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ABSTRACT

Smart materials exhibit powerful nonlinear 3D coupling and anisotropy. However,

the design and associated models, experimental characterization, and control design of

smart systems are in general 1D. This reduced framework severely limits applications

to 1D. The research presented here enables the tailoring of composition and process-

ing to produce multifunctional materials with targeted performance properties that

are fully nonlinear and 3D. A complete combinatorial analysis of seventy-two possible

energy functions and state variables that describe 3D, nonlinear, coupled behavior of

thermo-electro-magneto-mechanical materials is created. Each set of state variables

and corresponding energy function correlates with a given set of experiments, the in-

dependent variables being controlled and the dependent variables being the measured

responses. The constitutive equations with respect to each of these energy functions

are derived in a systematic way by combining the mesoscale Maxwell equations, the

balance laws of mechanics, and the balance law of entropy. The application of this

framework to a new class of magnetostrictive Iron-Gallium alloys (Galfenol) is in-

vestigated with the intent to implement these alloys in a new class of fuel injectors

to achieve unprecedented dynamic response and performance. The possibility of de-

termining the full 3D constitutive behavior of Galfenol from simple, 1D macroscopic

experiments in combination with analytical models based on knowledge of the crystal

structure is explored. In this respect, a FEM formulation is presented.
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CHAPTER 1

INTRODUCTION

Adaptive structures based on active or smart materials (controllable material

properties and response) are underutilized. Despite the observation that smart mate-

rials exhibit powerful nonlinear 3D coupling and anisotropy, the design and associated

models, experimental characterization, and control of smart material based systems

are in general 1D. This framework limits applications to devices executing 1D motion.

The smart material models can be categorized into 5 groups.

1. Models employing linear constitutive equations:

In [30, 31], a 3D finite-element model using linear constitutive equations is im-

plemented. [45] listed the possible thermodynamic potentials with electric, magnetic

and mechanical independent variables and postulated expressions for these potentials

that resulted in linear constitutive equations.
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2. Models where the constitutive equations are obtained using a Taylor series expan-

sion of Gibbs free energy. The coefficients of these constitutive equations are either

taken as constants or calculated from experimental data:

In [49, 48], the coefficients of the constitutive equations are written as Taylor se-

ries expansions of Gibbs free energy and are replaced with the empirical expressions

constructed based on experimental data. [4] expands Gibbs free energy in a Taylor

series, where higher-order terms are neglected and the leading order terms are taken

as constants. [2] posits a Gibbs free energy that incorporates higher-order effects,

e.g., fifth order in strain, fourth order in electric field, third order in temperature,

fifth order in coupling terms.

3. Phenomenological models constructed based on experimental observations:

In [10], a phenomenological model is proposed by considering Jiles-Atherton mean

field theory and law of approach to the anhysteretic magnetization. In [21], a 3D

electromechanical constitutive law is formulated to model saturation of induced po-

larization with increasing electric field by assuming that electrically-induced strain

depends on second-order polarization terms and an empirical hyberbolic relationship

for the dielectric behavior. [15] separates the nonlinear constitutive equations into

three distinct categories: phenomenological constitutive models based on thermody-

namics (standard square model [47], hyberbolic tangent constitutive model, consti-

tutive relations based on the density of domain switching), constitutive model based

on noncontinuous domain switching, constitutive models with internal variables (con-

stitutive model based on J2 flow theory, phenomenological constitutive model with

anisotropic flow theory). [3] combines the magnetic anisotropy analysis of [25] with
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the assumption of an inverse exponential distribution of magnetized energy states.

4. Models in which part of the energy is proposed based on the crystal structure

of the material. Boltzmann and probability distributions are used to obtain the

magnetization and magnetostriction:

In [12], the energy has terms for magnetic anisotropy, magnetomechanical cou-

pling, Zeeman or field energy, elastic strain energy. These energies are expressed

while idealizing the complex domain structure of ferromagnetic materials as a system

of non-interacting, single-domain, Stoner-Wohlfarth (S-W) particles. [13] develops

a steady-state constitutive model (energy expression based on crystal structure) to

obtain the expressions for magnetization and magnetostriction. [14] presents a state-

space constitutive model where the energy has magnetocrystalline anisotropy and

Zeeman energy terms. The expected value of magnetization is calculated with the

use of a Boltzmann distribution.

5. Models having a combination of linear constitutive equations and the use of em-

piricism:

In [33, 32], the strain as well as the field (electric or magnetic) are split into re-

versible and irreversible parts. A quadratic relation is postulated between irreversible

strain and irreversible field. The thermodynamic potential is a combination of terms

that give rise to the linear constitutive equations and an additional nonlinear cou-

pling term. In [40], 3D FEM is implemented with a formulation which has the linear

constitutive equations along with Maxwell stress tensor.
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The present research work deals with two aspects of these models.

A. The process of obtaining the constitutive equations in terms of potentials from

first principles of thermodynamics.

1. Although final form of the constitutive equations in terms of potential is pre-

sented in each of the above models, the process of obtaining these equations is

generally not described in depth. A general known method is to start from the

local form of conservation of energy, use the reversible form of second law, and

derive constitutive equations from them [44]. A rigorous treatment is presented

in [17, 18, 24, 37]. Although these authors differ from one another in certain

aspects, all of them start from the integral form of the governing equations

of thermomechanics. Upon subjecting various quantities to invariance require-

ments, the local form of these equations are obtained. For the second law, either

the Classius-Duhem inequality or the balance law of entropy is used.

For the case of thermo-electro-magneto-mechanical materials, there are a num-

ber of possible thermodynamic potential functions based on the set of inde-

pendent variables. In this thesis, an analysis of possible energy functions

and state variables that describe 3D, nonlinear, coupled behavior of thermo-

electro-magneto-mechanical materials undergoing a non-dissipative process is

presented. In total, there are seventy-two material characterizations described

by energy potentials arranged in eight families, each sharing the same ther-

momechanical independent variables. Each choice of state variables and corre-

sponding energy function correlates with a given set of nonlinear experiments;

the independent variables being controlled and the dependent variables being
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the measured responses. And for each such possible potential function, the

constitutive equations can be derived. Seventy-two possible characterizations

are worked out to obtain the constitutive equations for an unconstrained mate-

rial undergoing a rate-independent process. This is done following the rigorous

treatment of [17, 18, 24, 37].

2. Using the constitutive equations, an approach to evaluate the potential is laid

out employing conditions as constitutive limits (e.g., constant pressure).

3. The application of this framework to a new class of magnetostrictive iron-

gallium alloys (Galfenol) is investigated with the intent to implement these

alloys in a new class of fuel injectors to achieve unprecedented dynamic re-

sponse and performance. From the available experimental data of Galfenol,

attempts are made to numerically evaluate the potential. The state of the art

of the fuel injectors, failure of piezoelectric stack actuators, and the factors that

qualify Galfenol for fuel injector applications are also discussed.

B. Implementing a 3D nonlinear finite element formulation employing a phenomeno-

logical model.

So far, 3D nonlinear constitutive equations are not used to solve 3D boundary

value problems in the finite element method (FEM). Also, in most of the material

models, the Maxwell stress tensor term is neglected.

A 3D phenomenological model given in [12] is used to obtain the fully nonlin-

ear constitutive equations for magnetostrictive Galfenol. A boundary value problem

5



consisting of nonlinear constitutive equations, balance law of linear momentum, Am-

pere’s law and a set of appropriate BC’s is formulated and this can be solved using a

FEM formulation in the spirit of [40].

1.1 Outline of thesis

Chapter 2 focuses on a detailed description of the Minkowski formulation and the

approach followed in [18]. A summary of the governing equations from various authors

followed by detailed analyses is also presented. Chapter 3 focuses on an overview of

the seventy-two possible potentials and a detailed derivation of the constitutive equa-

tions from these potentials. Chapter 4 discusses the use of smart material actuators

in fuel injector applications, with an emphasis on failure of piezoelectric stack actu-

ators and the factors that qualify Galfenol actuators for fuel injector applications.

Chapter 5 presents the governing equations and 3D nonlinear constitutive equations

for magnetostrictive materials and the 3D finite-element formulation.
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CHAPTER 2

MESOSCALE CHARACTERIZATION OF DEFORMABLE

THEMO-ELECTRO-MAGNETO-MECHANICAL (TEMM)

MATERIALS

A general thermo-electro-magneto-mechanical (TEMM) process is described by

the evolution up to the present time of thermal, electric, magnetic, and mechani-

cal quantities. The particular choice of which quantities interrelate to describe the

process, and the explicit forms of these relations, are the constitutive model for the

material. For a TEMM material, the interdependence is through the following spa-

tially and temporally varying fields,

Thermal:

θ – absolute temperature

η – specific entropy (entropy per mass = length2 time−2 temperature−1)

Q – Lagrangian heat flux vector (energy per area per time = mass time−3)

(2.1)
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Electric:

e – electric field vector (mass length time−3 current −1)

p – polarization vector (length−2 time current)

d – electric displacement vector (length−2 time current) (2.2)

Magnetic:

h – magnetic field vector (length−1 current)

m – magnetization vector (length−1 current)

b – magnetic flux vector (mass time−2 current−1) (2.3)

Mechanical:

P – non-symmetric Piola-Kirchhoff stress tensor (force per area = mass length−1 time−2)

F – deformation gradient tensor (dimensionless) (2.4)

Energetic (energy per mass = length2 time−2):

ε – specific internal energy

ψ – specific Helmholtz free energy

φ – specific Gibbs free energy

χ – specific enthalpy (2.5)

Source terms:

j – free current density vector (ampere per square meter = current length−2)

σ – free charge density (coulomb per cubic meter = current time length−3)

(2.6)
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The TEMM material we model has no memory, i.e. its response depends only on

the values of the above quantities at the present time, with no explicit dependence on

previous times or temporal rates. For example, the stress at location x and present

time t depends only on the values of deformation, temperature, thermal flux, energy,

electric field, polarization, electric displacement, magnetic field, magnetization, and

magnetic flux, and perhaps their spatial (but not temporal) gradients, all evaluated

at the present location x and time t.

In the literature, there are many interaction models to characterize deformable

thermo-electro-magneto-mechanical materials. These models introduce four different

electromagnetic vector fields: e and b plus two other fields. Some models work with

d and h, others use p and m instead. A unique transformation from the variables

e,b,d,h to p,m exists. However, for each of these interaction models, the electro-

magnetic stress tensor and body force in the momentum equation are not unique.

The first law of thermodynamics states that the time rate of change of the internal

energy is balanced by stress power, the heat flux, and the energy supply due to

heat and electromagnetic effects. Since stress is non-unique, it follows that internal

energy, heat flux and electromagnetic energy supply cannot be determined uniquely

either. Likewise, the electromagnetic energy supply might contain a term that is the

divergence of some vector quantity, which could be absorbed in the heat flux vector.

In that case, heat flux can be called as energy flux [24].

From the many interaction models that exist in the literature, the Minkowski

formulation is selected. Two variations of the Minkowski formulation developed in

Hutter [24] and Green & Naghdi [18] are presented in this chapter. The final form of

the reduced energy equation is expressed in terms of e,h,p,m in [24] and e,h,d,b

9



in [18]. This difference arises as the internal energy considered in both works is not

identical.

A summary of governing equations developed by various authors is given. The

equivalence of these equations is also addressed.

This work deals with magnetizable and polarizable solids, which deform elastically

under the action of electromagnetic and thermal fields and which exhibit electrical

and thermal conduction. Mechanical dissipation, exchange interaction and magnetic

spin are not considered here. This work is done on the level of non-relativistic ap-

proximation.

A continuum theory of deformable bodies subject to electromagnetic fields amounts

to the presentation of the basic electromagnetic field variables, their relations to other

fields, as well as the postulation of electromagnetic body force, body couple and en-

ergy supply. Then, the Maxwell equations and the balance laws of mechanics and

thermodynamics can be expressed in terms of the variables of the model that is consid-

ered. The thermodynamic arguements are used to obtain the constitutive equations

in a form compatible with the second law of thermodynamics.

An important feature of this work is that it enables scientists and engineers to

assess the physical relevance of a particular posited pointwise model by seeing if there

exists a global statement. To be valid, pointwise equations must be derivable from

integral equations. Here we deduce the pointwise equations from global statements of

the first principles, modifying the rational treatment employed in thermodynamics.

10



2.1 Global form of the governing equations for electrody-

namics and thermomechanics

The global form of the equations governing coupled thermo-electro-magneto-mechanical

electromagnetic media are ∫
∂V

b · da = 0,

d

dt

∫
S

b · da +

∫
∂S

e∗ · dx = 0,∫
∂V

d · da =

∫
V
σ dv,

d

dt

∫
S

d · da −
∫
∂S

h∗ · dx +

∫
S

j∗ · da = 0,

d

dt

∫
V
σ dv +

∫
∂V

j∗ · da = 0, (2.7)

and

d

dt

∫
V
{ρε +

1

2
(εoe

∗ · e∗ + µoh
∗ · h∗) +

1

2
ρv · v + ρT}dv =

∫
V
{ρrext + ρf ext · v}dv

+

∫
∂V
{TTv − q − e∗ × h∗ +

1

2
(εoe

∗ · e∗ + µoh
∗ · h∗)v +R} · da,

(2.8)

or

d

dt

∫
V
ρdv = 0,

d

dt

∫
V
ρvdv =

∫
V
ρ(f ext + f e)dv +

∫
∂V

t · da,

d

dt

∫
V
ρ(x× v)dv =

∫
V
ρ(x× (f ext + f e) + Le)dv +

∫
∂V

(x× t) · da,

d

dt

∫
V
ρ(ε+

1

2
v·v)dv =

∫
V

(ρrext + ρre + ρ(f ext + f e) · v)dv +

∫
∂V

(t · v − h)da,

(2.9)

which must hold for all material surfaces S with closed boundary ∂S and any material

volume V with a closed boundary surface ∂V and outward normal n.
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In equations (2.8), (2.9), ρ is the mass density, v is the velocity of the mass

particle, f ext is the body force due to an externally applied field, rext is the specific

heat supply rate, t = Tn = PFTn
detF

is the surface traction vector, T is the stress tensor,

h = q · n = FQ
detF
· n is the heat flux, q is the heat flux vector, µo is the permeability

of the free space, εo is the permittivity of the free space, and ρT , R are quantities

to be expressed as functions of electromagnetic fields. The force f e, the couple Le,

and the energy supply rate re are the effects of the electromagnetic fields on the

thermomechanical problem.

The quantities e∗, h∗, j∗ are the effective electric field strength, magnetic field

strength, and conductive current respectively, i.e., field and current per area act-

ing on the deformed body. The relation between the effective fields e∗, h∗, j∗ and

the primitive fields e, h, j is part of the characterization of the particular material.

Several electromechanical interaction models for deformable matter have been pre-

sented in the literature, deduced from various degrees of first-principle based modeling

of microscale behavior and empiricism. These interaction models include the Chu,

Minkowski, Lorentz, and statistical formulations.

Chu formulation:

e∗ = e + v × µoh, h∗ = h− v × εoe, j∗ = j− σv, (2.10)

Minkowski formulation:

e∗ = e + v × b, h∗ = h− v × d, j∗ = j− σv, (2.11)

Lorentz formulation:

e∗ = e + v × b, h∗ =
1

µo
b−m− v × εoe, j∗ = j− σv, (2.12)

12



Statistical formulation:

e∗ = e + v × b, h∗ =
1

µo
b− εov × e−m− v × p, j∗ = j− σv, (2.13)

where e,h, j in (2.10) are the Chu’s electric field strength, magnetic field strength,

and free current density and the Minkowskian electric field strength, magnetic field

strength, and free current density in (2.11) and so on.

In this work, we employ the Minkowski formulation. In this, a rigid body moves

with constant velocity v relative to the laboratory frame, and a reference frame called

the rest frame is attached to the moving body. The equations of electrodynamics in

the coordinates of both the frames should be invariant. By postulating that the

energy balance is invariant under a super posed rigid body motion, the equations

of balance laws of mass and momenta are derived [24]. Although the Minkowski

formulation is based on rigid body motion, it has been applied to deformable bodies

in motion [37]. The physical motivations of the other three formulas can be found in

[22, 46, 19, 16, 23, 38, 39].

The balance law of entropy we employ is due to [18, 17]:

d

dt

∫
V
ρη dv +

∫
∂V
k da−

∫
V
ρs dv =

∫
V
ρξ dv, (2.14)

where k is the entropy flux, s is the external specific entropy supply rate, and ξ is the

entropy production. In this work, we adopt the constitutive assumptions

k =
q

θ
· n, s =

rext

θ
. (2.15)
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2.2 Pointwise form of the governing equations for electrodynamics and

thermomechanics

With smoothness assumptions on the integrands in the equations (2.7), (2.8),(2.9),

and (2.14), the area integrals convert to volume integrals using the divergence theo-

rem. Line integrals convert to area integrals using the Stokes theorem, and the time

derivatives are taken inside the integrals using the transport theorem (the vectorial

generalization of Leibniz’s rule). Hence the equations (2.7), (2.8), (2.9), and (2.14)

reduce either to

∫
V
φ(x, t) dv = 0, or

∫
S
φ(x, t) · da = 0. (2.16)

Then, since the above integrals are valid for any arbitrary susbset V or S of

the present configuration, and the variables are assumed to be continuous, use of

localization theorem1 gives the pointwise field equations. The pointwise Maxwell

equations resulting from the global equations (2.7) are:

∇ · b = 0,

∇× e∗ = − ∂b

∂t
− ∇× (b× v),

1If φ is a continuous scalar or tensor-valued field in R and

∫
V
φ(x, t) dv = 0 for all subsets V of R,

for every part V then it is necessary and sufficient that

φ = 0 for all points x in R
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∇ · d = σ,

∇× h∗ =
∂d

∂t
+ ∇× (d× v) + σv + j∗,

∇ · j∗ +
∂σ

∂t
+ ∇ · (σv) = 0. (2.17)

There are two ways of obtaining the pointwise balance laws of mechanics. One

way is to obtain the equations from (2.9) and the second way is to obtain the equa-

tions from the global energy balance law (2.8). Using the same procedure as described

above for obtaining pointwise Maxwell equations, the pointwise balance laws of me-

chanics (2.19) are obtained from (2.9). The same set of equations are obtained from

(2.8) as described in the Minkowski formulation: In order to determine the unknown

quantities ρT and R in (2.8), one subjects the local form of (2.8) to a Euclidean

transformation. The values of ρT and R are obtained from invariance requirements

and substituted into the global form. From this the local form can be derived, which

with the use of the Maxwell equations and the constitutive equations may be written

as

(ρ̇ + ρ∇ · v)(ε +
1

2
v · v) + ρε̇ − j∗ · e∗ − e∗ · p̊ − µoh

∗ · m̊∗ + ∇ · q− ρrext −

{T + e∗ ⊗ p + µoh
∗ ⊗m∗} · L + {ρv̇ − ∇ ·T − ρf ext −

σe∗ − j∗ × b − (∇e∗)Tp − µo(∇h∗)Tm∗ − (d̊× b + d× b̊)} · v = 0.
(2.18)

The invariance requirements under which ρ, ε, T, (v̇− f ext), q, ρrext, Q, j∗, e∗, p,

h∗, m∗, d, b are assumed to transform as objective quantities then yield the pointwise

equations for mass, linear momentum, angular momentum, and energy :

ρ̇ + ρ∇ · v = 0,
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ρv̇ = ρ
(
fext + fe

)
+ ∇ ·T,

T[ij] = ρLe
ij,

ρε̇ = ρrext + ρre − ∇ · q + T · L. (2.19)

The force f e, the couple Le, and the energy supply rate re are the effects of the elec-

tromagnetic fields on the thermomechanical problem. The nature of these coupling

terms is another important part of the material characterization. As an example, for

the Minkowski formulation,

ρfe = σe∗ + j∗ × b + p · ∇e∗ + µom∗ · ∇h∗ + d̊× b + d× b̊,

ρLe =
1

2
(p⊗ e∗ − e∗ ⊗ p + µo[m

∗ ⊗ h∗ − h∗ ⊗m∗]) ,

ρre = j∗ · e∗ + ρe∗ · d
dt

(
p

ρ
) + ρµoh

∗ · d

dt
(
m∗

ρ
), (2.20)

where

m∗ = m + v × p,

å = ∂a
∂t

+ v∇ · a +∇× (a× v), ∀ a,

[a⊗ b]ij = aibj.

The coupling terms f e, Le, re for the Chu, statistical, and Lorentz formulations can

be found in [24].

The pointwise entropy balance equation from (2.14):

ρη̇ + ∇ · (q

θ
) − ρ(

rext

θ
+ ξ) = 0. (2.21)

Substituting e∗ from the Minkowski formulation in (2.17)2, one obtains

∇× (e + v × b) = − ∂b

∂t
− ∇× (b× v), (2.22)

16



which reduces to

∇× e = −∂b

∂t
.

Similarly, substituting h∗ and j∗ from the Minkowski formulation in (2.17)4,

∇× (h− v × d) =
∂d

∂t
+ ∇× (d× v) + σv + (j− σv),

reduces to

∇× h = j +
∂d

∂t
. (2.23)

The pointwise Maxwell equations for an undeformed body are obtained by setting

v = 0 in (2.17),

∇ · b = 0,

∇× e = −∂b

∂t
,

∇ · d = σ,

∇× h = j +
∂d

∂t
. (2.24)

Note that (2.24) are same as the Minkowski Maxwell equations. The Maxwell equa-

tions in Minkowski formulation are in terms of e, b, d, h and those corresponding

to Statistical formulation are in terms of e, b, p, m. On using the relations (given

below) that connect p, m to d, h, one can find that the Maxwell equations from

Statistical and Minkowski formulation are same.

p = d− εoe, µom = b− µoh, (2.25)

Upon satisfying the invariance property, (2.25) reduces to

p = d− εoe∗, µom∗ = b− µoh∗. (2.26)
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The Maxwell equations for the Lorentz and Chu formulations do not resemble those

for the undeformed body.

For example, (2.17)4 for the Lorentz formulation is

µ−1
o ∇× b− εo

∂e

∂t
= j +

∂p

∂t
+∇× (p× v) +∇×m, (2.27)

and (2.17)2 for the Chu formulation is

∇× e + µo
∂h

∂t
= −∂(µom)

∂t
−∇× (µom× v). (2.28)

Although the form of Maxwell equations for the undeformed case and Minkowski for-

mulation are same, there is difference in the constitutive relation, as we now demon-

strate: Temporarily ignoring thermomechanical dependence until the next chapter,

constitutive assumptions in the electromagnetic problem must relate d,b to e,h in

the moving frame. The most general nonlinear couple dependence is

d = d̂(e,h), (2.29)

b = b̂(e,h),

j = ĵ(e,h).

To satisfy invariance, the constitutive equations must be cast in the invariant frame,

d′ = d̂(e′,h′), b′ = b̂(e′,h′), j′ = ĵ(e′,h′), (2.30)

The relation between the variables in the moving frame and the laboratory frame is

given by the Lorentz transformation as follows

e′ = e + v × b, h′ = h− v × d, (2.31)

d′ = d + v × h

c2
, b′ = b− v × e

c2
, (2.32)
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j′ = j− σv, σ′ = σ − v · j

c2
. (2.33)

The consequence of the invariance requirement is that e, h, and v must appear in

the constitutive assumption only in the combination

d + v × h

c2
= d̂(e + v × b,h− v × d), (2.34)

b− v × e

c2
= b̂(e + v × b,h− v × d),

j− σv = ĵ(e + v × b,h− v × d),

or

d = d̃(e,h,v), b = b̃(e,h,v), j = j̃(e,h,v), (2.35)

As a special case, the constitutive equations for linear isotropic materials are

d = εe, b = µh, j = νe. (2.36)

According to Minkowski formulation, the constitutive equations for linear isotropic

materials in a moving frame are

d′ = εe′, b′ = µh′, j′ = νe′. (2.37)

Expressing the above variables in the coordinates of the laboratory frame,

d = εe + (εµ− εoµo)v × h,

b = µh + (εoµo − εµ)v × e,

j− σv = ν(e + v × b). (2.38)

Neglecting εoµo = 1
c2

, the above constitutive equations reduce to

d = εe + εµ(v × h),
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b = µh− εµ(v × e),

j− σv = ν(e + v × b). (2.39)

In the Minkowski formulation of electro-magnetism in a deforming material that

we employ, the effective fields through deforming areas through the rigid body motion

given by the Lorentz transformation:

e∗ = e′, h∗ = h′, j∗ = j′ (2.40)

The governing equations (2.17) − (2.21) in the spatial description. A material

description is generally more useful in describing the deformation of solids, because

the boundary conditions for solids are usually prescribed on the undeformed body,

which is generally the body in its reference configuration. In the material description,

the governing equations of mechanics and the entropy balance law [24] in pointwise

form are

ρo = ρJ,

ρov̇ = ρo(f
ext + f e) +∇ ·P,

P[iαFj]α = ρoL
e
ij,

ρoε̇ = ρo(r
e + rext)−∇ ·Q + P · Ḟ, (2.41)

ρoη̇ + ∇ · (Q

θ
) − ρo(

rext

θ
+ ξ) = 0, (2.42)

where

P = JTF−T , Q = JF−1q, σ̄ = Jσ, j̄ = JF−1j∗, p̄ = JF−1p,

ē = FTe∗, d̄ = JF−1d, h̄ = FTh∗, b̄ = JF−1b, m̄ = JF−1m∗,

(2.43)
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ρof
e = F−T (σ̄ē+j̄×b̄+(∇ēT )p̄+µo(∇h̄T )m̄+d̄× ˙̄b+ ˙̄d×b̄)+∇F−TF(p̄⊗ē+µom̄⊗h̄),

ρoL
e
ij = F[iαF

−1
βj](p̄⊗ ē + µom̄⊗ h̄),

ρor
e = j̄ · ē + ˙̄p · ē + µo ˙̄m · h̄ + F−T(ē⊗ p̄ + µoh̄⊗ m̄) · Ḟ. (2.44)

2.3 Jump conditions

In order to model physical problems where finite jumps arise in any of the elec-

tromagnetic field quantities or mechanical quantities in the governing equations, we

allow a surface of discontinuity in the body. Since the presence of such a surface vi-

olates the smoothness assumptions, we cannot apply the transport theorem and the

localization theorem to the integral forms of the governing equations and hence the

pointwise equations which we presented above do not hold. We derive jump condi-

tions by using a new transport theorem which allows for the surface of discontinuity,

and the localization theorem by assuming that the jump is a continous function on

the surface of disconstinuity. If the surface of discontinuity is material, then these

jump conditions serve as boundary conditions.

The jump conditions for the Maxwell equations and the balance laws of mass,

momentum, and energy [24] are

εαβγ[[ēβ]]Nγ + [[b̄αWN ]] = 0, [[b̄α]]Nα = 0,

εαβγ[[h̄β]]Nγ + [[d̄αWN ]] = 0, [[d̄α]]Nα = 0,

[[ρoWN)]] = 0,

[[ρoviWN ]]− [[Tiα + F−1
βi (d̄αēβ + b̄αh̄β)− 1

2
| j̄ | F−1

αi C
−1
β γ(εoēβ ēγ + µoh̄βh̄γ)]]Nα = 0
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[[(
1

2
ρovivi + ρoε+

1

2
| j̄ | C−1

αβ (εoēαēβ + µoh̄αh̄β))WN ]]− [[viTiα −Qα − eαβγ ēβh̄γ

+F−1
βi (d̄αēβ + b̄αh̄β)vi −

1

2
| j̄ | F−1

αi C
−1
β γ(εoēβ ēγ + µoh̄βh̄γ)vi]]Nα = 0

(2.45)

2.4 Alternative formulation for governing equations

In section (2.1-2.2), we present the equation for conservation of energy governing

TEMM materials involving the electromagnetic variables e, h, p, and m. In this

section, we present an alternative formulation that has the equation for conservation

of energy involving the electromagnetic variables e, h, d, and b following the work of

[18]. We do this in order to accomodate the family of potentials that involves various

combinations of the electromagnetic variables presented in both formulations.

Let ζt be an arbitrary material subset of body B at time t in the current configu-

ration. For any subset ζt of B, denote K(ζt) as the kinetic energy in ζt, H(ζt) as the

heat energy in ζt, E(ζt) as the electromagnetic energy in ζt, R(ζt) as the external rate

of supply of mechanical work to ζt, Q(ζt) as the external rate of supply of heat to ζt,

T (ζt) as the external rate of supply of electromagnetic energy to ζt, and W (ζt) as the

internal rate of supply of energy (mechanical, thermal and electromagnetic) within

ζt. These terms are

K(ζt) =

∫
V

1

2
ρv · vdv, H(ζt) =

∫
V
ρηθdv, E(ζt) =

∫
V
(d · e∗ + b · h∗)dv, (2.46)

R(ζt) =

∫
V
ρb̂ · vdv +

∫
∂V

t · vda, Q(ζt) =

∫
V
ρsθdv −

∫
∂V
kθda, (2.47)

T (ζt) = −
∫
V
ee∗ · vdv +

∫
∂V
{(h∗ × e∗).n + te · v}da, (2.48)

W (ζt) =

∫
V
(ρf · v + ρξθ − j∗ · e∗ + ρw)dv, (2.49)
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where ρ, η, s, k, ξ, w, θ, e are scalar-valued functions, d, b, j∗, te, b̂, t, f are vector-

valued functions of (X, t), and t, te and k depend on the outward unit normal n. The

vector te is defined by

te = Ten, Te = e∗ ⊗ d + h∗ ⊗ b. (2.50)

It was observed that the integrands in (2.46)2,3, (2.47)1,2, and (2.48) are linear in the

independent variables

{v, θ, e∗, h∗}, (2.51)

but no explicit statement has been made in regard to the dependence of the scalar w

in (2.49). Since the first three terms in the integrand (2.49) are already linear in the

variables (2.51), with a reasonable generality, w is assumed to be linear in the set of

variables

{θ̇, ∂θ

∂x
,
∂v

∂x
, ė∗, ḣ∗}, (2.52)

and has the form

ρw = ρη1θ̇ + p1 ·
∂θ

∂x
−T1 ·

∂v

∂x
+ d1 · ė∗ + b1 · ḣ∗, (2.53)

where p1 = p1(X, t), d1 = d1(X, t), b1 = b1(X, t) are vector valued functions of

(X, t), T1 = T1(X, t) is a second order tensor valued function.

The first law of thermodynamics in presence of electromagnetic effects states that

[18]:

(i) For any subset ζt of the body B in the current configuration, the rate of

change of kinetic energy K(ζt), heat energy H(ζt), and electromagnetic energy E(ζt)

is balanced by the external rate of supply of mechanical work R(ζt), the external rate

of supply of electromagnetic energy T (ζt), the external rate of supply of heat Q(ζt),

and internal rate of supply of energy (mechanical, heat and electromagnetic) W (ζt),
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(ii) The total heat energy Q, mechanical work R and rate of supply of electro-

magnetic energy T supplied to or extracted from ζt in a cycle is zero. Expressing

statement (i) mathematically,

− d

dt
[K(ζt) +H(ζt) + E(ζt)] +R(ζt) +Q(ζt) + T (ζt) +W (ζt) = 0, (2.54)

or equivalently

E(t) = − d

dt

∫
V
[ρ(

1

2
v · v + d · e∗ + b · h∗)]dv + (2.55)∫

V
[ρ(b̂ · v + f · v + sθ + ξθ + w)− ee∗ · v − j∗ · e∗]dv +∫

∂V
[t · v − kθ + (h∗ × e∗) · n + te · v]da = 0.

The integrands in (2.55) are functions of (2.51) with coefficients that are independent

of these variables, although ρw does depend on their space and time derivatives. The

energy balance (2.55) is valid for every choice of the variables (2.51); but, because of

the expression in (2.53), in general E(t) will change its form. However, if (2.51) is

replaced by

{v + c̄, θ + c̄, e∗ + e1, h∗ + h1}, (2.56)

E(t) is form invariant. Thus introducing (2.56) into (2.55), the equation is valid for

every choice of {c̄, c̄, e1, h1} and hence the integral expressions were obtained.

With the usual smoothness assumptions and boundedness properties, the application

of these integral expressions to an arbitrary tetrahedron resulted in

t = Tn, k = p · n, (2.57)

where T is a second order tensor function and p is a vector function of (X, t). Upon

substituting (2.57) in the integral expressions (2.55) and applying the divergence the-

orem, transport theorem, and the localization theorem, we obtain their corresponding
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local forms. We obtain local form of energy equation (2.55) using a similar approach.

Then the statement (ii) is used to obtain

W (ζt) = − d

dt
Ψ(ζt), Ψ(ζt) =

∫
P
ρψdv. (2.58)

Combining the local form of energy equation and (2.58), the reduced energy equation

is obtained. Then, the unknown quantities are identified as shown in the following

table.

ρ mass density in the current configuration of B

b̂ external body force per unit mass

ρfe + ee∗ internal body force per unit mass in V due to electromagnetic fields

t surface force (or the stress vector) per unit area over ∂V

f internal force per unit mass in V

s external rate of supply of entropy per unit mass

ξ internal rate of supply of entropy per unit mass

k flux of entropy per unit area across ∂V

T stress tensor per unit area ∂V

p entropy flux vector per unit area of ∂V

η density of entropy per unit mass

sθ(= r) external rate of supply of heat per unit mass

kθ(= h) flux of heat per unit area across ∂V

ηθ heat density per unit mass

ψ Helmholtz free energy per unit mass

d electric displacement

b magnetic induction

e free charge

Table 2.1: Quantities - Minkowski formulation
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Under non-relativistic approximation, the reduced energy equation was considered

invariant under a special Galilean transformation,

x+ = āt+ Qx, t+ = t, (2.59)

where ā is a constant vector and Q is a constant proper orthogonal tensor. The above

identified variables under this transformation are substituted back into the reduced

energy equation, and it is found that f = 0. The final forms of the integral expressions

are

d

dt

∫
P
ρdv = 0,

d

dt

∫
P
ρvdv =

∫
P
{ρb̂− ee∗}dv +

∫
∂P

(t + te)da,

d

dt

∫
P
ρηdv =

∫
P
ρ(s+ ξ)dv −

∫
∂P
kda,

d

dt

∫
P

ddv = −
∫
P

(ev + j∗)dv +

∫
∂P
{n× h∗ + (n.d)v}da,

d

dt

∫
P

bdv =

∫
∂P
{e∗ × n + (n · b)v}da,

−
∫
P
edv +

∫
∂P

n.d da = 0,∫
∂P

n.b da = 0, (2.60)

and their corresponding local forms are
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ρ̇+ ρdivv = 0,

ρv̇ = ρ(b̂ + fe) + divT,

ρη̇ = ρ(s+ ξ)− divp,

curlh∗ = ḋ + ddivv − Ld + j∗,

−curle∗ = ḃ + bdivv − Lb,

divd = e,

divb = 0, (2.61)

where

ρfe =
∂e∗

∂x
d +

∂h∗

∂x
b, (2.62)

and the reduced energy equation is

−ρ(ψ̇ + ηθ̇) + (T + Te) · L− p · ∂θ
∂x
− ρξθ − d̄ · ˙̄e− b̄ · ˙̄h + j∗ · e∗ = 0, (2.63)

where

ē = FTe∗, d̄ = F−1d, h̄ = FTh∗, b̄ = F−1b. (2.64)

2.5 Summary of governing equations from different authors

The governing equations developed by five authors Pao [37], Hutter [24], Naghdi83 [17],

Naghdi95 [18], Smith [44] are summarized and the differences in these equations are

presented in the sections that follow.
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2.5.1 Conservation of mass

Pao, Hutter, Naghdi83, Naghdi95 presented same equation for conservation of mass:

Integral form:

d

dt

∫
V
ρdv = 0 (2.65)

Pointwise form:

dρ

dt
+ ρdivv = 0 (2.66)

2.5.2 Conservation of linear momentum

Integral form

Pao d
dt

∫
V ρvdv =

∫
∂V t · da +

∫
V ρf

edv

Hutter and Naghdi83 d
dt

∫
V ρvdv =

∫
∂V t · da +

∫
V ρ(fext + fe)dv

Naghdi95 d
dt

∫
V ρvdv =

∫
∂V (t + te) · da +

∫
V (ρfext − ee∗)dv

Pointwise form

Pao ρv̇ = ρfe + divT

Hutter and Naghdi83 ρv̇ = ρ(fe + fext) + divT

Naghdi95 ρv̇ = ρ(fe + fext) + divT

t = Tn

Pao ρfe = σe + j× b− 1
2

[∇b · h−∇h · b−∇e · d +∇d · e]

Hutter and Naghdi83 ρfe = σe∗ + j∗ × b + p · ∇e∗ + µom∗ · ∇h∗ + d̊× b + d× b̊

te = Ten, Te = e∗ ⊗ d + h∗ ⊗ b

Naghdi95
∫
V ρf

edv =
∫
∂V te · da−

∫
V ee

∗dv

ρfe = ∂e∗

∂x
d + ∂h∗

∂x
b

Table 2.2: Conservation of linear momentum
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The equation for conservation of linear momentum from Hutter and Naghdi83

are same. The balance laws for Hutter are deduced from an energy balance law.

According to [24], the balane laws presented in Pao are not invariant in the non-

relativistic sense, and hence they can never be deduced from an energy balance.

Hence, the equations from Hutter do not agree with those of Pao. Also, Pao did not

take external body force into consideration. The conservation of linear momentum

equation that is considered in this work is from Hutter and Naghdi83.

2.5.3 Conservation of angular momentum

Integral form

Pao d
dt

∫
V (x× ρv)dv =

∫
∂V (x× t) · da +

∫
V ρ(ce + x× fe)dv

Hutter and Naghdi83 d
dt

∫
V (x× ρv)dv =

∫
∂V (x× t) · da +

∫
V ρ(ce + x× (fext + fe)dv

Pointwise form

Pao, Hutter, and Naghdi83 T[ij] = ρLeij

Leij = 1
2
eijkc

e
k or

Leu = ce × u for every vector u

Pao ρLe = 1
2

(e⊗ d + h⊗ b− d⊗ e− b⊗ h)

Hutter ρLe = 1
2

(p⊗ e∗ − e∗ ⊗ p + µo[m∗ ⊗ h∗ − h∗ ⊗m∗]) ,

Naghdi83 ρLe = 1
2

(e∗ ⊗ d + h∗ ⊗ b− d⊗ e∗ − b⊗ h∗)

(ρLe)Naghdi83 = (ρLe)Hutter

Table 2.3: Conservation of angular momentum

The equations for conservation of angular momentum given by Hutter and Naghdi83

are same. Although the form given by Pao looks similar to Hutter or Naghdi83, the
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expression given by Pao is in reference frame coordinates where as the later is in mov-

ing frame coordinates. In this work, the conservation of angular momentum equation

from Hutter or Naghdi83 is adopted.

2.5.4 Conservation of energy

Integral form

Pao d
dt

∫
V (ρε+ 1

2
ρv · v)dv =

∫
∂V (t · v − q · n)da+

∫
V ρ(rq + re + fe · v)dv

Hutter and Naghdi83 d
dt

∫
V (ρε+ 1

2
ρv · v)dv =

∫
∂V (t · v − q · n)da+

∫
V ρ(rext + re + (fext + fe) · v)dv

Hutter- d
dt

∫
V{ρε + 1

2
(εoe∗ · e∗ + µoh∗ · h∗) + 1

2
ρv · v }dv =

∫
V ρ{r

ext + fext · v}dv

Minkowski formulation +
∫
∂V{Tv − q − e∗ × h∗ + 1

2
(εoe∗ · e∗ + µoh∗ · h∗)v} · da

Naghdi95 d
dt

∫
V [ρ( 1

2
v · v + ηθ) + d · e∗ + b · h∗]dv =

∫
∂V [t · v − kθ + (h∗ × e∗) · n + te · v]da

+
∫
V [ρ(fext · v + sθ + ζθ + w)− ee∗ · v − j∗ · e∗]dv

Pointwise form

Pao ρε̇ = T · L− divq + ρre

Hutter and Naghdi83 ρε̇ = T · L− divq + ρre + ρrext

Naghdi95 −ρ(ψ̇ + ηθ̇) + T · L− p · ∂θ
∂x
− ρζθ − ρf · v − d · ė∗ − b · ḣ∗ + j∗ · e∗ = 0

Smith dU = σ · dε+ E · dP + TdS − TdSirr

electromagnetic energy supply rate re

Pao ρre = j∗ · e∗ + 1
2

[h · db
dt
− b · dh

dt
+ d · de

dt
− e · dd

dt
]

Hutter-Minkowski ρre = j∗ · e∗ + ρe∗ · d
dt

( p
ρ

) + ρµoh∗ · d
dt

( m∗

ρ
).

Naghdi83 ρre = j∗ · e∗ + e∗ · ḋ+ h∗ · ḃ + (e∗ · d + h∗ · b− 1
2

(εoe∗ · e∗ + µoh∗ · h∗))divv

Naghdi95 ρw − ρηθ̇ + T · L− p · ∂θ
∂x
− d · ė∗ − b · ḣ∗ = 0

ρw + ρψ̇ + ρf · v + ρθζ − j∗ · e∗ = 0

Table 2.4: Conservation of energy
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The basic form of equations for conservation of energy is same for Pao, Hutter,

Naghdi83. The expression for electromagnetic energy rate is different from one author

to other including Hutter and Naghdi83. Since Minkowski formulation is followed in

this work, the global energy balance law from Hutter and Naghdi95 are presented.

In all the equations for conservation of energy, the electromagnetic energy rate is

represented by re and it is later postulated with respect to a particular formulation in

question. But in Minkowski formulation, the electromagnetic energy term is intrinsic

in the global energy balance law. In Hutter, by subjecting the global energy balance

law to invariance requirements, the pointwise form of conservation of mass, momen-

tum, angular momentum and energy are obtained. In the same way, in Naghdi95, by

subjecting the global energy balance law to invariance requirements, first the integral

equations for mass, momentum, energy and also Maxwell equations are obtained.

Then, the pointwise equations are obtained from the use of divergence, transport

and localization theorems. Comparing the Minkowski formulation from Hutter and

Naghdi95, it appears that Naghdi95 gave a holistic picture as balance laws of mechan-

ics as well as Maxwell equations are derived from its global energy balance law where

as only pointwise equations of balance laws of mechanics are obtained from Hutter.

The global energy balance law from Hutter when compared to Naghdi95 has an addi-

tional term 1
2
(εoe

∗ · e∗ + µoh
∗ ·h∗) on both left hand side as well as right hand side

of the equation. Due to this reason, the final form of reduced energy equation from

Hutter has the electromagnetic coupling effect in terms of e,p,h,m. The reduced

energy equation from Naghdi95 has the electromagnetic coupling effect in terms of

e,d,h,b. For the characterization of TEMM materials in the next chapter, all the

electromagnetic terms e,p,d,h,m,b are taken into consideration. Hence, depending
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on the state variables in question, the switching from global energy balance law of

Hutter to Naghdi95 is done. In order to check the equivalence of Minkowski formula-

tion given by Hutter and Naghdi95, the additional term as mentioned above is added

to Naghdi95’s global energy balance law. In such a case, the integral equations of

balance laws of mechanics and Maxwell equations cannot be deduced from it.

2.5.5 Balance law for entropy

Integral form

Hutter, Naghdi83, and Naghdi95 d
dt

∫
V ρηdv =

∫
V ρ(s+ ξ)dv −

∫
∂V kda

Pointwise form

Pao and Hutter ρη̇ + ∇ · ( q
θ

) − ρ( r
ext

θ
) ≥ 0

Naghdi83 and Naghdi95 ρη̇ + ∇ · ( q
θ

) − ρ( r
ext

θ
+ ξ) = 0

Smith dS = dQ
T

+ dSirr

Table 2.5: Balance law of entropy

Naghdi83 and Naghdi95 represented the irreversible part of second law with the

term ξ. Pao and Hutter replaced this irreversible term with an inequality sign. This

is generally known as the Classius-Duhem inequality. Although Smith presented the

second law which has the irreversible component in it, he neglected it and considered

a reversible second law for the purpose of obtaining linear constitutive equations.
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CHAPTER 3

CHARACTERIZATION OF RATE-INDEPENDENT

TEMM MATERIALS

Chapter 2 presents the governing equations of balance laws of mechanics and

Maxwell equations describing a thermo-electro-magneto-mechanical (TEMM) mate-

rial. This chapter gives overview of thermodynamic potentials and presents a detailed

derivation of constitutive equations necessary to evaluate thermodynamic potentials.

The quantities (2.1)-(2.5) are divided into four sets:

1. the fundamental potential function (a scalar function which provides a complete

description of the TEMM state)

2. independent variables (the arguments of the fundamental potential function)

3. primary dependent variables (determined by the independent variables through

derivatives of the potential function)

4. secondary dependent variables (determined algebraically from the independent

and primary dependent variables)
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The different choices of this division constitute different formulations of the same

characterization of a rate-independent TEMM material.

The potential function can be any one of the four energies, temperature, or en-

tropy [42]. If the potential is Helmholtz free energy ψ, the thermomechanical indepen-

dent variables must be deformation and temperature2. Any one of the three electrical

vectors and any one of the three magnetic vectors complete the set. Therefore, there

are nine possible Helmholtz free energies associated with a TEMM material. For

example, if we choose electric field e and magnetization m to be the independent

2Consider ε as a function of the mechanical independent variable F, thermal independent variable

η, electrical independent variable e and magnetic independent variable m denoted by

ε = ε̃(F, η, ē, m̄), (3.1)

With regards to this potential, the thermal constitutive equation

∂ε

∂η
= −θ, (3.2)

which gives directly

θ = θ̃(F, η, ē, m̄). (3.3)

Assuming the function is invertible, one can obtain

η = η̂(F, θ, ē, m̄) (3.4)

Substituting (3.4) into (3.1), one gets

ε = ε̃(F, η = η̂(F, θ, ē, m̄), ē, m̄), (3.5)

= ε̂(F, θ, ē, m̄).

Therefore internal energy ε can post facto be expressed as a function of temperature so as to compute

c = ∂ε̂
∂θ for instance.
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electromagnetic variables, then the Helmholtz free energy is

ψ = ψFθem(F, θ, e,m), (3.6)

where ψ is the value of function ψFθem and the superscript Fθem denotes the par-

ticular choice of independent variables. For this particular potential, the primary

dependent variables are stress, entropy, polarization and magnetic field.

ρo
∂ψFθem

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄), (3.7)

∂ψFθem

∂θ
= −η,

ρo
∂ψFθem

∂ē
= −p,

ρo
∂ψFθem

∂m̄
= µoh.

where ρo is the mass density in the reference configuration, ρ = ρodet F is the mass

density in the current configuration, and µo is the permeability of free space. If the

potential is Gibbs free energy, the independent variables include stress and tempera-

ture.

The different choices of this division constitute different characterizations of a

rate-independent TEMM material. To generate the possible characterizations:

1. one of stress P or deformation F is selected as the mechanical independent

variable, with the other identified as the mechanical dependent variable; (con-

jugates)

2. one of temperature θ, entropy η, or energies ε, ψ, φ, χ is selected as the ther-

mal independent variable, another as the potential function and the remaining

quantities are identified as thermal dependent variables. The particular choice
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of thermal and mechanical independent variables dictates which energy is em-

ployed:

deformation F, entropy η ⇔ internal energy ε

deformation F, temperature θ ⇔ Helmholz free energy ψ

stress P, entropy η ⇔ enthalpy ψ

stress P, temperature θ ⇔ Gibbs free energy

3. one of e, p or d is selected as the electrical independent variable, with the other

two considered as the electrical dependent variables;

4. one of m, h or b is selected as the magnetic independent variable, with the

other two considered as the magnetic dependent variables.

Hence from (i) – (iv) the possible characteristics of rate independent TEMM material

are grouped according to their potential functions.

The seventy-two characterizations are arranged in eight families, each sharing the

same thermomechanical independent variables, and hence the same thermodynamic

potential. For example, the formulations of Family1 share the same thermomechanical

independent variables deformation and entropy, so that the potential function must

be internal energy ε. The notation εFηem, εFηpm, ...., εFηdb in Family1 is to distinguish

the nine different energy potential functions that appear in Family 1. The utility of

having seventy-two potentials is to characterize potentials based on limits/special

cases and to design experiments for full 3D characterization
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Potential functions

Family1 Family2 Family3 Family4 Family5 Family6 Family7 Family8

εFηpm ηFεpm ψFθpm θFψpm χPηpm ηPχpm φPθpm θPφpm

εFηem ηFεem ψFθem θFψem χPηem ηPχem φPθem θPφem

εFηph ηFεph ψFθph θFψph χPηph ηPχph φPθph θPφph

εFηeh ηFεeh ψFθeh θFψeh χPηeh ηPχeh φPθeh θPφeh

εFηdm ηFεdm ψFθdm θFψdm χPηdm ηPχdm φPθdm θPφdm

εFηpb ηFεpb ψFθpb θFψpb χPηpb ηPχpb φPθpb θPφpb

εFηdh ηFεdh ψFθdh θFψdh χPηdh ηPχdh φPθdh θPφdh

εFηeb ηFεeb ψFθeb θFψeb χPηeb ηPχeb φPθeb θPφeb

εFηdb ηFεdb ψFθdb θFψdb χPηdb ηPχdb φPθdb θPφdb

Table 3.1: Potential Functions

3.1 Background

For a set of n independent variables and corresponding conjugates, there will be

2n potentials. Consider the case when n = 3, and the conjugate pairs are given by

(1a, 2a, 3a) and (1b, 2b, 3b). There are eight possible potentials, and each potential

will yield three constitutive relations. The potentials are denoted εi.

ε1 = ε1(1a, 2a, 3a)
ε2 = ε2(1a, 2a, 3b)
ε3 = ε3(1a, 2b, 3a)
ε4 = ε4(1a, 2b, 3b)
ε5 = ε5(1b, 2a, 3a)
ε6 = ε6(1b, 2a, 3b)
ε7 = ε7(1b, 2b, 3a)
ε8 = ε8(1b, 2b, 3b)

Constitutive relations:
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1b =
∂ε1

∂1a

∣∣∣∣
2a,3a

2b =
∂ε1

∂2a

∣∣∣∣
1a,3a

3b =
∂ε1

∂3a

∣∣∣∣
1a,2a

1b =
∂ε2

∂1a

∣∣∣∣
2a,3b

2b =
∂ε2

∂2a

∣∣∣∣
1a,3b

3a =
∂ε2

∂3b

∣∣∣∣
1a,2a

1b =
∂ε3

∂1a

∣∣∣∣
2b,3a

2a =
∂ε3

∂2b

∣∣∣∣
1a,3a

3b =
∂ε3

∂3a

∣∣∣∣
1a,2b

1b =
∂ε4

∂1a

∣∣∣∣
2b,3b

2a =
∂ε4

∂2b

∣∣∣∣
1a,3b

3a =
∂ε4

∂3b

∣∣∣∣
1a,2b

1a =
∂ε5

∂1b

∣∣∣∣
2a,3a

2b =
∂ε5

∂2a

∣∣∣∣
1b,3a

3b =
∂ε5

∂3a

∣∣∣∣
1b,2a

1a =
∂ε6

∂1b

∣∣∣∣
2a,3b

2b =
∂ε6

∂2a

∣∣∣∣
1b,3b

3a =
∂ε6

∂3b

∣∣∣∣
1b,2a

1a =
∂ε7

∂1b

∣∣∣∣
2b,3a

2a =
∂ε7

∂2b

∣∣∣∣
1b,3a

3b =
∂ε7

∂3a

∣∣∣∣
1b,2b

1a =
∂ε8

∂1b

∣∣∣∣
2b,3b

2a =
∂ε8

∂2b

∣∣∣∣
1b,3b

3a =
∂ε8

∂3b

∣∣∣∣
1b,2b
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3.2 Unconstrained material

The conservation of energy equation in material description (2.41) is

ρoε̇ = ( P+ F−T (ē⊗p̄ + µoh̄⊗m̄))·Ḟ − ∇·Q + ρor
ext + j̄·ē + ˙̄p · ē + µo ˙̄m·h̄.

(3.8)

The entropy balance equation (2.42) multiplied by temperature is

ρoη̇θ + ∇ ·Q − Q

θ

∂θ

∂X
− ρor

ext − ρoξθ = 0. (3.9)

Combining (3.8) and (3.9),

−ρoε̇ + (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ + ρoη̇θ + ˙̄p · ē + µo ˙̄m · h̄ + B = 0,

(3.10)

where

B = j̄ · ē − Q

θ

∂θ

∂X
− ρoξθ. (3.11)

The relation between various potential energies is as follows:

ρoψ = ρoε− ρoηθ, (3.12)

ρoχ = ρoε−P · F, (3.13)

ρoφ = ρoε−P · F− ρoηθ. (3.14)

Substituting (3.12) in (3.10),

−ρoψ̇ + (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ − ρoηθ̇ + ē · ˙̄p + µoh̄ · ˙̄m + B = 0.

(3.15)

Substituting (3.13) in (3.10),

−ρoχ̇ − Ṗ · F + ρoη̇θ + ē · ˙̄p + µoh̄ · ˙̄m + F−1LFp̄ · ē + µoF−1LFm̄ · h̄ + B = 0.

(3.16)
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Substituting (3.14) in (3.10),

−ρoφ̇ − Ṗ · F − ρoηθ̇ + ē · ˙̄p + µoh̄ · ˙̄m + F−1LFp̄ · ē + µoF−1LFm̄ · h̄ + B = 0.

(3.17)

3.2.1 Family 1

Case (a) :

Consider ε = ε(F, η, p̄, m̄), one can write

ρoε̇
Fηpm = ρo

∂εFηpm

∂F
Ḟ + ρo

∂εFηpm

∂η
η̇ + ρo

∂εFηpm

∂p̄
˙̄p + ρo

∂εFηpm

∂m̄
˙̄m. (3.18)

Substituting (3.18) into (3.10), and rearranging gives

−(ρo
∂εFηpm

∂F
− (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ − (ρo

∂εFηpm

∂η
− ρoθ)η̇ (3.19)

− (ρo
∂εFηpm

∂p̄
− ē) · ˙̄p − (ρo

∂εFηpm

∂m̄
− µoh̄) · ˙̄m + B = 0.

The constitutive equations thus have the form

ρo
∂εFηpm

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄), (3.20)

∂εFηpm

∂η
= θ,

ρo
∂εFηpm

∂p̄
= ē,

ρo
∂εFηpm

∂m̄
= µoh̄,

and the residual equality is

j̄ · ē − Q

θ
· ∂θ
∂X

− ρoξθ = 0. (3.21)

Case (b) :

Consider ε = ε(F, η, ē, m̄), one can write

ρoε̇
Fηem = ρo

∂εFηem

∂F
Ḟ + ρo

∂εFηem

∂η
η̇ + ρo

∂εFηem

∂ē
˙̄e + ρo

∂εFηem

∂m̄
˙̄m. (3.22)

40



The corresponding Legendre transformation is

ρoε
Fηem = ρoε− p̄ · ē, (3.23)

ρoε̇
Fηem = ρoε̇− p̄ · ˙̄e− ˙̄p · ē. (3.24)

Substituting (3.24) into (3.10),

−ρoε̇Fηem + (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ + ρoη̇θ − p̄ · ˙̄e + µo ˙̄m · h̄ + B = 0.

(3.25)

Substituting (3.22) into (3.25), and rearranging gives

−(ρo
∂εFηem

∂F
− (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ − (ρo

∂εFηem

∂η
− ρoθ)η̇ (3.26)

− (ρo
∂εFηem

∂ē
+ p̄) · ˙̄e − (ρo

∂εFηem

∂m̄
− µoh̄) · ˙̄m + B = 0.

The constitutive equations thus have the form

ρo
∂εFηem

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄), (3.27)

∂εFηem

∂η
= θ,

ρo
∂εFηem

∂ē
= −p̄,

ρo
∂εFηem

∂m̄
= µoh̄.

Case (c) :

Consider ε = ε(F, η, p̄, h̄), one can write

ρoε̇
Fηph = ρo

∂εFηph

∂F
Ḟ + ρo

∂εFηph

∂η
η̇ + ρo

∂εFηph

∂p̄
˙̄p + ρo

∂εFηph

∂h̄
˙̄h. (3.28)

The corresponding Legendre transformation is

ρoε
Fηph = ρoε− µom̄ · h̄, (3.29)
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ρoε̇
Fηph = ρoε̇− µom̄ · ˙̄h− µo ˙̄m · h̄. (3.30)

Substituting (3.30) into (3.10),

−ρoε̇Fηph + (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ + ρoη̇θ + ˙̄p · ē − µom̄ · ˙̄h + B = 0.

(3.31)

Substituting (3.28) into (3.31), and from rearranging, one arrives at the constitutive

equations

ρo
∂εFηph

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄), (3.32)

∂εFηph

∂η
= θ,

ρo
∂εFηph

∂p̄
= ē,

ρo
∂εFηph

∂h̄
= −µom̄.

Case (d) :

Consider ε = ε(F, η, d̄, m̄), one can write

ρoε̇
Fηdm = ρo

∂εFηdm

∂F
Ḟ + ρo

∂εFηdm

∂η
η̇ + ρo

∂εFηdm

∂d̄
˙̄d + ρo

∂εFηdm

∂m̄
˙̄m. (3.33)

The corresponding Legendre transformation is

ρoε̇
Fηdm = ρoε̇+ εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF

−T ē · F−T ē divv. (3.34)

Substituting (3.34) into (3.10),

−ρoε̇Fηdm + (P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)) · Ḟ + ρoη̇θ + ē · ˙̄d + µo ˙̄m · h̄ + B = 0.

(3.35)
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Material Description Spatial Description

εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF
−T ē · F−T ē divv εoe

∗ · ė∗ + εoe
∗ · e∗divv

µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF
−T h̄ · F−T h̄ divv µoh

∗ · ḣ∗ + µoh
∗ · h∗divv

Substituting (3.33) into (3.35), and from rearranging one arrives at the constitutive

equations

ρo
∂εFηdm

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ m̄), (3.36)

∂εFηdm

∂η
= θ,

ρo
∂εFηdm

∂d̄
= ē,

ρo
∂εFηdm

∂m̄
= µoh̄.

Case (e) :

Consider ε = ε(F, η, p̄, b̄), one can write

ρoε̇
Fηpb = ρo

∂εFηpb

∂F
Ḟ + ρo

∂εFηpb

∂η
η̇ + ρo

∂εFηpb

∂p̄
˙̄p + ρo

∂εFηpb

∂b̄
˙̄b. (3.37)

The corresponding Legendre transformation is

ρoε̇
Fηpb = ρoε̇+ µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF

−T h̄ · F−T h̄ divv. (3.38)

Substituting (3.38) into (3.10),

−ρoε̇Fηpb + (P + F−T (ē⊗ p̄ + h̄⊗ b̄)) · Ḟ + ρoη̇θ + ē · ˙̄p + µoh̄ · ˙̄b + B = 0.

(3.39)
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Substituting (3.33) into (3.35), and from rearranging one arrives at the constitutive

equations

ρo
∂εFηpb

∂F
= P + F−T (ē⊗ p̄ + h̄⊗ b̄), (3.40)

∂εFηpb

∂η
= θ,

ρo
∂εFηpb

∂p̄
= ē,

ρo
∂εFηpb

∂b̄
= µoh̄.

3.2.2 Family 2

Case (a) :

Consider η = η(F, ε, ē, m̄) The Legendre transformation is

ρoη̇
Fεemθ = ρoη̇θ + p̄ · ˙̄e + ˙̄p · ē. (3.41)

Substituting (3.41) into (3.10),

ρoη̇
Fεemθ + (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ − ρoε̇ − p̄ · ˙̄e + µo ˙̄m · h̄ + B = 0.

(3.42)

The corresponding constitutive equations are

ρoθ
∂ηFεem

∂F
= −(P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)), (3.43)

∂ηFεem

∂ε
=

1

θ
,

ρoθ
∂η

∂ē
= p̄,

ρoθ
∂η

∂m̄
= −µoh̄.
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Case (b) :

Consider η = η(F, ε, d̄, m̄) The Legendre transformation is

ρoη̇
Fεdmθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−T ē · F−T ē divv. (3.44)

Substituting (3.44) into (3.10),

ρoη̇
Fεdmθ + (P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)) · Ḟ − ρoε̇ − ē · ˙̄d + µo ˙̄m · h̄ + B = 0.

(3.45)

The corresponding constitutive equations are

ρoθ
∂ηFεem

∂F
= −(P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)), (3.46)

∂ηFεem

∂ε
=

1

θ
,

ρoθ
∂η

∂d̄
= −ē,

ρoθ
∂η

∂m̄
= −µoh̄.

The terms which will get added in the Family 1’s legendre transformation will get

subracted in the Family 2’s legendre transformation. In this way one can obtain the

constitutive equations for all the cases in Family 2.

3.2.3 Family 3

For family 3 potentials, one needs to subract ηθ from the corresponding family 1

potentials. For example

Consider the case ψ = ψ(F, θ, d̄, b̄) The Legendre transformation is

ψFθdb = εFηdb − ηθ, (3.47)

ρoψ̇
Fθdb = ρoε̇

Fηdb − ρoη̇θ − ρoηθ̇. (3.48)
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Substituting (3.48) in the corresponding equation for εFηdb,

ρoψ̇
Fθdb = ρoε̇+ εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv (3.49)

+µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv − ρoη̇θ − ρoηθ̇.

Substituting (3.50) into (3.10),

−ρoψ̇Fθdb + (P + F−T (ē⊗ d̄ + h̄⊗ b̄)) · Ḟ − ρoηθ̇ + ē · ˙̄d + µoh̄ · ˙̄b + B = 0.

(3.50)

The constitutive equations are

ρo
∂ψFθdb

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ b̄), (3.51)

∂ψFθdb

∂θ
= −η,

ρo
∂ψFθdb

∂d̄
= ē,

ρo
∂ψFθdb

∂b̄
= µoh̄.

3.2.4 Family 4

The terms that get added in Family 2’s legendre transformation get subracted in

Family 4’s legendre transformation.

For example, Consider the case θ = θ(F, ψ, e, h) The Legendre transformation for this

case is

ρoηθ̇
Fψeh = ρoηθ̇ − p̄ · ˙̄e− ˙̄p · ē− µom̄ · ˙̄h− µo ˙̄m · h̄, (3.52)

where as the corresponding Legendre tranformation for family 2 is

ρoη̇
Fεehθ = ρoη̇θ + p̄ · ˙̄e + ˙̄p · ē + µom̄ · ˙̄h + µo ˙̄m · h̄. (3.53)
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Substituting (3.52) into (3.15),

−ρoηθ̇Fψeh + (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) · Ḟ − ρoψ̇ − p̄ · ˙̄e − µom̄ · ˙̄h + B = 0.

(3.54)

The constitutive equations are

ρoη
∂θFψeh

∂F
= (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)), (3.55)

∂θFψeh

∂ψ
= −1

η
,

ρoη
∂θFψeh

∂ē
= −p̄,

ρoη
∂θFψeh

∂h̄
= −µom̄.

3.2.5 Family 5

For family 5 potentials, one needs to subract P ·F from the corresponding family

1 potentials. For example

ρoχ
Pηdh = ρoε

Fηdh −P · F, (3.56)

ρoχ̇
Pηdh = ρoε̇

Fηdh −P · Ḟ− F · Ṗ. (3.57)

Substituting (3.57) into the corresponding equation for εFηdh,

ρoχ̇
Pηdh = ρoε̇+ εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv − (3.58)

µom̄ · ˙̄h− µo ˙̄m · h̄−P · Ḟ− F · Ṗ.

Substituting (3.59) into (3.10)

−ρoχ̇Pηdh − F · Ṗ + ρoη̇θ + ē · ˙̄d − µom̄ · ˙̄h + F−1LFd̄ · ē + F−1LFm̄ · h̄(3.59)

+ B = 0.
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The constitutive equations are

ρo
∂χPηdh

∂P
= −F, (3.60)

∂χPηdh

∂η
= θ,

ρo
∂χPηdh

∂d̄
= ē,

ρo
∂χPηdh

∂h̄
= −µom̄.

The residual equality is

F−1LFd̄ · ē + F−1LFm̄ · h̄ − Q

θ

∂θ

∂X
− ρoξθ + j̄ · ē = 0. (3.61)

3.2.6 Family 6

The form of Family 6’s Legendre transformation equation is same as Family 2’s.

The only difference is, the Legendre transformation of Family 6 is substituted in

(3.16) where as the one for Family 2 is substituted in (3.10). For example, Consider

the case η = η(P, χ, e, b): The Legendre transformation for this case is

ρoη̇
Pχebθ = ρoη̇θ−µoJF−T h̄ ·(−LTF−T h̄+F−T ˙̄h)−µoF−Th̄ ·F−Th̄ divv+ p̄ · ˙̄e+ ˙̄p · ē,

(3.62)

where as the corresponding tranformation for family 2 is

ρoη̇
Fεebθ = ρoη̇θ−µoJF−T h̄ ·(−LTF−T h̄+F−T ˙̄h)−µoF−Th̄ ·F−Th̄ divv+ p̄ · ˙̄e+ ˙̄p · ē.

(3.63)

Substituting (3.62) into(3.16),

ρoη̇
Pχebθ − ρoχ̇ − F · Ṗ − p̄ · ˙̄e + µoh̄ · ˙̄b + F−1LFp̄ · ē + F−1LFb̄ · h̄ + B = 0.

(3.64)
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The constitutive equations are

ρoθ
∂ηPχeb

∂P
= F, (3.65)

∂ηPχeb

∂χ
=

1

θ
,

ρoθ
∂ηPχeb

∂ē
= p̄,

ρoθ
∂ηPχeb

∂b̄
= −µoh̄.

The residual equality is

F−1LFp̄ · ē + F−1LFb̄ · h̄ − Q

θ

∂θ

∂X
− ρoξθ + j̄ · ē = 0. (3.66)

3.2.7 Family 7

Because the temperature θ, stress P, electric field ē, magnetic field h̄ are easier

to control as independent variables in characterization of thermoelastic materials, it

is usual practice to use them as the independent variables and the Gibbs free energy

as the potential. In order to get the legendre transformation for Family 7, we need

to subract P · F + ρoηθ from the corresponding potentials of Family 1.

For example, consider the case φ = φ(P, θ, e, h) The Legendre transformation is

ρoφ
Pθeh = ρoε

Fηeh −P · F− ρoηθ, (3.67)

ρoφ̇
Pθeh = ρoε̇

Fηeh −P · Ḟ− F · Ṗ− ρoη̇θ − ρoηθ̇. (3.68)

Substituting (3.68) into the corresponding equation for εFηeh,

ρoφ̇
Pθeh = ρoε̇− p̄ · ˙̄e− ˙̄p · ē−µom̄ · ˙̄h−µo ˙̄m · h̄−P · Ḟ−F · Ṗ− ρoη̇θ− ρoηθ̇. (3.69)
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Substituting (3.69) into(3.10),

−ρoφ̇Pθem − F · Ṗ− ρoηθ̇ − p̄ · ˙̄e− µom̄ · ˙̄h + F−1LFp̄ · ē + µoF−1LFm̄ · h̄ + B = 0.

(3.70)

The constitutive equations are

ρo
∂φPθeh

∂P
= −F, (3.71)

∂φPθeh

∂θ
= −η,

ρo
∂φPθeh

∂ē
= −p̄,

ρo
∂φPθeh

∂h̄
= −µom̄.

The residual equality is

F−1LFp̄ · ē + µoF
−1LFm̄ · h̄ − Q

θ

∂θ

∂X
− ρoξθ + j̄ · ē = 0. (3.72)

3.2.8 Family 8

The form of Family 8’s Legendre transformation equation is same as Family 4’s.

The only difference is, the Legendre transformation of Family 8 is substituted in (3.17)

where as the one for Family 4 is substituted in (3.15)For example, Consider the case

θ = θ(P, ψ, p, h) The Legendre transformation for this case is

ρoηθ̇
Pφph = ρoηθ̇ − µom̄ · ˙̄h− µo ˙̄m · h̄, (3.73)

where as the corresponding legendre transformation for the Family 4 is

ρoηθ̇
Fψph = ρoηθ̇ − µom̄ · ˙̄h− µo ˙̄m · h̄. (3.74)

Substituting (3.73) into (3.17),

−ρoηθ̇Pφph − ρoφ̇− F · Ṗ + ē · ˙̄p− µom̄ · ˙̄h + F−1LFp̄ · ē + µoF−1LFm̄ · h̄ + B = 0.

(3.75)
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The constitutive equations are

ρoη
∂θPφph

∂P
= −F, (3.76)

∂θPφph

∂ψ
= −1

η
,

ρoη
∂θPφph

∂p̄
= ē,

ρoη
∂θPφph

∂h̄
= −µom̄.

The residual equality is

F−1LFp̄ · ē + µoF
−1LFm̄ · h̄ − Q

θ

∂θ

∂X
− ρoξθ + j̄ · ē = 0. (3.77)

Comparing the constitutive equations given in [35], [44], the equations that involve

stress as independent variable are same; there is difference in the equations which

has strain as independent variable. In the mechanical constitutive equation that are

derived in this work, apart from the mechanical Piola-Kirchoff stress component,

there is electromagnetic stress term. Moreover, the constitutive equations in [35], [44]

are based on linear elasticity where as the most general non-linear form is presented

here. The process of obtaining these constitutive equations in [35], [44] started from

the differential form of equation for the reversible processes. Here, the integral form

of equations are presented and the differential form of equations are deduced from

them. Also, the irreversible component of the second law is considered. There is

residual inequality obtained in derivation of constitutive equations.
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3.2.9 Legendre transformations and constitutive equations

The legendre transformation and constitutive equations for all the seventy-two

potentials are given in the following tables.

Family1-Transformation

Potential Transformation equation eqn no. Subs eqn no.

εFηpm εFηpm = ε f1a 3.10

εFηem ρoε
Fηem = ρoε− p̄ · ē f1b 3.10

εFηph ρoε
Fηph = ρoε− µom̄ · h̄ f1c 3.10

εFηeh ρoε
Fηeh = ρoε− p̄ · ē− µom̄ · h̄ f1d 3.10

εFηdm ρoε̇
Fηdm = ρoε̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv f1e 3.10

εFηpb ρoε̇
Fηpb = ρoε̇ + µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv f1f 3.10

εFηdh ρoε̇
Fηdh = ρoε̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv − µom̄ · ˙̄h− µo ˙̄m · h̄ f1g 3.10

εFηeb ρoε̇
Fηeb = ρoε̇ + µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv − p̄ · ˙̄e− ˙̄p · ē f1h 3.10

εFηdb ρoε̇
Fηdb = ρoε̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv f1i 3.10

+µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv

Table 3.2: Family 1 - Legendre transformations
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Family1- Constitutive Equations

Residual Equality: j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic

εFηpm ρo
∂εFηpm

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂εFηpm

∂η
= θ ρo

∂εFηpm

∂p̄
= ē ρo

∂εFηpm

∂m̄
= µoh̄

εFηem ρo
∂εFηem

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂εFηem

∂η
= θ ρo

∂εFηem

∂ē
= −p̄ ρo

∂εFηem

∂m̄
= µoh̄

εFηph ρo
∂εFηph

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂εFηph

∂η
= θ ρo

∂εFηph

∂p̄
= ē ρo

∂εFηph

∂h̄
= −µom̄

εFηeh ρo
∂εFηeh

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂εFηeh

∂η
= θ ρo

∂εFηeh

∂ē
= −p̄ ρo

∂εFηeh

∂h̄
= −µom̄

εFηdm ρo
∂εFηdm

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ m̄) ∂εFηdm

∂η
= θ ρo

∂εFηdm

∂d̄
= ē ρo

∂εFηdm

∂m̄
= µoh̄

εFηpb ρo
∂εFηpb

∂F
= P + F−T (ē⊗ p̄ + h̄⊗ b̄) ∂εFηpb

∂η
= θ ρo

∂εFηpb

∂p̄
= ē ρo

∂εFηpb

∂b̄
= µoh̄

εFηdh ρo
∂εFηdh

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ m̄) ∂εFηdh

∂η
= θ ρo

∂εFηdh

∂d̄
= ē ρo

∂εFηdh

∂h̄
= −µom̄

εFηeb ρo
∂εFηeb

∂F
= P + F−T (ē⊗ p̄ + h̄⊗ b̄) ∂εFηeb

∂η
= θ ρo

∂εFηeb

∂ē
= −p̄ ρo

∂εFηeb

∂b̄
= µoh̄

εFηdb ρo
∂εFηdb

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ b̄) ∂εFηdb

∂η
= θ ρo

∂εFηdb

∂d̄
= ē ρo

∂εFηdb

∂b̄
= µoh̄

Table 3.3: Family 1 - constitutive equations

Family2-Transformation

Potential Transformation equation eqn no. Subs eqn no.

ηFεpm ηFεpm = η f2a 3.10

ηFεem ρoη̇
Fεemθ = ρoη̇θ + p̄ · ˙̄e + ˙̄p · ē f2b 3.10

ηFεph ρoη̇
Fεphθ = ρoη̇θ + µom̄ · ˙̄h + µo ˙̄m · h̄ f2c 3.10

ηFεeh ρoη̇
Fεehθ = ρoη̇θ + p̄ · ˙̄e + ˙̄p · ē + µom̄ · ˙̄h + µo ˙̄m · h̄ f2d 3.10

ηFεdm ρoη̇
Fεdmθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−Tē · F−Tē divv f2e 3.10

ηFεpb ρoη̇
Fεpbθ = ρoη̇θ − µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h)− µoF−Th̄ · F−Th̄ divv f2f 3.10

ηFεdh ρoη̇
Fεdhθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−Tē · F−Tē divv + µom̄ · ˙̄h + µo ˙̄m · h̄ f2g 3.10

ηFεeb ρoη̇
Fεebθ = ρoη̇θ − µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h)− µoF−Th̄ · F−Th̄ divv + p̄ · ˙̄e + ˙̄p · ē f2h 3.10

ηFεdb ρoη̇
Fεdbθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−Tē · F−Tē divv f2i 3.10

−µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h)− µoF−Th̄ · F−Th̄ divv

Table 3.4: Family 2 - Legendre transformations
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Family2- Constitutive Equations

Residual Equality: j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic

ηFεpm ρoθ
∂ηFεpm

∂F
= −(P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂ηFεpm

∂ε
= 1
θ

ρoθ
∂ηFεpm

∂p̄
= −ē ρoθ

∂ηFεpm

∂m̄
= −µoh̄

ηFεem ρoθ
∂ηFεem

∂F
= −(P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂ηFεem

∂ε
= 1
θ

ρoθ
∂ηFεem

∂ē
= p̄ ρoθ

∂ηFεem

∂m̄
= −µoh̄

ηFεph ρoθ
∂ηFεph

∂F
= −(P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂ηFεph

∂ε
= 1
θ

ρoθ
∂ηFεph

∂p̄
= −ē ρoθ

∂ηFεph

∂h̄
= µom̄

ηFεeh ρoθ
∂ηFεeh

∂F
= −(P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂ηFεeh

∂ε
= 1
θ

ρoθ
∂ηFεeh

∂ē
= p̄ ρoθ

∂ηFεeh

∂h̄
= µom̄

ηFεdm ρoθ
∂ηFεdm

∂F
= −(P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)) ∂ηFεdm

∂ε
= 1
θ

ρoθ
∂ηFεdm

∂d̄
= −ē ρoθ

∂ηFεdm

∂m̄
= −µoh̄

ηFεpb ρoθ
∂ηFεpb

∂F
= −(P + F−T (ē⊗ p̄ + h̄⊗ b̄)) ∂ηFεpb

∂ε
= 1
θ

ρoθ
∂ηFεpb

∂p̄
= −ē ρoθ

∂ηFεpb

∂b̄
= −µoh̄

ηFεdh ρoθ
∂ηFεdh

∂F
= −(P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)) ∂ηFεdh

∂ε
= 1
θ

ρoθ
∂ηFεdh

∂d̄
= −ē ρoθ

∂ηFεdh

∂h̄
= µom̄

ηFεeb ρoθ
∂ηFεeb

∂F
= −(P + F−T (ē⊗ p̄ + h̄⊗ b̄)) ∂ηFεeb

∂ε
= 1
θ

ρoθ
∂ηFεeb

∂ē
= p̄ ρoθ

∂ηFεeb

∂b̄
= −µoh̄

ηFεdb ρoθ
∂ηFεdb

∂F
= −(P + F−T (ē⊗ d̄ + h̄⊗ b̄)) ∂ηFεdb

∂ε
= 1
θ

ρoθ
∂ηFεdb

∂d̄
= −ē ρoθ

∂ηFεdb

∂b̄
= −µoh̄

Table 3.5: Family 2 - constitutive equations

Family3-Transformation

Potential Transformation equation eqn no. Subs eqn no.

ψFθpm ψFθpm = εFηpm − ηθ f3a f1a

ψFθem ψFθem = εFηem − ηθ f3b f1b

ψFθph ψFθph = εFηph − ηθ f3c f1c

ψFθeh ψFθeh = εFηeh − ηθ f3d f1d

ψFθdm ψFθdm = εFηdm − ηθ f3e f1e

ψFθpb ψFθpb = εFηpb − ηθ f3f f1a

ψFθdh ψFθdh = εFηdh − ηθ f3g f1g

ψFθeb ψFθeb = εFηeb − ηθ f3h f1h

ψFθdb ψFθdb = εFηdb − ηθ f3i f1i

Table 3.6: Family 3 - Legendre transformations
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Family3- Constitutive Equations

Residual Equality: j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic

ψFθpm ρo
∂ψFθpm

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂ψFθpm

∂θ
= −η ρo

∂ψFθpm

∂p̄
= ē ρo

∂ψFθpm

∂m̄
= µoh̄

ψFθem ρo
∂ψFθem

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂ψFθem

∂θ
= −η ρo

∂ψFθem

∂ē
= −p̄ ρo

∂ψFθem

∂m̄
= µoh̄

ψFθph ρo
∂ψFθph

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂ψFθph

∂θ
= −η ρo

∂ψFθph

∂p̄
= ē ρo

∂ψFθph

∂h̄
= −µom̄

ψFθeh ρo
∂ψFθeh

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄) ∂ψFθeh

∂θ
= −η ρo

∂ψFθeh

∂ē
= −p̄ ρo

∂ψFθeh

∂h̄
= −µom̄

ψFθdm ρo
∂ψFθdm

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ m̄) ∂ψFθdm

∂θ
= −η ρo

∂ψFθdm

∂d̄
= ē ρo

∂ψFθdm

∂m̄
= µoh̄

ψFθpb ρo
∂ψFθpb

∂F
= P + F−T (ē⊗ p̄ + h̄⊗ b̄) ∂ψFθpb

∂θ
= −η ρo

∂ψFθpb

∂p̄
= ē ρo

∂ψFθpb

∂b̄
= µoh̄

ψFθdh ρo
∂ψFθdh

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ m̄) ∂ψFθdh

∂θ
= −η ρo

∂ψFθdh

∂d̄
= ē ρo

∂ψFθdh

∂h̄
= −µom̄

ψFθeb ρo
∂ψFθeb

∂F
= P + F−T (ē⊗ p̄ + h̄⊗ b̄) ∂ψFθeb

∂θ
= −η ρo

∂ψFθeb

∂ē
= −p̄ ρo

∂ψFθeb

∂b̄
= µoh̄

ψFθdb ρo
∂ψFθdb

∂F
= P + F−T (ē⊗ d̄ + µoh̄⊗ b̄) ∂ψFθdb

∂θ
= −η ρo

∂ψFθdb

∂d̄
= ē ρo

∂ψFθdb

∂b̄
= µoh̄

Table 3.7: Family 3 - constitutive equations

Family4-Transformation

Potential Transformation equation eqn no. Subs eqn no.

θFψpm θFψpm = θ f4a 3.15

θFψem ρoηθ̇
Fψem = ρoηθ̇ − p̄ · ˙̄e− ˙̄p · ē f4b 3.15

θFψph ρoηθ̇
Fψph = ρoηθ̇ − µom̄ · ˙̄h− µo ˙̄m · h̄ f4c 3.15

θFψeh ρoηθ̇
Fψeh = ρoηθ̇ − p̄ · ˙̄e− ˙̄p · ē− µom̄ · ˙̄h− µo ˙̄m · h̄ f4d 3.15

θFψdm ρoηθ̇
Fψdm = ρoηθ̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv f4e 3.15

θFψpb ρoηθ̇
Fψpb = ρoηθ̇ + µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv f4f 3.15

θFψdh ρoηθ̇
Fψdh = ρoηθ̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv − µom̄ · ˙̄h− µo ˙̄m · h̄ f4g 3.15

θFψeb ρoηθ̇
Fψeb = ρoηθ̇ + µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv − p̄ · ˙̄e− ˙̄p · ē f4h 3.15

θFψdb ρoηθ̇
Fψdb = ρoηθ̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv f4i 3.15

+µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv

Table 3.8: Family 4 - Legendre transformations
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Family4- Constitutive Equations

Residual Equality: j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic

θFψpm ρoη
∂θFψpm

∂F
= (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂θFψpm

∂ψ
= − 1

η
ρoη

∂θFψpm

∂p̄
= ē ρoη

∂θFψpm

∂m̄
= µoh̄

θFψem ρoη
∂θFψem

∂F
= (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂θFψem

∂ψ
= − 1

η
ρoη

∂θFψem

∂ē
= −p̄ ρoη

∂θFψem

∂m̄
= µoh̄

θFψph ρoη
∂θFψph

∂F
= (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂θFψph

∂ψ
= − 1

η
ρoη

∂θFψph

∂p̄
= ē ρoη

∂θFψph

∂h̄
= −µom̄

θFψeh ρoη
∂θFψeh

∂F
= (P + F−T (ē⊗ p̄ + µoh̄⊗ m̄)) ∂θFψeh

∂ψ
= − 1

η
ρoη

∂θFψeh

∂ē
= −p̄ ρoη

∂θFψeh

∂h̄
= −µom̄

θFψdm ρoη
∂θFψdm

∂F
= (P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)) ∂θFψdm

∂ψ
= − 1

η
ρoη

∂θFψdm

∂d̄
= ē ρoη

∂θFψdm

∂m̄
= µoh̄

θFψpb ρoη
∂θFψpb

∂F
= (P + F−T (ē⊗ p̄ + h̄⊗ b̄)) ∂θFψpb

∂ψ
= − 1

η
ρoη

∂θFψpb

∂p̄
= ē ρoη

∂θFψpb

∂b̄
= µoh̄

θFψdh ρoη
∂θFψdh

∂F
= (P + F−T (ē⊗ d̄ + µoh̄⊗ m̄)) ∂θFψdh

∂ψ
= − 1

η
ρoη

∂θFψdh

∂d̄
= ē ρoη

∂θFψdh

∂h̄
= −µom̄

θFψeb ρoη
∂θFψeb

∂F
= (P + F−T (ē⊗ p̄ + h̄⊗ b̄)) ∂θFψeb

∂ψ
= − 1

η
ρoη

∂θFψeb

∂ē
= −p̄ ρoη

∂θFψeb

∂b̄
= µoh̄

θFψdb ρoη
∂θFψdb

∂F
= (P + F−T (ē⊗ d̄ + h̄⊗ b̄)) ∂θFψdb

∂ψ
= − 1

η
ρoη

∂θFψdb

∂d̄
= ē ρoη

∂θFψdb

∂b̄
= µoh̄

Table 3.9: Family 4 - constitutive equations

Family5-Transformation

Potential Transformation equation eqn no. Subs eqn no.

χPηpm ρoχ
Pηpm = ρoε

Fηpm − P · F f5a f1a

χPηem ρoχ
Pηem = ρoε

Fηem − P · F f5b f1b

χPηph ρoχ
Pηph = ρoε

Fηph − P · F f5c f1c

χPηeh ρoχ
Pηeh = ρoε

Fηeh − P · F f5d f1d

χPηdm ρoχ
Pηdm = ρoε

Fηdm − P · F f5e f1e

χPηpb ρoχ
Pηpb = ρoε

Fηpb − P · F f5f f1a

χPηdh ρoχ
Pηdh = ρoε

Fηdh − P · F f5g f1g

χPηeb ρoχ
Pηeb = ρoε

Fηeb − P · F f5h f1h

χPηdb ρoχ
Pηdb = ρoε

Fηdb − P · F f5i f1i

Table 3.10: Family 5 - Legendre transformations
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Family5- Constitutive Equations

Residual Equality: A+ j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic A

χPηpm ρo
∂χPηpm

∂P
= −F ∂χPηpm

∂η
= θ ρo

∂χPηpm

∂p̄
= ē ρo

∂χPηpm

∂m̄
= µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

χPηem ρo
∂χPηem

∂P
= −F ∂χPηem

∂η
= θ ρo

∂χPηem

∂ē
= −p̄ ρo

∂χPηem

∂m̄
= µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

χPηph ρo
∂χPηph

∂P
= −F ∂χPηph

∂η
= θ ρo

∂χPηph

∂p̄
= ē ρo

∂χPηph

∂h̄
= −µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

χPηeh ρo
∂χPηeh

∂P
= −F ∂χPηeh

∂η
= θ ρo

∂χPηeh

∂ē
= −p̄ ρo

∂χPηeh

∂h̄
= −µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

χPηdm ρo
∂χPηdm

∂P
= −F ∂χPηdm

∂η
= θ ρo

∂χPηdm

∂d̄
= ē ρo

∂χPηdm

∂m̄
= µoh̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

χPηpb ρo
∂χPηpb

∂P
= −F ∂χPηpb

∂η
= θ ρo

∂χPηpb

∂p̄
= ē ρo

∂χPηpb

∂b̄
= µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

χPηdh ρo
∂χPηdh

∂P
= −F ∂χPηdh

∂η
= θ ρo

∂χPηdh

∂d̄
= ē ρo

∂χPηdh

∂h̄
= −µom̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

χPηeb ρo
∂χPηeb

∂P
= −F ∂χPηeb

∂η
= θ ρo

∂χPηeb

∂ē
= −p̄ ρo

∂χPηeb

∂b̄
= µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

χPηdb ρo
∂χPηdb

∂P
= −F ∂χPηdb

∂η
= θ ρo

∂χPηdb

∂d̄
= ē ρo

∂χPηdb

∂b̄
= µoh̄ F−1LFd̄ · ē + F−1LFb̄ · h̄

Table 3.11: Family 5 - constitutive equations

Family6-Transformation

Potential Transformation equation eqn no. Subs eqn no.

ηPχpm ηPχpm = η f6a 3.16

ηPχem ρoη̇
Pχemθ = ρoη̇θ + p̄ · ˙̄e + ˙̄p · ē f6b 3.16

ηPχph ρoη̇
Pχphθ = ρoη̇θ + µom̄ · ˙̄h + µo ˙̄m · h̄ f6c 3.16

ηPχeh ρoη̇
Pχehθ = ρoη̇θ + p̄ · ˙̄e + ˙̄p · ē + µom̄ · ˙̄h + µo ˙̄m · h̄ 6d 3.16

ηPχdm ρoη̇
Pχdmθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−Tē · F−Tē divv f6e 3.16

ηPχpb ρoη̇
Pχpbθ = ρoη̇θ − µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h)− µoF−Th̄ · F−Th̄ divv f6f 3.16

ηPχdh ρoη̇
Pχdhθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−Tē · F−Tē divv + µom̄ · ˙̄h + µo ˙̄m · h̄ f6g 3.16

ηPχeb ρoη̇
Pχebθ = ρoη̇θ − µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h)− µoF−Th̄ · F−Th̄ divv + p̄ · ˙̄e + ˙̄p · ē f6h 3.16

ηPχdb ρoη̇
Pχdbθ = ρoη̇θ − εoJF−T ē · (−LTF−T ē + F−T ˙̄e)− εoF−Tē · F−Tē divv f6i 3.16

−µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h)− µoF−Th̄ · F−Th̄ divv

Table 3.12: Family 6 - Legendre transformations
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Family6- Constitutive Equations

Residual Equality: A + j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic A

ηPχpm ρoθ
∂ηPχpm

∂P
= F ∂ηPχpm

∂χ
= 1
θ

ρoθ
∂ηPχpm

∂p̄
= −ē ρoθ

∂ηPχpm

∂m̄
= −µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

ηPχem ρoθ
∂ηPχem

∂P
= F ∂ηPχem

∂χ
= 1
θ

ρoθ
∂ηPχem

∂ē
= p̄ ρoθ

∂ηPχem

∂m̄
= −µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

ηPχph ρoθ
∂ηPχph

∂P
= F ∂ηPχph

∂χ
= 1
θ

ρoθ
∂ηPχph

∂p̄
= −ē ρoθ

∂ηPχph

∂h̄
= µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

ηPχeh ρoθ
∂ηPχeh

∂P
= F ∂ηPχeh

∂χ
= 1
θ

ρoθ
∂ηPχeh

∂ē
= p̄ ρoθ

∂ηPχeh

∂h̄
= µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

ηPχdm ρoθ
∂ηPχdm

∂P
= F ∂ηPχdm

∂χ
= 1
θ

ρoθ
∂ηPχdm

∂d̄
= −ē ρoθ

∂ηPχdm

∂m̄
= −µoh̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

ηPχpb ρoθ
∂ηPχpb

∂P
= F ∂ηPχpb

∂χ
= 1
θ

ρoθ
∂ηPχpb

∂p̄
= −ē ρoθ

∂ηPχpb

∂b̄
= −µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

ηPχdh ρoθ
∂ηPχdh

∂P
= F ∂ηPχdh

∂χ
= 1
θ

ρoθ
∂ηPχdh

∂d̄
= −ē ρoθ

∂ηPχdh

∂h̄
= µom̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

ηPχeb ρoθ
∂ηPχeb

∂P
= F ∂ηPχeb

∂χ
= 1
θ

ρoθ
∂ηPχeb

∂ē
= p̄ ρoθ

∂ηPχeb

∂b̄
= −µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

ηPχdb ρoθ
∂ηPχdb

∂P
= F ∂ηPχdb

∂χ
= 1
θ

ρoθ
∂ηPχdb

∂d̄
= −ē ρoθ

∂ηPχdb

∂b̄
= −µoh̄ F−1LFd̄ · ē + F−1LFb̄ · h̄

Table 3.13: Family 6 - constitutive equations

Family7-Transformation

Potential Transformation equation eqn no. Subs eqn no.

φPθpm ρoφ
Pθpm = ρoε

Fηpm − P · F− ρoηθ f7a f1a

φPθem ρoφ
Pθem = ρoε

Fηem − P · F− ρoηθ f7b f1b

φPθph ρoφ
Pθph = ρoε

Fηph − P · F− ρoηθ f7c f1c

φPθeh ρoφ
Pθeh = ρoε

Fηeh − P · F− ρoηθ f7d f1d

φPθdm ρoφ
Pθdm = ρoε

Fηdm − P · F− ρoηθ f7e f1e

φPθpb ρoφ
Pθpb = ρoε

Fηpb − P · F− ρoηθ f7f f1a

φPθdh ρoφ
Pθdh = ρoε

Fηdh − P · F− ρoηθ f7g f1g

φPθeb ρoφ
Pθeb = ρoε

Fηeb − P · F− ρoηθ f7h f1h

φPθdb ρoφ
Pθdb = ρoε

Fηdb − P · F− ρoηθ f7i f1i

Table 3.14: Family 7 - Legendre transformations

58



Family7- Constitutive Equations

Residual Equality: A+ j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic A

φPθpm ρo
∂φPθpm

∂P
= −F ∂φPθpm

∂θ
= −η ρo

∂φPθpm

∂p̄
= ē ρo

∂φPθpm

∂m̄
= µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

φPθem ρo
∂φPθem

∂P
= −F ∂φPθem

∂θ
= −η ρo

∂φPθem

∂ē
= −p̄ ρo

∂φPθem

∂m̄
= µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

φPθph ρo
∂φPθph

∂P
= −F ∂φPθph

∂θ
= −η ρo

∂φPθph

∂p̄
= ē ρo

∂φPθph

∂h̄
= −µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

φPθeh ρo
∂φPθeh

∂P
= −F ∂φPθeh

∂θ
= −η ρo

∂φPθeh

∂ē
= −p̄ ρo

∂φPθeh

∂h̄
= −µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

φPθdm ρo
∂φPθdm

∂P
= −F ∂φPθdm

∂θ
= −η ρo

∂φPθdm

∂d̄
= ē ρo

∂φPθdm

∂m̄
= µoh̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

φPθpb ρo
∂φPθpb

∂P
= −F ∂φPθpb

∂θ
= −η ρo

∂φPθpb

∂p̄
= ē ρo

∂φPθpb

∂b̄
= µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

φPθdh ρo
∂φPθdh

∂P
= −F ∂φPθdh

∂θ
= −η ρo

∂φPθdh

∂d̄
= ē ρo

∂φPθdh

∂h̄
= −µom̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

φPθeb ρo
∂φPθeb

∂P
= −F ∂φPθeb

∂θ
= −η ρo

∂φPθeb

∂ē
= −p̄ ρo

∂φPθeb

∂b̄
= µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

φPθdb ρo
∂φPθdb

∂P
= −F ∂φPθdb

∂θ
= −η ρo

∂φPθdb

∂d̄
= ē ρo

∂φPθdb

∂b̄
= µoh̄ F−1LFd̄ · ē + F−1LFb̄ · h̄

Table 3.15: Family 7 - constitutive equations

Family8-Transformation

Potential Transformation equation eqn no. Subs eqn no.

θPφpm θPφpm = θ f8a 3.17

θPφem ρoηθ̇
Pφem = ρoηθ̇ − p̄ · ˙̄e− ˙̄p · ē f8b 3.17

θPφph ρoηθ̇
Pφph = ρoηθ̇ − µom̄ · ˙̄h− µo ˙̄m · h̄ f8c 3.17

θPφeh ρoηθ̇
Pφeh = ρoηθ̇ − p̄ · ˙̄e− ˙̄p · ē− µom̄ · ˙̄h− µo ˙̄m · h̄ f8d 3.17

θPφdm ρoηθ̇
Pφdm = ρoηθ̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv f8e 3.17

θPφpb ρoηθ̇
Pφpb = ρoηθ̇ + µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv f8f 3.17

θPφdh ρoηθ̇
Pφdh = ρoηθ̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv − µom̄ · ˙̄h− µo ˙̄m · h̄ f8g 3.17

θPφeb ρoηθ̇
Pφeb = ρoηθ̇ + µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv − p̄ · ˙̄e− ˙̄p · ē f8h 3.17

θPφdb ρoηθ̇
Pφdb = ρoηθ̇ + εoJF−T ē · (−LTF−T ē + F−T ˙̄e) + εoF−Tē · F−Tē divv f8i 3.17

+µoJF−T h̄ · (−LTF−T h̄ + F−T ˙̄h) + µoF−Th̄ · F−Th̄ divv

Table 3.16: Family 8 - Legendre transformations
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Family8- Constitutive Equations

Residual Equality: A+j̄ · ē− Q
θ
∂θ
∂X
− ρoξθ = 0

potential Mechanical Thermal Electrical Magnetic A

θPφpm ρoη
∂θPφpm

∂P
= −F ∂θPφpm

∂ψ
= − 1

η
ρoη

∂θPφpm

∂p̄
= ē ρoη

∂θPφpm

∂m̄
= µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

θPφem ρoη
∂θPφem

∂P
= −F ∂θPφem

∂ψ
= − 1

η
ρoη

∂θPφem

∂ē
= −p̄ ρoη

∂θPφem

∂m̄
= µoh̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

θPφph ρoη
∂θPφph

∂P
= −F ∂θPφph

∂ψ
= − 1

η
ρoη

∂θPφph

∂p̄
= ē ρoη

∂θPφph

∂h̄
= −µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

θPφeh ρoη
∂θPφeh

∂P
= −F ∂θPφeh

∂ψ
= − 1

η
ρoη

∂θPφeh

∂ē
= −p̄ ρoη

∂θPφeh

∂h̄
= −µom̄ F−1LFp̄ · ē + µoF

−1LFm̄ · h̄

θPφdm ρoη
∂θPφdm

∂P
= −F ∂θPφdm

∂ψ
= − 1

η
ρoη

∂θPφdm

∂d̄
= ē ρoη

∂θPφdm

∂m̄
= µoh̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

θPφpb ρoη
∂θPφpb

∂P
= −F ∂θPφpb

∂ψ
= − 1

η
ρoη

∂θPφpb

∂p̄
= ē ρoη

∂θPφpb

∂b̄
= µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

θPφdh ρoη
∂θPφdh

∂P
= −F ∂θPφdh

∂ψ
= − 1

η
ρoη

∂θPφdh

∂d̄
= ē ρoη

∂θPφdh

∂h̄
= −µom̄ F−1LFd̄ · ē + µoF

−1LFm̄ · h̄

θPφeb ρoη
∂θPφeb

∂P
= −F ∂θPφeb

∂ψ
= − 1

η
ρoη

∂θPφeb

∂ē
= −p̄ ρoη

∂θPφeb

∂b̄
= µoh̄ F−1LFp̄ · ē + F−1LFb̄ · h̄

θPφdb ρoη
∂θPφdb

∂P
= −F ∂θPφdb

∂ψ
= − 1

η
ρoη

∂θPφdb

∂d̄
= ē ρoη

∂θPφdb

∂b̄
= µoh̄ F−1LFd̄ · ē + F−1LFb̄ · h̄

Table 3.17: Family 8 - constitutive equations

Next, for a case of constant pressure as a restricted form of internal energy, an

attempt is made to obtain the expression for the potential.

Consider the potential εFηeh. The constitutive equations for this potential are

ρo
∂εFηeh

∂F
= P + F−T (ē⊗ p̄ + µoh̄⊗ m̄), (3.78)

ρo
∂εFηeh

∂η
= θ,

ρo
∂εFηeh

∂ē
= −p̄,

ρo
∂εFηeh

∂h̄
= −µom̄.

Let P̄ be constant Piola-Kirchoff stress tensor. Since Pressure is constant,

∂P

∂F
→ 0, (3.79)

∂P

∂η
→ 0,

∂P

∂ē
→ 0,

∂P

∂h̄
→ 0.

60



Combining (3.78) and (3.79), we obtain the following conditions:

ρo
∂2εFηeh

∂F2
=

∂

∂F
(ē⊗ p̄ + µoh̄⊗ m̄), (3.80)

ρo
∂2εFηeh

∂F∂η
=

∂

∂η
(ē⊗ p̄ + µoh̄⊗ m̄), (3.81)

ρo
∂2εFηeh

∂F∂ē
=

∂

∂ē
(ē⊗ p̄ + µoh̄⊗ m̄), (3.82)

ρo
∂2εFηeh

∂F∂h̄
=

∂

∂h̄
(ē⊗ p̄ + µoh̄⊗ m̄). (3.83)

On performing integration, one obtains

ρo
∂εFηeh

∂F
= P̄ + F−T (ē⊗ p̄ + µoh̄⊗ m̄). (3.84)

Integrating (3.84) again, one gets the expression to evaluate the internal energy for a

case of constant pressure,

ρoε
Fηeh = P̄ · F +

∫
F−T (ē⊗ p̄ + µoh̄⊗ m̄) · dF + c(η, ē, h̄). (3.85)

3.3 Determination of potential from Galfenol data

Magnetization vs field, magnetization vs stress, strain vs field, strain vs stress plots

of magnetostrictive Galfenol obtained by [12] are shown in Figures (3.1), (3.2). The

3D versions of these graphs are shown in (3.3), (3.4). Considering two independent

state variables (T,h), the corresponding constitutive equations are

∂φ

∂h
= −m,

∂φ

∂T
= ε. (3.86)

Considering unidirectional magnetic field and stress, integration of (3.86) gives

φ(h) = −
∫
µo
ρo
m(h)dh+ c1 (3.87)
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φ(T ) =

∫
1

ρo
ε(T )dT + c2 (3.88)

The plots of potential as a funtion of field and potential as a function of stress are

shown in Figures (3.5)

3.3.1 Results
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Figure 3.1: Magnetization as a function of stress and potential [12] (a) magnetization

as a function of magnetic field at constant stress and (b) magnetizaton as a function

of stress at constant field
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Figure 3.2: Strain as a function of stress and potential [12] (a) strain as a function

of magnetic field at constant stress and (b) stress as a function of stress at constant

field
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Figure 3.3: 3D plot of magnetization as a function of stress and potential (a) at

constant stress and (b) at constant magnetic field
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Figure 3.4: 3D plot of strain as a function of stress and potential (a) at constant

magnetic field and (b) at constant stress

65



−40
−20

0
20

40

−70
−60

−50
−40

−30
−20

−10
0

−8

−6

−4

−2

0

2

4

6

8

h (kA/m)

3D plot of potential, stress and magnetic field

T (MPa)

φ(
h)

 (
J/

K
g)

(a)

−40
−20

0
20

40

−70
−60

−50
−40

−30
−20

−10
0

−8

−6

−4

−2

0

2

4

6

8

h (kA/m)

3D plot of potential, stress and magnetic field 

T (MPa)

φ(
T

) 
(J

/K
g)

(b)

Figure 3.5: 3D plots of potential, stress and magnetic field (a) potential as a function

of magnetic field and (b) Potential as a function of stress
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CHAPTER 4

USE OF SMART MATERIALS IN FUEL INJECTORS

A fuel injection system consists of a pump that brings the fuel up to a high pres-

sure level of up to 2000 bar and a nozzle that injects finely dosed quantities of fuel

into the engine cylinder with the aid of a valve. There are two kinds of injection

designs that are dominant today: common rail injector and pump injector. In the

common rail fuel injector, the fuel is fed by a separate pump to the injection nozzle

via a common rail and injected via a valve. In the pump fuel injector, the injection

pump and the nozzle are integrated in a single module. The camshaft of the engine

drives the pump cylinder of the injection element via a roller rocker arm. A needle

in the valve doses the necessary quantity for injection. The valve needles in both

systems are activated by either electromagnetic or smart materials.

The characteristics of fuel injectors are [20]:

1. Injection quantity

2. Injection pressure

3. Direction of control valve

The performance evaluation parameters are [20]:

1. Injection control
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2. Injection mounting interference

3. Actuator capability in engine environment

Improving fuel injection strategies is the key to optimized engine performance. Con-

siderable research has been conducted to control the injection quantity, pressure and

profile of the fuel injection in order to reduce harmful emissions. In general, the

higher the pressure and the more accurate the dosing and time of injection, the more

efficient and less polluting the combustion [43].

4.1 Conventional Fuel Injectors

Conventionally, a fuel injector is activated through an electromagnetic solenoid

arrangement. A solenoid is an insulating conducting wire wound to form a tight heli-

cal coil. When current passes through the wire, a magnetic field is generated within

the coil in a direction parallel to the axis of the coil. When the coil is energized, the

resulting magnetic field exerts a force on a moveable ferromagnetic armature located

within the coil. This causes the armature to move a needle valve into an open po-

sition in opposition to force generated by a return spring. The force exerted on the

armature is proportional to the strength of the magnetic field; the strength of the

magnetic field depends on the number of turns of the coil and the amount of current

passing through the coil [8].

The needle movement in conventional fuel injectors depends on various factors like

spring pre-load holding the injector closed, the friction and the inertia of the needle,

fuel pressure, eddy currents in the magnetic materials, and the magnetic character-

istics of the design. The armature will not move until the magnetic force builds to a

level high enough to overcome the opposing forces. In the same way, the needle will
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not return to a closed position until the magnetic force decays to a low enough level

for the closing spring to overcome the fuel flow pressure and needle inertia. Once the

needle begins opening or closing, it may continue to accelerate until it impacts with its

respective end-stop, creating wear in the needle valve seat, needle bounce, unwanted

vibrations, and noise problems. Electromagnets waste a large amount of input power

through resistive heating losses. Electronically optimized control of the opening and

closing of the valve reduces operating switching time by 30% and makes multiple

injections possible. However, two-way solenoid valves are typically limited to digital

operation: they are either fully open or fully closed. This characteristic is beneficial

for controlling fuel quantity, and in some cases the injection timing, but is generally

poor for shaping the flowrate profile. Thus there is a need for an improved fuel in-

jector actuation method that will provide reduced noise, longer seat life, elimination

of bounce, and full actuator force applied during the entire armature stroke, where

the force is large as compared with the force resulting from fuel pressure effects. An

electronic, high speed, proportional control valve could add rate-shaping capability to

simple injection timing and fuel quantity control. This should also reduce particulate

matter and nitrogen oxides in diesel engine emissions [8].

4.2 Piezoelectric based fuel injectors

Some of the smart materials that are in use today are piezoelectric materials,

shape memory alloys, electrostrictive materials, magnetostrictive materials, electro-

rheological fluids, magneto-rheological fluids. Three types of proportional actuators

69



that can be considered for the ACC fuel modulation system (piezoelectric stacks, elec-

tromagnetic shakers, and magnetostrictive actuators) are currently the most promis-

ing technologies available for proportional, high-bandwidth, linear actuation. Piezo-

electric and magnetostrictive materials are capable of driving proportional actuators

to frequencies exceeding 1kHz. Other types of materials such as shape memory alloys

and electrostrictive materials were not appropriate for this application. Commercially

available electrostrictive actuators offer no significant advantages to piezoelectric ce-

ramics and the response time for shape memory alloy actuators is far too slow for

active combustion control [43].

Use of active materials over conventional electromagnetics is preferred for a num-

ber of reasons. Piezoelectric actuation enables proportional authority over the injec-

tor’s control valve, as opposed to traditional digital (on/off) operation. Piezoelectric

actuators have the bandwidth needed for extremely fast switching. Typical switching

times are less than 100 µs with no delays, while solenoid valves are up to ten times

slower and have substantial lag due to magnetic reluctance. Active materials are ca-

pable of delivering much higher actuation forces (50,000 N). This characteristic lends

itself to opening larger valve flow sections than comparable solenoid actuators to en-

able faster needle velocities. The actuation delay is a order of magnitude shorter and

the control valve rise time is three times faster for a piezo. The spray cone angle for

the piezo driven injector is about ten degrees larger than that of the solenoid injector

system. The piezo-driven injector also reaches maximum injection rate quickly be-

cause the overall system losses are low, hence more pressure energy is converted into

fuel kinetic energy leading to higher liquid velocities. This leads to better atomiza-

tion. Another advantage of piezoelectric actuation is that the piezostack applies full
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force during the armature travel, allowing for controlled trajectory operation. Hys-

teresis of a piezoelectric stack does not play a significant role in a pulsed application

such as a fuel injection system. Electrical energy conservation is also an advantage,

since energy can be regained from a piezoelectric load due to its capacitive nature.

Its wear proof and can be used in low temperature environment. On the whole, the

piezoelectric fuel injection system has a simple structure, compact size, good displace-

ment accuracy, low power consumption, high reliability, fuel consumption reduction

to 20%, reduced carbondioxide emissions, exact control of injection discharge rate

and injection fuel quantity, faster fuel intake, better air entrainment and faster spray

vaporization [34].

The most common form of piezoceramic used today is based on lead zirconate

titanate (PZT). Very high voltages must be applied to ensure that larger piezoelectric

crystals or ceramic blocks expand significantly. In contrast, no more than 160 V is

needed to trigger the piezo-effect in a single ceramic layer about 80 µm thick. But the

layer thickness then changes by only 1/10th of a micron. So, the key is to stack many

of these layers together, sinter them monolitically and connect them mechanically in

series but electrically in parallel with several hundred piezo layers stacked upon each

other so that each piezoelectric ceramic plate has the same voltage. Since the direction

of polarization is along the axial direction of piezoelectric multilayer actuator, its

displacement is equal to the sum of the displacements of all the ceramic plates and

thus effective elongation becomes 80 µm. Such a stack can generate a force of about

2500 N.

There are two types of piezoelectric stack actuators; plate through and co-fired.

The plate through actuators are manufactured by stacking a large number of very thin
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(0.2 mm) piezoelectric discs, with copper shims in between each disc to act as ground

and positive electrodes to opposite sides of the actuator stack. External connectors

enabling the activation of all the actuator elements are then used to connect all of the

ground and positive electrodes. Although these actuators provide good piezoelectric

actuator properties, they require high operating voltages (500 to 1000 V) and are

very expensive to manufacture.

The co-fired multilayer technology offers the major advantage of edibility of com-

ponent design (enabling much thinner ceramic layers, a customized internal electrode

structure, and processing of a variety of forms and shapes). In this type, the elec-

trodes are incorporated while growing the crystal. These inner electrodes which are

connected in series do not completely cover the piezoceramic layer. If the ceramic

layers are 10 times thinner, then the operating voltage needed to obtain the equiv-

alent electric field strength and strain in the actuator can be reduced by a factor of

10. These kind of actuators are mass produced and hence cheaper compared to plate

through actuators.

The piezostack may be attached to a mechanical member or needle performing a

similar function as the needle in the conventional injector. When the piezostack has

a high voltage potential applied across the wafers, the piezoelectric effect causes the

stack to change dimension, thereby opening the fuel injector.

4.2.1 Failure of Piezoelectric stack actuators

Under the extreme dynamic, large signal driving conditions and hostile environ-

ment, that fuel injectors endure, life times of more than 109 cycles and long term

failure rates lower than 10−5 must be guaranteed. By examining the S-N diagram
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of a piezo stack, it can be seen that they fail at approximately 1000 cycles, which is

far too low for the desired application. This failure can be attributed to two factors.

PZT ceramics are brittle and hence cannot withstand tensile or shear stresses. If the

co-fired piezoelectric stack actuator is put to use for fuel injector application, then

this design could potentially fail due to tensile stresses. Also, with commercial PZT

composition in the operating temperature and pressure range, a tetragonal to mono-

clinic phase transition can occur. In monoclinic phase, shear stresses are stable in the

presence of hydrostatic pressure and due to this reason, the fuel injector employing

the piezoelectric stack actuator can undergo failure.

Figure 4.1: Cracks due to tensile stresses [1]

In co-fired stack actuators, since the inner electrodes do not completely cover the

piezoceramic layer, there are inactive insulation volumes (gaps) which are not field

accessed. In every layer of inner electrode, there is the active region and inactive
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region (gap). When the whole stack starts expanding or contracting, the active

regions expand along the actuator axis where as the inactive regions do not. Thus,

tensile stresses are induced in these inactive regions. Due to repeated cycling, in

the presence of these tensile stresses, cracks start forming in the gaps as shown in

Figure 4.1. Once the conducting electrode material enters into the crack, short-

circuiting takes place and the whole stack fails. The higher the tensile stresses, the

higher the probability of formation of uncontrolled cracks in axial direction. This

can cause either a dielectric breakdown or just separate an internal electrode from

the termination. It can be shown that the tensile stresses increase when the actuator

height increases and the inactive volume increases as well. The magnitude of the

tensile stress increases with increase in number of ceramic layers. The magnitude of

the displacement decreases as the length of the inactive part increases. One possibility

to limit this stress accumulation could be the segmentation of the actuator by gluing

chips together. Then the stress would be released partially by the glued layers. But

this solution has principal drawbacks. Chips, as well as actuators, do not have precise

mechanical dimensions when they are fired. So either all the single chips have to be

grounded before gluing, which is expensive and needs thick passive layers in the design

(i.e., stress concentration and loss of strain), or they are glued “as fired”, which results

in non-homogeneous gluing and termination layers.

At high temperatures PZT is cubic with a pervoksite structure. When the tem-

perature is lowered, the material becomes ferroelectric, with symmetry being tetrag-

onal for Ti rich compositions and rhombohedral for Zr rich compositions. The mor-

photropic phase boundary (MPB) is at x=0.48 Ti. The maximum values of dielec-

tric permittivity, electromechanical coupling factor, and piezoelectric coefficients of
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Figure 4.2: Condensed matrix notation of linear constitutive equations [9]

Figure 4.3: Elastoelectric matrices for tetragonal symmetry [35]
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Figure 4.4: Elastoelectric matrices for monoclinic symmetry [35]

PZT occur at room temperature on the MPB boundary. Hence, this composition

Pb(Zr0.52Ti0.48)O3 is used in commercial PZT materials. A PZT sample with x=0.48

is tetragonal just below Curie temperature and rhombohedral below room temper-

ature. From cubic phase, when the temperature is lowered, the tetragonal phase is

observed around 300 K. Below this temperature (at around 200 K), new features ap-

peared in diffractograms. They are not comparable with rhombohedral phase or with

a mixture of both tetragonal or rhombohedral phases. They correspond to monoclinic

symmetry. Thus, the so called morphotrophic phase boundary is not a boundary, but

rather a phase with monoclinic symmetry. This can be seen in Figure 4.5. At ambient

pressure, below 210 K, low temperature monoclinic phase exists. From 210 to 305

K, high temperature monoclinic phase exists; and at 305 K, transition to tetragonal

phase results. The monoclinic phase is found to be particularly stable with respect

to hydrostatic pressure.
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The elastoelectric matrices of the tetragonal symmetry as shown in Figure 4.3

clearly indicates that there is no possibility of shear strain in the presence of hydro-

static stress. On the other hand the elastoelectric matrices of the monoclinic symme-

try in Figure 4.4 indicates that there is non-zero shear strain possible in the presence

of hydrostatic stress. As PZT ceramics are brittle and cannot withstand shear mode,

failure of PZT stack actuators occurs due to monoclinic phase transition.

Figure 4.5: Monoclinic phase at MPB [36]

4.3 Magnetostrictive based fuel injectors

Magnetostrictive actuators have advantages in terms of durability and supply

voltage. These actuators also excel in resonant applications because of large dynamic

strains and high electromechanical efficiencies. While piezoelectric materials require
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very large electric fields ( 5kV/cm) and may suffer from self-heating problems, magne-

tostrictive materials require current carrying coils to produce varying magnetic fields,

which can make the actuator bulky.

4.3.1 Principle of operation

A coil is provided for generating a magnetic field. The coil is arranged in the prox-

imity of the magnetostrictive element. When the coil is energized, electrical current

flowing through the coil induces a magnetic field which acts to realign the magnetic

domains in the magnetostrictive material. As the domains rotate, they distort the

atomic structure causing the material to grow and contract as the current is applied

and removed. This efficiently converts the electricity into motion thereby actuating

the valve. The result is proportional, positive and gives repeatable expansion in mi-

croseconds. Since the relationship between magnetic field and mechanical strain is

quadratic, positive expansion results regardless of the direction of the magnetic field.

Therefore, a preload mechanism similar to the type used with a piezoelectric stack

is employed to compress the materials. Some prestress opposing the direction of the

desired displacement of the magnetostrictive member is preferred. This is because

a slight compression by a disk or coil spring results in greater needle displacement

when the magnetizing force is applied. The prestress should not be so great as to

prevent the displacement of the magnetostrictive material. Magnetostrictive strain

and prestress should be considered in selecting the geometry of the magnetostrictive

member so as to avoid surpassing the yield stress of the materials [8].
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4.3.2 Terfenol-D based fuel injectors

Terfenol-D, an alloy of Terbium, Dysposium, and Iron exhibits giant magnetostric-

tive properties. It exhibits large magnetostriction (∼2000ppm) at room temperatures.

An applied magnetic field is not the only factor that controls the magnetostrictive

properties of a Terfenol-D actuator. Terfenol-D has a Curie temperature of 380oC

which lets it provide this magnetostrictive performance from room temperature to

around 200oC (Automotive applications operating temperatures are in the range of

-40 to 150oC). There is also a lower operating temperature limit of 15oC. Lower

temperatures can be reached by adjusting the stoichiometry of the alloy. This can

be done to enable fuel-injector applications which require operation down to −40oC.

At lower frequencies, say 10 to 100 Hz, Terfenol-D actuators can provide repeatable

displacements in the range of hundreds of micrometers or even greater. This makes

them candidates for the high precision motion necessary to realize various state of the

art manufacturing processes. The material can also respond at very high frequencies,

in excess of 20 kHz, while still producing a large amount of force. Under a pre-

stress and bias condition, it is equivalent to piezoceramics low stiffness value and can

operatre under high pre-stress.

The ratio of reaction time of the Terfenol-D to the current pulses is very fast,

allowing for fuel injection on the order of 6,000 cycles per second. The high injection

speed allow for the injector to deliver precise combustion control, maximizing the

power of each piston stroke. The control leads to significant gains in fuel economy,

lowered emissions, and uniform power output from all cylinders.

One of the drawbacks of Terfenol-D is that it is brittle which limits its ability to

withstand shock loads or operate in tension.
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4.3.3 Galfenol based fuel injectors

Galfenol is an Iron-Gallium alloy, Fe1−xGax (0.13 < x < 0.3) developed at the

Naval Surface Warfare Center [5, 6, 7]. It demonstrates moderate magnetostriction

(∼350ppm) under low magnetic field (∼100 Oe) and has very low hysteresis, while

demonstrating high tensile strength (∼500 MPa). It has high curie temperature

(675oC), and in general machinable, ductile and corrosion resistant [26, 27, 28, 29].

Magnetostriction peaks in FeGa alloys at a volume fraction of 17 percent Gallium.

Magnetostrictive FeGa alloys have certain unique properties, which may make

them better suited than either piezoelectrics or Terfenol-D in certain actuation and

sensing applications. For example, the high tensile strength (20 times that of typical

piezoelectric and Terfenol-D) may enable the use of these alloys as actuators and

sensors in harsh and shock prone environments. The bias field required for FeGa

alloy is ten times smaller than that for Terfenol-D. Its material cost is low when

compared to Terfenol-D. Galfenol is tough and can be machined, while Terfenol-D is

a brittle material. Its mangetostriction is only a third to a quarter that of Terfenol-

D, but can operate at significantly lower drive fields. The magnetostriction can be

increased by applying preload to the material. Recent research has also shown that

Galfenol can operate in tension and compression, something no other high frequency

smart material can do [11].

Galfenol could fundamentally change the manner in which fuel injectors are made.

Recent advances suggest that these new alloys are rapidly approaching the energy

density requirements of common-rail fuel injectors, while their structural grade me-

chanical properties promise improved durability, design flexibility, ease of control, and

lower costs over the most advanced designs (piezoelectric injectors).
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CHAPTER 5

APPLICATION OF THE FRAMEWORK TO GALFENOL

Chapter 2 presents the governing equations of balance laws of mechanics and

Maxwell equations describing a TEMM material. Chapter 3 develops a framework

that results in the constitutive equations necessary to evaluate thermodynamic poten-

tials. This is part of the inverse problem. As the prospects of Galfenol in fuel injector

applications is explored in Chapter 4, Chapter 5 focuses on creating a framework that

can be used to solve a boundary value problem consisting of magnetostrictive Galfenol

through finite-element method in the spirit of [40]. In this respect, the constitutive

equations that will be used here are obtained from a potential developed from a phe-

nomenological model [12]. This is part of the direct problem. For a magnetostatic

problem, the Maxwell equations (2.17)1, (2.23) reduce to

∇ · b = 0, (5.1)

∇× h = jf , (5.2)

where jf is the prescribed current density. The equation for conservation of linear

momentum (2.19)2 can be rewritten by writing the electromagnetic force in terms of
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Maxwell stress tensor. The density of the material is assumed to be constant ρo.

∇ · (T + TM) + ρof
ext = ρoü, (5.3)

where f ext is the specified force, u is the displacement, TM is the Maxwell stress

tensor which for magnetostrictive materials reduces to

TM = h⊗ b− 1

2
µo(h · h)I. (5.4)

The constitutive equations that are presented here are adopted from [13]. The free en-

ergy has terms for magnetic anisotropy, magnetomechanical coupling, zeeman or field

energy and elastic strain energy. These energies will be expressed while idealizing the

complex domain structure of ferromagnetic materials as a system of non-interacting,

single-domain, Stoner-Wohlfarth (S-W) particles. The total free energy of the mate-

rial is

G =
r∑

k=1

ξkGk + T.sT, (5.5)

where Gk is the energy of the S-W particle in easy direction ck given by

Gk =
1

2
Kk|mk − ck|2 − λk ·T− µoMsm

k · h. (5.6)

For cubic materials, the 〈100〉 or 〈111〉 tend to be the easy directions. The anisotropy

coefficient Kk in each direction family is the same, thus Kk = K100 for all six 〈100〉

directions and Kk = K111 for all eight 〈111〉 directions. The magnetostriction λk

is only a function of stress and field through its dependence on m which for the

longitudinal components is

λki =
3

2
λ100m

k
i

2
, i = 1, 2, 3 (5.7)

and shear components

λk4 = 3λ111m
k
1m

k
2, (5.8)
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λk5 = 3λ111m
k
2m

k
3, (5.9)

λk6 = 3λ111m
k
3m

k
1. (5.10)

The magnetic orientation mk is given by

mk = (Kk)−1(Bk +
1− ck · (Kk)−1Bk

ck · (Kk)−1ck
ck), (5.11)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =

 Kk − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 Kk − 3λ100T3

 ,

Bk =
(
ck1K

k + µoMsh1 ck2K
k + µoMsh2 ck3K

k + µoMsh3

)T
.

The constitutive equations are

b = µo(h + m(h,T)), (5.12)

S = Se + Sme(h,T), (5.13)

where Se is the elastic strain given by

Se = sT, (5.14)

s is the compliance coefficient, Sme is the magnetoelastic strain. The macroscopic

magnetization and magnetostriction are the sum of the contributions of the six domain

families.

Sme =
r∑

k=1

ξkλk, (5.15)

m = Ms

r∑
k=1

ξkmk. (5.16)

The equilibrium volume fraction for each of six domains is given by

ξk =
e−

Gk

ω∑r
j=1 e

−Gj
ω

. (5.17)
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The constants have the values of

ω =
kBθ

V
= 500− 1200J/m3, (5.18)

µoMs = 1.6. (5.19)

The compatibility equations are

S = ∇su, (5.20)

b = ∇×A. (5.21)

In order the magnetic potential A is unique, Coulomb guage condition is established

∇ ·A = 0. (5.22)

The strain operator ∇s is defined as

∇s =

 ∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x3

− ∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

∂
∂x3

0 − ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0 ∂
∂x2

− ∂
∂x1

0

T

.

The divergence operator ∇· is

∇· =
(

∂
∂x1

∂
∂x2

∂
∂x3

)T
.

The curl operator ∇× is

∇× =

 0 − ∂
∂x3

∂
∂x2

∂
∂x3

0 − ∂
∂x1

− ∂
∂x2

∂
∂x1

0

T

.

The operator ∇s in the above equation relates to a tensor component order

T = (T11, T22, T33, T23, T13, T12, T32, T31, T21)T (5.23)

= (T1, T2, T3, T4, T5, T6, T7, T8, T9)n (5.24)
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5.1 FEM formulation

The nodal unknowns of this problem are

{u,A}t = {u1, u2, u3, A1, A2, A3}T . (5.25)

Weak form:

The Maxwell equations and linear momentum equation are weighted by the auxiliary

functions (variations)

{ωu, ωA}T = {ωu1 , ωu2 , ωu3 , ωA1 , ωA2 , ωA3}T . (5.26)

These functions satisfy homogeneous form of essential boundary condition

ωu = 0, ωA = 0 on ∂Ωu, ∂ΩA. (5.27)

After some transformations based on integration by parts, vector analysis and the

divergence and stokes theorems, one gets

−
∫

Ω

(∇sωu)
TσdΩ +

∫
∂Ωf

ωTu t̄dΓ +

∫
Ω

ωTu ρoFdΩ−
∫

Ω

ωTu ρoüdΩ = 0,

−
∫

Ω

(∇× ωA)ThdΩ +

∫
∂Ωh

ωTAh̄dΓ +

∫
Ω

ωTAjfdΩ = 0. (5.28)

Galerkin form:

The zero-derivative variables {u,A}T, {ωu, ωA}T are discretized through simple poly-

nomial expansions. These spatial polynomials, called shape functions, N(x) =
∑

B N
B(x)

are predetermined and each of them is related to a node, globally numbered with the

integers A, B from 1 to nnp (number of nodal points). The coefficients of these

polynomial expansions are the nodal unknowns, ui, Ai in each spatial direction i:

{uqi , A
q
i}T =

nnp∑
B=1

{uBi , ABi }T , (5.29)
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{ωqui , ω
q
Ai
}T =

nnp∑
B=1

NB{cBui , c
B
Ai
}T , (5.30)

where superscript (q) denotes approximation for the spatial discretization and the

parameters cB are auxiliary, without clear physical meaning. Since NB are spatial

functions, the previous variables are also functions of the position: uhi (x) etc. In what

follows the summation over B will be implicit from the index repitition with the range

B= 1,....,nnp, e.g. for the first of equations, uhi = NBuBi . Also, since the problem is

non-linear, further variables need to be discretized. For i=1,2,3 and j= 1,....,6,

hqi = NBhBi , σqj = NBσBj . (5.31)

Linearity of ∇s, ∇·, ∇× operators ensures

(∇sωqu)
t = (cBu )t(BB

∇s)
t, (∇× ωhA)t = (cBA)t(BB

×)t. (5.32)

The FE compatibility matrices BB
∇s , B

B
× are again spatial functions, with different

values for different integration points. At each point B we have

BB
∇s = ∇sNB(x), BB

× = ∇×NB(x). (5.33)

To denote the columns of the compatibility matrices, we will use the subscripts i=1,

2, 3 as in BB
∇s , B

B
× . Using (5.29)− (5.33), the weak form equation (5.28) becomes

cBui [

∫
∂Ωf

NB t̄dΓ +

∫
Ω

ρoN
BFidΩ−

∫
Ω

(BB
∇si

)tσqdΩ−
∫

Ω

NBρoü
h
i dΩ] = 0, (5.34)

cBAi [

∫
∂Ωh

NBh̄idΓ−
∫

Ω

(BB
×i)

thqdΩ +

∫
Ω

NBjidΩ] = 0. (5.35)

As a next step, the residual vector is formed:

The expressions inside parenthesis in (5.34), (5.35) must vanish independently of the
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coefficients cB, although in the context of a non-linear solver a set of six residuals for

each node B is defined as

RB = {RB
u , R

B
A}T , (5.36)

with values (from now on the superscript q is removed for the sake of clarity)

RB
u =

∫
∂Ωf

(NBI)t̄dΓ +

∫
Ω

(NBI)ρoF
BdΩ−

∫
Ω

(BB
∇s)

tσBdΩ−
∫

Ω

(NBI)ρoüdΓ, (5.37)

RB
A =

∫
∂Ωh

(NBI)h̄dΓ +

∫
Ω

(NBI)jBdΩ−
∫

Ω

(BB
×)thBdΩ. (5.38)

Starting from an initial guess, for each step it will be necessary to iterate the above

non-linear equations until the norm of R (vector valued in all nodes) is set to zero,

up to a fraction of the precision machine for instance, with a good enough set of

basic variables. Note that in the above equations, several values: TB, üB,hB are

not known at the beginning of a step, but the values from the previous one can be

used, resulting in a good convergence rate. The next stage is to build a consistent

tangent matrix. Each entry of this matrix is obtained as the negative of the partial

node A with respect to the corresponding field variable at a generic node B. In these

residuals there are tensors defined in previous equations, for which the chain rule will

have to be used several times. From the compatibility equations (5.20), (5.21) and

the expansion equations (5.29),

∂S

∂uBj
= BB

∇sj
,

∂b

∂ABj
= BB

×j. (5.39)

From (5.39) and the constitutive equations (5.12), (5.13) the derivatives of the stress

tensor and magnetic field are obtained.

σ = T + TM , (5.40)
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∂σ

∂uBj
=

∂T

∂uBj
+
∂TM

∂uBj
, (5.41)

∂σ

∂ABj
=

∂T

∂ABj
+
∂TM

∂ABj
, (5.42)

h =
1

µo
b−m(h,T), (5.43)

∂h

∂uBj
=

1

µo

∂b

∂uBj
− ∂m(h,T)

∂uBj
, (5.44)

∂h

∂ABj
=

1

µo

∂b

∂ABj
− ∂m(h,T)

∂ABj
, (5.45)

One can evaluate the expressions ∂T
∂uBj

, ∂T
∂ABj

, ∂h
∂uBj

, ∂h
∂ABj

from the constitutive equa-

tions (5.12), (5.13). These expressions are not presented here.

∂TM

∂uBj
=

∂h

∂uBj
⊗ b− µo(

∂h

∂uBj
)Th⊗ I, (5.46)

∂TM

∂ABj
=

∂h

∂ABj
⊗ b− µo(

∂h

∂ABj
)Th⊗ I, (5.47)

Each tangent nodal matrix (6×6) represents the interaction between the degrees of

freedom of node A (rows) and those of B (columns). Upon derivation of the residuals

in equations,

Kuuij = −
∂RA

ui

∂uBj
=

∫
Ω

(BA
∇si

)t
∂σ

∂uBj
dΩ, i, j = 1, 2, 3 (5.48)

KuAij = −
∂RA

ui

∂ABj
=

∫
Ω

(BA
∇si

)t
∂σ

∂ABj
dΩ, i = 1, 2, 3, j = 4, 5, 6 (5.49)

KAuij = −
∂RA

Ai

∂uBj
=

∫
Ω

(BA
∇s×i

)t
∂h

∂uBj
dΩ, i = 4, 5, 6, j = 1, 2, 3 (5.50)

KAAij = −
∂RA

Ai

∂ABj
=

∫
Ω

(BA
∇s×i

)t
∂h

∂ABj
dΩ. i, j = 4, 5, 6 (5.51)

Equation(5.3) contains a dynamic term ü wiht a second time derivative; it is a hy-

perbolic equation. If the corresponding mass matrix is lumped (diagonal), a central

difference integrator can be used. Assuming t0=0 and tn+1 = tn + ∆t

ü =
u(tn+1)− 2u(tn) + u(tn−1)

∆t2
. (5.52)
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All unknowns are defined at time step tn+1, while the rest of the variables at time tn

or tn−1 are known from the previous steps. From these results and equations (5.29)

evaluated at time tn+1,

∂ü

∂uBj
=

(NBI)j

∆t2
, (5.53)

where (NBI)j is the jth column of this diagonal matrix. Derivation of the residuals in

equations (5.37), (5.38) with respect to the dynamic unknowns ü yields the non-zero

terms of the dynamic matrices:

Muuij = −
∂RA

ui

∂uBj
=

1

∆t2

∫
Ω

(NAI)iρo(N
BI)j. (5.54)

The above submatrix equation is diagonal, but that does not mean that the global

dynamic matrices including all Muu are also, unless a diagonalization technique is

applied. Thic could be especially useful for the inertia matrix, since it allows us to

apply a simple central difference integrator and to directly compute eigen solutions.

Once the dynamic nodal values have been computed, the spatial dynamic variables

can be approximated over the domain with polynomial expansions as in equations

u̇qi = NBu̇Bi , üqi = NBüBi . (5.55)

From equations (5.48)− (5.51), (5.54) the profiles of the complete matrices are

K =

[
Kuu KuA

KAu KAA

]
,

MMech =

[
Muu 0

0 0

]
.

The total tangent matrix is automatically assembled as

K← c1K + c2M
Mech, (5.56)
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where ck, k = 1, 2, 3, are scalars that include the values of time steps, integration

weights etc. The complete non-linear system can then be represented as[
c1Kuu + c2Muu c1KuA
−c1KAu c1KAA

] [
du
dA

]
=

[
Ru

RA

]
.
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CHAPTER 6

CONCLUSION

6.1 Fully-coupled characterization of TEMM materials

For a rate independent process, the complete combinatorial analysis of possible

potentials and state variables that describe 3D, nonlinear, coupled, material behavior

of TEMM materials is created. In all, the combination of mechanical and thermal

state variables correspond to four basic potentials (Gibbs free fnergy, Helmholtz free

energy, enthalpy, internal energy). With the inclusion of electrical and magnetic

state variables, the combinatorial analysis results in seventy-two possible potential

functions. In order to obtain the constitutive equations for each of the seventy-two

potential functions, a detailed analysis of the possible governing equations that are

to be considered is presented. The Maxwell equations and balance laws of mechanics

are presented in both integral and pointwise form. These equations and the jump

conditions are rewritten in material description as it is suitable for solids. For second

law, balance law of entropy [1][4] is used instead of Classius-Duhem inequality. For an
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unconstrained material, with Maxwell equations, balance laws of mechanics and bal-

ance law of entropy, the constitutive equations for each of the seventy-two potentials

are derived in a systematic way and tabulated.

A case of constant pressure process is taken and the expression to evaluate the

potential is derived. From the strain-stress, strain-field, magnetization-stress, and

magnetization-field plots obtained from the experimental data, numerical integration

is carried out to obtain the plots of potential as a function of field and potential as a

function of stress.

6.2 Nonlinear 3D FEM formulation

The 3D tensorial frame work of the basic equations for magnetostrictive materials

is combined with constitutive equations that are obtained from a nonlinear phe-

nomenological model [12]. A finite element formulation for a boundary value problem

set up using these equations is given in detailed manner.

6.3 Future Work

• For the case of the constant pressure process shown in this research work, novel

approximation methods can be explored to perform integration and evaluate

the potential.

• Similarly, an approximation method can be explored to evaluate numerically the

potential as a function of stress and magnetic field from the plots of potential

vs field and potential vs stress
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• The finite element formulation laid out can be implemented using COSMOL or

FEAP or self written code. More complicated geometries close to experimental

set up of fuel injectors with Galfenol actuators can be considered as a next step.
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APPENDIX A

STATISTICAL MODEL FOR MAXWELL EQUATIONS

Magnetic field originates from current which in turn is the product of charge

density and velocity. The magnetic interactions between parallel currents depend

only on the product of the currents, neither on the charge densities nor on velocities

separately. Electrons in vacuum can travel in the order of velocity of light. Electrons

in conductors on average have a drift velocity in the order of 10−4 m/s. Positive and

negative ions travel in fluid at a relatively slower speed. Mesoscale electromagnetic

behavior depends only on the average current of a mesoscale collection of electrons.

The mechanism of charge transport i.e., many charges moving slowly or few charges

moving at greater speeds do not matter. If there is a current of 3.3× 10−3 A, it does

not matter whether this current is composed of high-energy electrons moving with 99

percent of the speed of light, of electrons in a metal executing nearly random thermal

motions with a slight drift in one direction, or of charged ions in solution with positive

ions moving one way, negative the other. All these charge carriers can contribute to

same amount of current. The Lorentz force equation which is mentioned later in this

section is no way restricted to small velocities, either for the charge carriers in the

wire or for a moving charge q [41].
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Observation point

K th atom

i th electron
(source point)

Origin

X

Xki

Xk

Figure A.1: Electrons (charged particles) and atoms (stable groups) [37]

According to statistical formulation, charged particles in the material medium

are gathered into stable groups which are termed as atoms. The location of the ith

electron in the kth atom is denoted by (Fig.1)

xki = xk + ζki, (A.1)

where xk is the position vector of the center of mass of the stable group and ζki, the

internal coordinate within the atom. At an observation point x, the microscopic fields

ẽ(x) and b̃(x) are generated by large number of atoms, each containing many electrons

(the electrons here are different from the electrons in the modern atomic theory by

J.J. Thompson). These fields are governed by Maxwell equations in aether [37].

∇ · b̃ = 0,

∇× ẽ +
∂b̃

∂t
= 0,

εo∇ · ẽ =
∑
k

∑
i

qkiδ(xki − x),

µ−1
o ∇× b̃− εo

∂ẽ

∂t
=
∑
k

∑
i

qkiẋkiδ(xki − x), (A.2)
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where qki is the charge of the ith electron in the kth atom, qkiẋki is the convective

current.

The fields at x generated by a single electron qlj at xlj can be calculated by solving

(8)3 and (8)4 with [37]

ẽlj(x) = −∇x[qlj/(4πεo|x− xlj|)],

b̃lj(x) = ∇x × [qljẋlj/(4πεoc
2|x− xlj|)]. (A.3)

The Lorentz force represents force on a charge particle in the presence of electric

and magnetic fields. For an ith electron in kth atom, this force is defined as [37]

F = qki(ẽt + ẋki × b̃t), (A.4)

where ẽt, b̃t are the total electric field and magnetic induction at the location xki.The

total field represents sum of the intra-atomic field, inter-atomic field and external field.

While the Maxwell equations describe how electrically charged particles and ob-

jects give rise to electric and magnetic fields, the Lorentz force law completes the

picture by describing the force acting on a moving point charge in the presence of

electromagnetic fields. We define [37]

qk =
∑
i

qki, µk =
∑
i

qkiζki, νk =
1

2

∑
i

qkiζki× ˙ζki, σq =
∑
k

qkδ(xk−x),

p̃ =
∑
k

µkδ(xk−x), j̃ =
∑
k

qkẋkδ(xk−x), m̃ =
∑
k

(µk× ẋk + νk)δ(xk−x).

(A.5)

Because of the presence of the delta functions, these microscopic fields fluctuate

rapidly in space. However, the physical dimension of phenomenological laws are

much larger than the size of each atom. The macroscopic field quantities are defined
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in terms of statistical average of the microscopic fields over regions that contain a

large number of atoms. In statistical mechanics, the averaging formula used [3] is

h(x, t) = 〈h̃〉 =

∫
h̃(x; r)f(t; r)dr, (A.6)

where r represents the ensemble (xk,xk, ζki, ˙ζki), and dr = dxkdxkΠ(dζki, d ˙ζki) is an

element of fluxion space. The product fdr represents the probability to find h in the

fluxion space element dr.

According to this definition, the macroscopic field variables are represented [37]

as

〈ẽ〉 = e, 〈b̃〉 = b, 〈p̃〉 = p, 〈m̃〉 = m, 〈σq〉 = σ, 〈̃j〉 = j. (A.7)

The Maxwell equations expressed in terms of these macroscopic field quantities [37]

are

∇ · b = 0,

∇× e +
∂b

∂t
= 0,

εo∇ · e = σ −∇ · p,

µ−1
o ∇× b− εo

∂e

∂t
= j +

∂p

∂t
+∇×m. (A.8)

The Lorentz force on a single charge particle is written. These forces add up, to

obtain the net force on the atom and then statistical averaging is done to obtain the

Lorentz force on the whole body. The balance laws of mechanics are first written

for atoms and statistical averaging is done in a similar way to get the macroscopic

equations.
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APPENDIX B

DENSITY OF GALFENOL

Density of Gallium is 5.91e3 kg/m3, Density of Iron is 7.874e3 kg/m3. Galfenol

used in the experiments is 18.5% Gallium and the remaining percent is Iron.

ρGalfenol = 0.185 ∗ ρGallium + 0.815 ∗ ρIron = 7.51066e3 (B.1)
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