective of this paper is to characterize and model Galfenol composite beams as AVAs that are
subjected to axial loads and operate at an arbitrary mode of the beam. These composites can be effectively
manufactured using UAM. In this paper, the characterization is performed by calculating the beam’s resonant
frequency as a function of (a) mode number, (b) base acceleration magnitude, (c) DC magnetic field, and (d)
Galfenol volume fraction. Resonant frequencies are calculated from time domain responses by incorporating
autoresonant feedback control. The continuous, nonlinear bending vibration of the composite beams is
modeled using Euler-Bernoulli beam theory. The effects of axial force on the beam, viscoelastic material
damping, and beam nonuniformity are included. The constitutive behavior of Galfenol is modeled by a
fully-coupled, nonlinear model that was first developed by Evans and Dapino.14 The distributed parameter
model is spatially discretized using the finite difference method. The resulting state-space system is then
implemented in Simulink and solved using the Runge-Kutta-Fehlberg method. The model is validated by
comparing numerical frequency domain responses to analytical responses, which are derived for the case of
a passive beam. Further validation is presented by comparing calculated and measured resonant frequencies
and mode shapes of a UAM composite beam containing Galfenol.

2. MODEL DEVELOPMENT

The system of interest is a metal-matrix composite beam composed of a single matrix material and a single
sheet of Galfenol. The system and finite difference nodes are shown in Figure 2. The beam’s cross section
and an example Galfenol/Al 6061 composite manufactured using UAM are shown in Figure 3.

Figure 2. Schematic of the base-excited magnetostrictive composite beam and nodes used for finite difference dis-
cretization.

Figure 3. Galfenol/Al 6061 composite beam manufactured using UAM and schematic of the beam’s cross section;
Galfenol and composite dimensions (thickness x width) are 0.51 x 1.02 and 1.02 x 1.91 mm, respectively.

To investigate the effect of an axial force on the dynamic behavior of this composite, clamped-clamped (C-
C) boundary conditions are considered. In order to characterize the beam’s suitability for use as an AVA, a
distributed parameter model of the beam’s transverse vibration is presented. To incorporate the nonlinearity
resulting from Galfenol’s stress- and magnetic field-dependent elastic modulus, the nonuniformity of the
beam along its length is fully retained. The nonuniformity through the thickness is approximated following
results by Scheidler and Dapino.9 AVAs are implemented by coupling them to a host structure exhibiting
undesirable vibration. As such, the response of the beam to base excitation is modeled.

Material damping in the composite is modeled as viscoelastic, which is frequency dependent. This
model was selected over hysteretic damping, which is frequency independent, because it is well known that
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ferromagnetic materials exhibit frequency-dependent hysteresis due to eddy currents, which occur even for
stress application in the absence of AC magnetic fields. In this paper, the Kelvin-Voigt model for viscoelastic
material damping is adopted. This damping model was successfully used (in a simplified form) for the
modeling of Galfenol unimorphs by Shu et al.15 The following assumptions are used to develop the proposed
model detailed in the subsequent sub-sections:

• Euler-Bernoulli beam theory (i.e., small deflections and negligible shear deformation)

• Mass per unit length of the beam ρA and Kelvin-Voigt damping constant a are constant and uniform

• Bias magnetic field H is uniform

• The uniform axial force P is calculated from a static analysis of the 1-D composite

2.1 Beam vibration model

In this sub-section, the state-space system is derived by discretizing the PDE governing transverse vibration
of the composite beam. The axial force is then derived, after which the flexural rigidity is presented in the
context of unidirectional composites. From Meirovitch,16 the governing equation for the transverse vibration
of the Euler-Bernoulli beam considered above is

ρAẅ(x, t) + [EI(x, t) (aẇxx(x, t) + wxx(x, t))]xx − P (t)wxx(x, t) = f(x, t), (1)

where P is the uniform axial force, f denotes the applied distributed force, ρ and A are the density and
cross-sectional area, respectively, EI represents the flexural rigidity, a is a viscoelastic parameter for the
Kelvin-Voigt damping model, w is the transverse deflection of the beam, and wx and ẇ denote partial
derivatives of w with respect to x and t, respectively; EI is state-dependent and nonuniform. For base
excitation, the total deflection is written as

w(x, t) = w̄(x, t) + u(t), (2)

where w̄(x, t) is the beam’s displacement relative to the base and u is the base displacement. Insertion of
(2) into (1) and neglecting the applied force gives

ρA ¨̄w(x, t) + [EI(x, t) (a ˙̄wxx(x, t) + w̄xx(x, t))]xx − P (t)w̄xx(x, t) = −ρAü(t). (3)

Thus, in terms of the relative displacement w̄(x, t), the base-excited system can be viewed as a beam with
static boundary conditions subject to an equivalent force,

feq(t) = −ρAü(t). (4)

After expanding the differentiation, (3) can be written as

ρA ¨̄w(x, t) + FC(ẋ, t) + FK(x, t) = feq(t), (5)

where the damping force FC is

FC(ẋ, t) = a (EIxx ˙̄wxx + 2EIx ˙̄wxxx + EI ˙̄wxxxx) , (6)

and the flexural force FK is

FK(x, t) = EIxxw̄xx + 2EIxw̄xxx + EIw̄xxxx − Pw̄xx. (7)

The governing PDE given by (5) - (7) does not admit an eigenvalue problem nor a closed-form solution
due to the beam’s spatial and temporal nonuniformity, which results from the magnetic field- and stress-
dependent elastic properties of the Galfenol component. Consequently, the PDE is solved approximately by
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(i) discretizing the beam (Fig. 2), (ii) using the finite difference method to approximate spatial derivatives
and express the discretized system in state-space form, and (iii) using the explicit Runge-Kutta-Fehlberg
method (MATLAB’s ode45 ) to solve the state-space system iteratively.

Following discretization, the continuous PDE (5) becomes a system of discrete PDEs in terms of the
unknown nodal displacements w̄i and their derivatives, where i = 2, . . . , N−1 since the boundary conditions
provide w̄1 = w̄N = w̄x1

= w̄xN
= 0. Of the standard finite difference methods (backward, central, and

forward), the central difference method provides the best accuracy;17 however, it may be undefined at or
near boundaries due to its dependence on fictitious nodes i = −1,−2, . . . or i = N + 1, N + 2, . . ..

Using the 2nd order central difference method17 to approximate the spatial partial derivatives, (6) and
(7) can be written at the ith node as

FC
i (t) ≈ a∆x−4 (Ai ˙̄wi+2 +Bi ˙̄wi+1 + Ci ˙̄wi +Di ˙̄wi−1 +Gi ˙̄wi−2) , (8)

and

FK
i (t) ≈ ∆x−4

(
Aiw̄i+2 + (Bi − P̄ )w̄i+1 + (Ci + 2P̄ )w̄i + (Di − P̄ )w̄i−1 +Giw̄i−2

)
= ∆x−4

(
Aiw̄i+2 + B̄iw̄i+1 + C̄iw̄i + D̄iw̄i−1 +Giw̄i−2

)
,

(9)

where

P̄ = ∆x2P

Ai = EIi +
1

2
(EIi+1 − EIi−1)

Bi = −6EIi + 2EIi−1

Ci = −2EIi+1 + 10EIi − 2EIi−1

Di = −6EIi + 2EIi+1

Gi = EIi −
1

2
(EIi+1 − EIi−1).

(10)

Evaluation of (8) and (9) at nodes i = 2 and i = N − 1 therefore depends on the fictitious nodes w̄−1 and
w̄N+1, respectively. However, by approximating the boundary condition on the slope of the beam using the
2nd order central difference method, the following relations can be derived:

w̄−1 ≈ w̄2, w̄N+1 ≈ w̄N−1. (11)

Using the relations (11), the 2nd order central difference approximation of the damping force FC
i and flexural

force FK
i can be evaluated at all interior nodes.

Since the approximate damping and flexural forces depend only on the nodal velocities and displacements,
respectively, the set of (N − 2) discrete PDEs approximating (5) - (7) can be written in a form resembling
a standard multi-degree-of-freedom system,

[M ] { ¨̄w}+
n

[C] { ˙̄w}+
n

[K] {w̄} = {feq} , (12)

where n denotes the order of the error in the approximation of the damping and flexural forces. When the
beam is free from an added mass, the global mass matrix [M ] is

[M ] = ρA [I] , (13)

where [I] is the identity matrix. Added masses can be incorporated by increasing ρA at nodes over which the
mass is located. For this case, [M ] remains diagonal. The 2nd order accurate damping and stiffness matrices

(
2

[C] and
2

[K]) are pentadiagonal matrices, as detailed in Appendix A. If increased accuracy is necessary,
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[C] and
4

[K] may be derived using the 4th order central difference method, as shown in Appendix A. For
this case, the damping and stiffness matrices are heptadiagonal. Consequently, the system matrices can be
considered sparse when a reasonable number of nodes is used. By defining the state vector W as the nodal
displacements and velocities, the state-space representation of (12) can be written as

Ẇ =

[
[0] [I]

− [M ]
−1

[K] − [M ]
−1

[C]

]{
{w̄}
{ ˙̄w}

}
+

{
{0}

[M ]
−1 {feq}

}
. (14)

The state-space system is implemented and solved in Simulink to utilize an available solver and to improve
computational efficiency by precompiling the model.

2.1.1 Calculation of the axial force P

The application of a magnetic field to the composite generates magnetostriction λ in the Galfenol element
that is counteracted by the matrix and by a compressive force due to the fixed boundary conditions. To
derive an expression for the axial force that develops in the composite, static analysis of a free-free composite
subjected to a magnetic field is first considered (Figure 4a).

(a) (b)
Figure 4. Schematic and free body diagram of the 1-D static composite subjected to an applied magnetic field with
boundary conditions: (a) free-free, and (b) fixed-fixed.

Free body diagrams of the matrix and Galfenol constituents are given in Figure 4a, assuming that a
uniform shear stress acts between Galfenol and the surrounding matrix. Further assuming that there is no
slip at the interfaces, the displacement compatibility between the layers can be expressed as

δF−F = δG = δM1
= δM2

=
−FML

AGEG
+ λL =

(FM/2)L

AMEM
,

(15)

where δF−F, δG, and δM1
are the displacements of the free-free composite, the Galfenol section, and one of

the matrix sections; EM and EG are the elastic moduli of the matrix and Galfenol, respectively; and AM

and AG are the cross-sectional areas of one of the matrix sections and the Galfenol section, respectively.
Rearranging (15) one gets the total force on the Galfenol section applied by the matrix,

FM =
2λ(AMEM)(AGEG)

AGEG + 2AMEM
. (16)

Insertion of (16) in (15) gives the free-free deflection,

δF−F = δG = λ(1− 2AMEM

AGEG + 2AMEM
)L = λeffL, (17)

where λeff is the effective magnetostriction of the composite. The effective magnetostriction is consistent
with the cases of no matrix (AM = 0) and no Galfenol (AG = 0), for which the magnetostriction in
the composite is λ and 0, respectively. Now consider a static, fixed-fixed composite and its homogeneous
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equivalent (Figure 4b). By writing a compatibility equation for the equivalent beam, the axial force on the
composite can be written as

P = −λeffAeqEeq, (18)

where the parameters of the equivalent beam are found by considering the matrix and Galfenol as springs
in parallel,

AeqEeq = AGEG + 2AMEM. (19)

2.1.2 Calculation of the flexural rigidity EIi

Solution of the state-space system (14) requires calculation of the flexural rigidity EIi at each time step
for all nodes. The composite’s area moment of inertia Ii is a function of the cross-sectional geometry of
an equivalent, homogeneous cross section of Galfenol, which depends upon the elastic moduli of the matrix
EM

i and Galfenol EG
i (x, t). The elastic modulus Ei of a unidirectional composite is found using the rule of

mixtures given by Agarwal et al.,18

Ei(x, t) = EM
i V

M + EG
i (x, t)V G, (20)

where V M and V G denote the matrix and Galfenol volume fractions, respectively. Consequently, a consti-
tutive model for Galfenol is needed to calculate the magnetic field- and stress-dependent flexural rigidity of
the composite. As detailed in ref.,9 before calculating the elastic modulus in the Galfenol element, the stress
must be calculated using an inverse of the constitutive model, which has inputs of magnetic field and strain.
In this paper, the strain in the beam is calculated using the exact expression for an Euler-Bernoulli beam,

S = −yw̄xx

(
1 + w̄2

x

)−3/2
. (21)

The spatial derivatives in (21) are calculated at interior nodes i = 3, . . . , N − 2 using the 4th order central
difference method. The 2nd order backward, central, and forward difference methods are used for the
remaining nodes.

This work utilizes a fully-coupled, nonlinear energy-averaged model for cubic magnetostrictive materials
developed by Evans and Dapino,14 which is accurate yet efficient and has been successfully used for the
modeling of Galfenol-based systems of varying dimensionality.15,19–21 This model is summarized in the
following sub-section.

2.2 FeGa constitutive model review

The Evans and Dapino (ED) model14 describes Galfenol as a collection of non-interacting, mesoscopic mag-
netic domains. While earlier energy-averaged models consider a large number of possible magnetic domain
orientations that are fixed, the ED model maintains accuracy while significantly improving computational
efficiency by considering only 6 possible directions that rotate in response to the inputs – magnetic field

H and stress T. The 6 possible magnetic domain orientations
k
m are calculated by minimizing an energy

function that is locally-defined about each of the 6 easy crystallographic directions, subject to the constraint

|| km || = 1. The total free energy
k

G of a magnetic moment in the vicinity of the kth easy direction
k
c in-

corporates the local magnetocrystalline (anisotropy)∗, magnetoelastic (magnetomechanical coupling), and
magnetic field (Zeeman) energies, and can be written in matrix form as

k

G=
1

2

k
m ·K k

m − k
m ·

k

B +
k

K0, k = ±1,±2,±3, (22)

∗The improved anisotropy energy given by Chakrabarti22 is used.
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where K and
k

K0 are anisotropy energy constants, Ms is the saturation magnetization, λ100 and λ111 are
magnetostriction constants, and

K =

K − 3λ100Txx −3λ111Txy −3λ111Txz
−3λ111Txy K − 3λ100Tyy −3λ111Tyz
−3λ111Txz −3λ111Tyz K − 3λ100Tzz

 , (23)

k

B=
[
k
c1 K + µoMsHx

k
c2 K + µoMsHy

k
c3 K + µoMsHz

]T
. (24)

By linearizing the constraint about
k
c and using the Lagrange multipliers method, Evans and Dapino14 found

an explicit solution that approximately minimizes the energy (22). Recently, Tari et al.23 derived the exact
solution,

k
m= Q(Λ−

k
γ I)−1QT

k

B, (25)

where Q is an orthogonal matrix composed of the eigenvectors of K, Λ is a diagonal matrix containing the

corresponding eigenvalues of K, and
k
γ is the Lagrange multiplier for the minimization of

k

G. The Lagrange
multiplier is calculated from the following equation, which reduces to a 6th order polynomial:

k

bTQ(Λ−
k
γ I)−2QT

k

b= 1. (26)

The matrix inversions required in (25) and (26) have simple analytical solutions since the matrices are
diagonal.

Macroscopic material behavior is calculated as the expected value of the response due to the magnetic

domain orientations
k
m. A Boltzmann distribution is used as the probability density function so that lower

energy directions are favored. Thus, the strain tensor S is given by the sum of the elastic and magnetoelastic
strains,

S = sT +

r∑
k=1

k

ξan

k

λ, (27)

where s is the compliance matrix for Galfenol,
k

λ represents the magnetostriction due to the kth minimum
energy direction,

k

λ=
3

2
[λ100

k
m1

2

λ100
k
m2

2

λ100
k
m3

2

2λ111
k
m1

k
m2 2λ111

k
m2

k
m3 2λ111

k
m3

k
m1]T, (28)

and
k

ξan denotes the anhysteretic volume fraction, which is calculated as the probability of magnetic domains
that are oriented along the kth minimum energy direction,

k

ξan= exp

− k

G

Ω

 r∑
j=1

exp

 j

G

Ω

 . (29)

where Ω is a smoothing constant. The 1-D simplification of the ED model reported by Tari et al.23 is utilized
in this work. Material constants for Galfenol used in this paper are: K = 27.1 kJ/m3, K0 = 0.021 kJ/m3,
µ0Ms = 1.4889 T, λ100 = 156.56×10−6, and Ω = 776.73 J/m3 (λ111 is not applicable for the 1-D formulation).
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2.3 Autoresonant feedback control

A Simulink block diagram of the dynamic beam model is shown in Figure 5, where the red, dotted arrows
denote the autoresonant feedback. Arbitrary, nonzero initial conditions can be used. Stability of the feedback
control is ensured for most systems by limiting the magnitude of the feedback signal.11 The amplitude of
the resonant vibration is controlled by varying the limit. To consider the excitation magnitude’s effect
on the resonance tunability of the beam, Scheidler and Dapino9 varied the base excitation power. With
autoresonant feedback, the in situ excitation power cannot be correctly limited. Thus, this work limits the
base acceleration magnitude. As a result, feq approximately becomes a square wave.

Figure 5. Simulink block diagram for the vibration of the FeGa composite beam; autoresonant feedback shown by
red, dotted arrows.

The damping capacity for viscoelastic material damping depends on frequency.24 As a result, the resonant
frequency and autoresonant phase shift φ∗ will depend on the level of damping. In this paper, the damping

matrix
n

[C] varies temporally due to the flexural rigidity’s nonuniformity, which implies that φ∗ is time-
dependent. However, as shown in the following section, the composite beam is a high Q-factor (low damping)
system, for which ωr ≈ ωn. Thus, the time dependence is neglected. For convenience, this paper uses an
autoresonant feedback control with phase shift φ = ±π/2 (velocity feedback).
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Figure 6. Example analytical amplitude versus phase response of the passive beam (a) at select locations along the
beam, and (b) for the relative displacement transmissibility w̃/u = (w̄(x = 0.5L)− w̄(x = 0.32L))/u; dashed vertical
lines denote φ = π/2, 3π/2, 5π/2; 0 dB = 1 m/m.

A multi-degree-of-freedom system has a set of amplitude versus phase relations, because the mass(es)
on which the force is applied (loading point(s)) and on which the vibration is measured (the observation
point(s)) can be selected arbitrarily and independently. For base excitation (4), the loading points are fixed.
The observation point is selected by considering a passive, damped beam (i.e., uniform flexural rigidity and
no axial force), for which the analytical frequency response of the displacement transmissibility (w̄/u) is
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given by (48) and (49) in Appendix B. A representative amplitude versus phase response at 4 locations
along the symmetric beam is shown in Figure 6a. The 3 peaks in the responses correspond to the 1st, 3rd,
and 5th modes of vibration, because the base excitation (4) cannot excite asymmetric modes in a clamped-
clamped (symmetric) beam. The amplitude versus phase curves are not single-valued and have maxima
that deviate significantly from the assumption φ∗ = ±π/2. By observing the relative displacement between
two points having opposite polarity for the 3rd and 5th modes, the amplitude versus phase curve has peaks
at φ ≈ π/2, 3π/2, 5π/2 (Figure 6b). Consequently, the simplified autoresonant feedback implemented in
this paper (velocity feedback) provides an accurate calculation of the resonant frequencies, as detailed in
Section 3. The remaining multi-valuedness is resolved by utilizing a bandpass filter which, when tuned
properly, serves as a mode selector. This bandpass filter must be carefully designed for a given system based
on mode separation and amplitude versus phase characteristic response.

3. MODEL VALIDATION

Model validation is performed in two stages. First, the model is validated for a passive beam, for which
an analytical solution is derived in Appendix B. Second, the model is validated for the clamped-clamped
active beam by comparing measured and calculated mode shapes and resonant frequencies after calculating
the Kelvin-Voigt damping constant a.

Validation of the model for a passive beam is performed by calculating the frequency response of the
displacement transmissibility assuming a = 1× 10−6 s. The percent error between simulated and analytical
responses is shown in Figure 7, where two discretizations (h-refinement, increasing N) and two orders of
differentiation accuracy (p-refinement, increasing n) are compared. The calculated response converges to the
analytical using h- and p-refinement.
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Figure 7. Calculated frequency response of the displacement transmissibility of the passive beam w̃/u = (w(x =
0.5L)−w(x = 0.32L))/u compared to the analytical response (49): percent errors in the (a) amplitude and (b) phase
responses; dashed vertical lines denote 1st, 3rd, and 5th undamped natural frequencies.

The autoresonant feedback control is validated by calculating the beam’s vibration while discretely vary-
ing EI, and therefore ωr. An example spectrogram of the time domain response and ωr(t) are given in
Figure 8. From an interpolated spectrogram, the resonant frequency is taken as the dominant frequency of
vibration after the feedback control stabilizes. For each flexural rigidity, the analytical resonant frequen-
cies of the 1st, 3rd, and 5th modes were calculated from (49) in Appendix B. Two metrics are used to
characterize the resonant frequency tuning of the AVA (Galfenol beam): the absolute resonant frequencies
and the shifts in resonant frequencies. The relative numerical error for the absolute and shift metrics are
denoted by ErA and ErS , respectively. These errors are summarized in Table 1, where h- and p-refinement
is compared. Modes 1 and 5 were distinguished using a bandpass filter. Thus, the error caused by the filter’s
frequency-dependent phase is included. For the passive beam, the autoresonant feedback control has a fast
response time, results in vibration having a very stable frequency content, and is very accurate, with errors
below 4 % for all but the 5th mode of one case.
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Prior to validating the model for the active beam, the Kelvin-Voigt damping constant a was estimated
from an impulse response of the clamped-clamped UAM composite that is shown in Figure 3. The damping
ratio ζ1 was calculated as 0.00217 using the logarithmic decrement method, which is applicable due to the
presence of significant mode separation.24 From (42), the damping constant is calculated as a = (2ζ1)/ω1 =
3.56× 10−7. Transverse vibration of the UAM beam was measured using a Polytec PSV-400 scanning laser
vibrometer. A periodic chirp excitation was used, because it has a nearly constant acceleration magnitude
over the chirp bandwidth. The experimental setup is shown in Figure 9a. Masses were glued to the beam at
the antinodes of the 3rd mode to shift the 1st and 3rd resonant frequencies into the bandwidth of the shaker.
The 5th mode could not be excited. In the model, the masses were incorporated at nodes over which they
were located by locally increasing ρA, such that the total mass added to the beam remained constant under
h-refinement.

Figure 9b compares the measured and simulated 1st and 3rd mode shapes for a base acceleration mag-
nitude of ∼2 g. Since only modes 1 and 3 were considered, a bandpass filter was not needed. The laser
vibrometer measurements showed that torsional motion of the masses was small compared to the trans-
verse deflection. Experimental and calculated resonant frequencies are compared in Table 2. Discrepancies
between the two can be attributed to the presence and finite size of the masses, which cause a significant
increase in the beam’s rotary inertia and a constraint on its local curvature. These physics are not incorpo-
rated into the model. The effect of the rotary inertia of the masses is more pronounced for the 1st mode,
because displacements are an order of magnitude higher and the two outside masses rotate. Additional error
may have been introduced from imperfect boundary conditions and placement of masses, and by assuming
an autoresonant phase φ∗ = ±π/2. However, considering the model’s assumptions and the size of the masses
relative to the beam, the accuracy is good overall.
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Figure 8. Tracking of the passive beam’s 1st resonant frequency using autoresonant feedback control: (a) spectrogram
of the simulated relative displacement w̃ and (b) dominant vibration frequency versus time (overlayed in (a) as a
white line); EI decreased at 0.03 and 0.05 s, and increased at 0.07 and 0.09 s.

Table 1. Autoresonant tracking of the passive beam’s resonant frequency: relative numerical errors for the absolute
resonant frequencies (ErA) and shifts in resonant frequencies (ErS).

Mode 1 Mode 3 Mode 5
ErA (%) ErS (%) ErA (%) ErS (%) ErA (%) ErS (%)

N=31, n=2 0.515 0.768 1.92 1.70 3.54 7.51
N=31, n=4 0.413 0.719 1.02 2.11 2.28 3.79
N=41, n=2 0.334 0.612 1.13 2.04 1.58 2.70
N=41, n=4 0.256 0.519 0.629 2.37 0.256 2.82
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Figure 9. (a) Experimental setup for the model validation, and (b) experimental and simulated mode shapes of the
UAM Galfenol/Al 6061 composite for the 1st and 3rd modes.

Table 2. Percent difference between measured and calculated resonant frequencies of the UAM Galfenol/Al 6061 beam
as a function of the number of nodes N and the order of accuracy n for the approximation of spatial derivatives;
experimental resonant frequencies: ωr1 = 502 Hz, ωr3 = 2300 Hz; H = 0 kA/m, |ü| ≈ 2 g.

Mode 1 Mode 3
ωr1 (Hz) Percent Difference ωr3 (Hz) Percent Difference

N=31, n=2 594 18.3 2340 1.74
N=31, n=4 598 19.1 2360 2.61
N=41, n=2 597 18.9 2310 0.43
N=41, n=4 593 18.1 2320 0.87

4. RESULTS AND DISCUSSION

To characterize the ability of the UAM Galfenol/Al 6061 beam to operate as an AVA, the resonant frequencies
of the 1st and 3rd modes were calculated as a function of DC magnetic field (0–10 kA/m), base acceleration
magnitude (0.5–20 g), and Galfenol volume fraction (10–100 %). Time domain responses were calculated
using the Simulink model in Figure 5, but without the bandpass filter. Resonant frequencies were calculated
as detailed above after the autoresonant feedback control stabilized following a change in the inputs. For
each Galfenol volume fraction, the resonant frequencies were normalized by the maximum frequency to show
the percent change that can be achieved by varying the DC magnetic field. This normalization is consistent
with prior work,4,9 but is different from that used to calculate the elastic modulus changes summarized in
Section 1. Results are presented as a series of surfaces (one for each Galfenol volume fraction) using the DC
magnetic field and base acceleration limit as independent variables. The data are interpolated to smooth
the surfaces. A top view of the surfaces is shown in Figure 10 for the 3rd mode. Results for the 1st mode
are similar and are therefore not shown. For Galfenol volume fractions of 82 % and 100 %, the surfaces are
less smooth, because the autoresonant feedback control had difficulty in reaching a steady state. This can
be attributed to the large spatial and fast temporal variations in the composite’s flexural rigidity that occur
for these cases.

In all cases, the minimum resonant frequency occurs for small excitation magnitudes and weak magnetic
fields, because the flexural rigidity is a minimum when stress and magnetic field are small. Weak excitations
therefore allow for the greatest change in resonant frequency, because Galfenol can be easily tuned to its stiff
(magnetically-saturated) state by applying stronger DC magnetic fields. As the base acceleration increases,
the resulting higher stresses begin to saturate the Galfenol element. Consequently, the composite beam
begins to lose its resonant frequency tunability as the Galfenol element behaves more like a passive material.
These results are supported by the authors’ previous work.9 The range of acceleration magnitudes over
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Figure 10. Normalized resonant frequency of the 3rd bending vibration mode of the clamped-clamped UAM composite
as a function of the base acceleration limit and the DC magnetic field for Galfenol volume fractions of (a) 10 %, (b)
46 %, (c) 82 %, and (d) 100 %; results for 28 % and 64 % are not shown for brevity.

which the beam’s behavior transitions from active to nearly passive will depend on the beam’s geometry, the
mass loading, and the stiffness of the matrix material. The effect of variations in Galfenol’s elastic modulus
on the composite’s behavior will be more pronounced for composites with softer matrices (see (20)). Al 6061
is about 15 % to 130 % stiffer than Galfenol depending on stress and magnetic field. Thus, in Figure 10, the
transition shifts toward smaller accelerations as Galfenol volume fraction increases.

The compressive axial force on the beam that develops in response to applied magnetic fields tends to
soften the beam and reduce its resonant frequencies. This counteracts the stiffening that occurs as the
magnetic field tries to saturate the Galfenol element. This is seen in Figure 10 as a broadening of the
tunable region along the magnetic field axis. A broadening along the base acceleration axis was also found
for high Galfenol volume fractions. This may be an artifact of the autoresonant feedback control caused
by its difficulty in reaching a steady state as mentioned above. In future work, the autoresonant feedback
control will be better tuned to more accurately investigate this behavior.

A figure of merit for an AVA is its maximum change in resonant frequency. The dependence of this figure
of merit on Galfenol volume fraction is detailed in Figure 11 for the 1st and 3rd modes. The maximum
tunability increases monotonically from 3 to 51 % as Galfenol volume fraction increases from 10 % to 100
%, respectively. The results for the 1st mode are very similar to prior work,9 which used a single-degree-
of-freedom model and neglected the axial force. Thus, the incorporation of the axial force in this model
appears to have only a small effect on the maximum tunability of the 1st resonant frequency. The maximum
tunability of the 1st and 3rd resonant frequencies was found to be nearly equal except at high Galfenol
volume fractions. Thus, with regard to this figure of merit, the performance of the Galfenol beam as an AVA
does not degrade when operated at higher modes.
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Figure 11. Maximum resonance tunability of the Galfenol/Al 6061 beam as a function of Galfenol volume fraction.

5. SUMMARY AND CONCLUSIONS

This paper investigated the use of Galfenol (FeGa) composite beams as solid-state, adaptive vibration ab-
sorbers that operate at an arbitrary vibration mode. The manufacture of these structures by ultrasonic
additive manufacturing (UAM) was discussed. To characterize the stiffness tunability of the beams, a dis-
tributed parameter model of their transverse vibration was presented. The model adopts Euler-Bernoulli
beam theory and incorporates Galfenol’s nonlinear constitutive behavior, an axial force, viscoelastic mate-
rial damping, and the beams’ nonuniformity. The model was used to calculate the 1st and 3rd resonant
frequencies of a FeGa/Al 6061 composite beam as a function of base acceleration, FeGa volume fraction,
and DC magnetic field. Autoresonant feedback control was used as a numerical technique to maintain the
resonant state under changes to the system. An extensive validation of the model was conducted using
analytical responses and measurements of a FeGa/Al 6061 composite beam, which was manufactured using
UAM. Additional measurements should be obtained in future work to quantify the model’s performance at
nonzero DC magnetic fields.

The conclusions from the study are summarized as follows:

• Autoresonant feedback control is an efficient numerical technique for the calculation of the resonant
frequency of complex nonlinear systems that are subjected to changes in system parameters. For multi-
degree-of-freedom systems, the performance of the control system is improved through careful selection
of the vibration observation point(s) and careful tuning of the mode selector (bandpass filter).

• The composite’s stiffness can be modulated between its soft and stiff states with weak DC magnetic
fields of 10 kA/m or less.

• The maximum tunability of the beam’s resonant frequency is possible when the base acceleration, and
therefore stress in the Galfenol element, is small. A maximum tunability of 3 to 51 % was found for
the UAM Galfenol/Al 6061 composites containing 10 % to 100 % Galfenol by volume, respectively.

• The axial force developed in the clamped-clamped composite due to the application of a DC mag-
netic field was found to have a minimal effect on the maximum resonant frequency tunability, but an
appreciable effect on the range of parameters over which tuning can occur.

• With respect to the maximum resonant frequency tunability, the Galfenol beam’s performance as an
adaptive vibration absorber does not degrade (for most cases) when it is operated at higher modes.

• The effect of variations in Galfenol’s elastic modulus on the composite’s resonant frequency will be
more pronounced for composites having softer matrices.
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APPENDIX A. STIFFNESS AND DAMPING MATRICES

For the 2nd order central difference approximation of the damping and flexural forces ((8) and (9)), the
global damping and stiffness matrices are, respectively,

[C] = a(∆x)−4



C2 +G2 B2 A2 0 · · · 0
D3 C3 B3 A3 0 · · ·

G4 D4 C4 B4 A4 0
...

0
. . .

. . .
. . .

. . .
. . . 0

... 0 GN−3 DN−3 CN−3 BN−3 AN−3

· · · 0 GN−2 DN−2 CN−2 BN−2

0 · · · 0 GN−1 DN−1 CN−1 +AN−1


, (30)

and

[K] = (∆x)−4



C̄2 +G2 B̄2 A2 0 · · · 0
D̄3 C̄3 B̄3 A3 0 · · ·

G4 D̄4 C̄4 B̄4 A4 0
...

0
. . .

. . .
. . .

. . .
. . . 0

... 0 GN−3 D̄N−3 C̄N−3 B̄N−3 AN−3

· · · 0 GN−2 D̄N−2 C̄N−2 B̄N−2

0 · · · 0 GN−1 D̄N−1 C̄N−1 +AN−1


, (31)

where the elements are evaluated using (10).

For increased accuracy, the 4th order central difference method can be used to approximate the damping
and flexural forces as

FC
i (t) ≈ a(144∆x)−4 (Hi ˙̄wi+3 + Ji ˙̄wi+2 + Li ˙̄wi+1 +Ni ˙̄wi +Oi ˙̄wi−1 +Qi ˙̄wi−2 +Ri ˙̄wi−3) , (32)

and

FK
i (t) ≈ (144∆x)−4

(
Hi ˙̄wi+3 + (Ji + 12P̄ ) ˙̄wi+2 + (Li − 192P̄ ) ˙̄wi+1

+(Ni + 360P̄ ) ˙̄wi + (Oi − 192P̄ ) ˙̄wi−1 + (Qi + 12P̄ ) ˙̄wi−2 +Ri ˙̄wi−3

)
= (144∆x)−4

(
Hi ˙̄wi+3 + J̄i ˙̄wi+2 + L̄i ˙̄wi+1 + N̄i ˙̄wi + Ōi ˙̄wi−1 + Q̄i ˙̄wi−2 +Ri ˙̄wi−3

) , (33)

where

Hi = 3EIi+2 − 24EIi+1 − 24EIi + 24EIi−1 − 3EIi−2

Ji = −23EIi+2 + 176EIi+1 + 318EIi − 208EIi−1 + 25EIi−2

Li = 23EIi+2 − 56EIi+1 − 1416EIi + 568EIi−1 − 55EIi−2

Ni = 30EIi+2 − 480EIi+1 + 2244EIi − 480EIi−1 + 30EIi−2

Oi = −55EIi+2 + 568EIi+1 − 1416EIi − 56EIi−1 + 23EIi−2

Qi = 25EIi+2 − 208EIi+1 + 318EIi + 176EIi−1 − 23EIi−2

Ri = −3EIi+2 + 24EIi+1 − 24EIi − 24EIi−1 + 3EIi−2

. (34)
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Using (32) - (34), the 4th order accurate damping and stiffness matrices can be written as

[C] = a(144∆x)−4



τ(C2 +G2) τB2 τA2 0 · · · 0
O3 +R3 N3 L3 J3 H3 0 · · ·
Q4 O4 N4 L4 J4 H4 0 · · ·

R5 Q5 O5 N5 L5 J5 H5 0
...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

... 0 RN−4 QN−4 ON−4 NN−4 LN−4 JN−4 HN−4

· · · 0 RN−3 QN−3 ON−3 NN−3 LN−3 JN−3

· · · 0 RN−2 QN−2 ON−2 NN−2 LN−2 +HN−2

0 · · · 0 τGN−1 τDN−1 τ(CN−1 +AN−1)


,

(35)
and

[K] = (144∆x)−4



τ(C̄2 +G2) τB̄2 τA2 0 · · · 0
Ō3 +R3 N̄3 L̄3 J̄3 H3 0 · · ·
Q̄4 Ō4 N̄4 L̄4 J̄4 H4 0 · · ·

R5 Q̄5 Ō5 N̄5 L̄5 J̄5 H5 0
...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

... 0 RN−4 Q̄N−4 ŌN−4 N̄N−4 L̄N−4 J̄N−4 HN−4

· · · 0 RN−3 Q̄N−3 ŌN−3 N̄N−3 L̄N−3 J̄N−3

· · · 0 RN−2 Q̄N−2 ŌN−2 N̄N−2 L̄N−2 +HN−2

0 · · · 0 τGN−1 τD̄N−1 τ(C̄N−1 +AN−1)


,

(36)
where τ = 144. Since the 4th order approximations of the damping and flexural forces at node i depend
upon nodes i− 3 and i+ 3, the 2nd order central difference method must be used at nodes i = 2, N − 1 to
avoid the inclusion of fictitious nodal displacements in the 4th order damping and stiffness matrices. The
4th order method can be used at the remaining interior nodes after considering (11).
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APPENDIX B. ANALYTICAL RESPONSE OF THE PASSIVE BEAM

The analytical free and forced vibration of the passive beam (i.e., uniform flexural rigidity and no axial force)
are derived as follows. By the method of modal analysis, the solution for the beam vibration can be written
as

w̄(x, t) =

∞∑
r=1

Wr(x)ηr(t), (37)

where ηr(t) are the modal coordinates and Wr(x) are the eigenfunctions of the undamped clamped-clamped
beam, which are provided by Rao,25

Wr(x) = Cn

[
sinh(βrx)− sin(βrx) +

(
sinh(βrL)− sin(βrL)

cos(βrL)− cosh(βrL)

)
(cosh(βrx)− cos(βrx))

]
, (38)

cos(βrL)cosh(βrL) = 1. (39)

Inserting (37) into the governing PDE (3), neglecting the beam nonuniformity and axial force, premultiplying
by Ws(x), and integrating over the length of the beam yields

∞∑
r=1

((∫ L

0

ρAWsWrdx

)
η̈r + a

(∫ L

0

EIWsW
(4)
r dx

)
η̇r +

(∫ L

0

EIWsW
(4)
r dx

)
ηr

)
=

∫ L

0

Wrfeqdx. (40)

Using the orthonormality conditions16 derived from the eigenvalue problem, only the sth terms in (40)
survive, giving the modal equations,

η̈s + 2ζsωsη̇s + ωs
2ηs = Φssin(ωut), s = 1, 2, . . . , (41)

where the modal damping ratio ζs is

ζs =
aωs

2
. (42)

Assuming harmonic base excitation with frequency ωu and magnitude B(ωu), the forcing magnitude Φs is

Φs = ρAB(ωu)ωu
2

∫ L

0

Wsdx. (43)

For underdamped modes, the solution of (41) can be written as

ηs = exp(−ζsωst) (Asin(ωdst) +Bcos(ωdst)) + Φs

∣∣∣G̃s(iωu)
∣∣∣ sin(ωut+ φs), (44)

where ωds is the damped natural frequency of the sth mode, the magnitude and phase of the modal frequency
response, respectively, are

∣∣∣G̃s(iωu)
∣∣∣ =

1

ωs
2

(1−
(
ωu

ωs

)2
)2

+

(
2ζs

ωu

ωs

)2
−1/2

, (45)

φs = −tan−1

2ζs
ωu

ωs

(
1−

(
ωu

ωs

)2
)−1

 , (46)

and the undetermined coefficients A and B are

A = ηs(0)− sin(φs)Φs

∣∣∣G̃s(iωu)
∣∣∣

B =
η̇s(0) + ζsωsηs(0)

ωds

− ζsωssin(φs) + ωucos(φs)

ωds

Φs

∣∣∣G̃s(iωu)
∣∣∣ . (47)
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Insertion of (44) and (38) into (37) gives the time domain response of the passive beam to initial conditions
and base excitation. The frequency response of the displacement transmissibility can be written as

G(x, iωu) =
w̄

u
= ρAωu

2
∞∑
s=1

Wr(x)

(∫ L

0

Wsdx

)∣∣∣G̃s(iωu)
∣∣∣ exp(iφs)

=

∞∑
s=1

Ωs(x, iωu)exp(iφs)

. (48)

The magnitude and phase of G(x, iωu) are

|G(x, iωu)| =

( ∞∑
s=1

Ωs(x, iωu)cos(φs)

)2

+

( ∞∑
s=1

Ωs(x, iωu)sin(φs)

)2
1/2

∠G(x, iωu) = tan−1

(∑∞
s=1 Ωs(x, iωu)sin(φs)∑∞
s=1 Ωs(x, iωu)cos(φs)

) . (49)
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