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ABSTRACT

Smart materials exhibit powerful nonlinear 3D coupling and anisotropy. However,
the design and associated models, experimental characterization, and control design of
smart systems are in general 1D. This reduced framework severely limits applications
to 1D. The research presented here enables the tailoring of composition and process-
ing to produce multifunctional materials with targeted performance properties that
are fully nonlinear and 3D. A complete combinatorial analysis of seventy-two possible
energy functions and state variables that describe 3D, nonlinear, coupled behavior of
thermo-electro-magneto-mechanical materials is created. Each set of state variables
and corresponding energy function correlates with a given set of experiments, the in-
dependent variables being controlled and the dependent variables being the measured
responses. The constitutive equations with respect to each of these energy functions
are derived in a systematic way by combining the mesoscale Maxwell equations, the
balance laws of mechanics, and the balance law of entropy. The application of this
framework to a new class of magnetostrictive Iron-Gallium alloys (Galfenol) is in-
vestigated with the intent to implement these alloys in a new class of fuel injectors
to achieve unprecedented dynamic response and performance. The possibility of de-
termining the full 3D constitutive behavior of Galfenol from simple, 1D macroscopic
experiments in combination with analytical models based on knowledge of the crystal

structure is explored. In this respect, a FEM formulation is presented.
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CHAPTER 1

INTRODUCTION

Adaptive structures based on active or smart materials (controllable material
properties and response) are underutilized. Despite the observation that smart mate-
rials exhibit powerful nonlinear 3D coupling and anisotropy, the design and associated
models, experimental characterization, and control of smart material based systems

are in general 1D. This framework limits applications to devices executing 1D motion.

The smart material models can be categorized into 5 groups.

1. Models employing linear constitutive equations:

In [30, 31], a 3D finite-element model using linear constitutive equations is im-
plemented. [45] listed the possible thermodynamic potentials with electric, magnetic
and mechanical independent variables and postulated expressions for these potentials

that resulted in linear constitutive equations.



2. Models where the constitutive equations are obtained using a Taylor series expan-
sion of Gibbs free energy. The coefficients of these constitutive equations are either
taken as constants or calculated from experimental data:

In [49, 48], the coefficients of the constitutive equations are written as Taylor se-
ries expansions of Gibbs free energy and are replaced with the empirical expressions
constructed based on experimental data. [4] expands Gibbs free energy in a Taylor
series, where higher-order terms are neglected and the leading order terms are taken
as constants. [2] posits a Gibbs free energy that incorporates higher-order effects,
e.g., fifth order in strain, fourth order in electric field, third order in temperature,

fifth order in coupling terms.

3. Phenomenological models constructed based on experimental observations:

In [10], a phenomenological model is proposed by considering Jiles-Atherton mean
field theory and law of approach to the anhysteretic magnetization. In [21], a 3D
electromechanical constitutive law is formulated to model saturation of induced po-
larization with increasing electric field by assuming that electrically-induced strain
depends on second-order polarization terms and an empirical hyberbolic relationship
for the dielectric behavior. [15] separates the nonlinear constitutive equations into
three distinct categories: phenomenological constitutive models based on thermody-
namics (standard square model [47], hyberbolic tangent constitutive model, consti-
tutive relations based on the density of domain switching), constitutive model based
on noncontinuous domain switching, constitutive models with internal variables (con-
stitutive model based on J2 flow theory, phenomenological constitutive model with

anisotropic flow theory). [3] combines the magnetic anisotropy analysis of [25] with



the assumption of an inverse exponential distribution of magnetized energy states.

4. Models in which part of the energy is proposed based on the crystal structure
of the material. Boltzmann and probability distributions are used to obtain the
magnetization and magnetostriction:

In [12], the energy has terms for magnetic anisotropy, magnetomechanical cou-
pling, Zeeman or field energy, elastic strain energy. These energies are expressed
while idealizing the complex domain structure of ferromagnetic materials as a system
of non-interacting, single-domain, Stoner-Wohlfarth (S-W) particles. [13] develops
a steady-state constitutive model (energy expression based on crystal structure) to
obtain the expressions for magnetization and magnetostriction. [14] presents a state-
space constitutive model where the energy has magnetocrystalline anisotropy and
Zeeman energy terms. The expected value of magnetization is calculated with the

use of a Boltzmann distribution.

5. Models having a combination of linear constitutive equations and the use of em-
piricism:

In [33, 32], the strain as well as the field (electric or magnetic) are split into re-
versible and irreversible parts. A quadratic relation is postulated between irreversible
strain and irreversible field. The thermodynamic potential is a combination of terms
that give rise to the linear constitutive equations and an additional nonlinear cou-
pling term. In [40], 3D FEM is implemented with a formulation which has the linear

constitutive equations along with Maxwell stress tensor.



The present research work deals with two aspects of these models.

A. The process of obtaining the constitutive equations in terms of potentials from

first principles of thermodynamics.

1. Although final form of the constitutive equations in terms of potential is pre-
sented in each of the above models, the process of obtaining these equations is
generally not described in depth. A general known method is to start from the
local form of conservation of energy, use the reversible form of second law, and
derive constitutive equations from them [44]. A rigorous treatment is presented
in [17, 18, 24, 37]. Although these authors differ from one another in certain
aspects, all of them start from the integral form of the governing equations
of thermomechanics. Upon subjecting various quantities to invariance require-
ments, the local form of these equations are obtained. For the second law, either

the Classius-Duhem inequality or the balance law of entropy is used.

For the case of thermo-electro-magneto-mechanical materials, there are a num-
ber of possible thermodynamic potential functions based on the set of inde-
pendent variables. In this thesis, an analysis of possible energy functions
and state variables that describe 3D, nonlinear, coupled behavior of thermo-
electro-magneto-mechanical materials undergoing a non-dissipative process is
presented. In total, there are seventy-two material characterizations described
by energy potentials arranged in eight families, each sharing the same ther-
momechanical independent variables. Each choice of state variables and corre-
sponding energy function correlates with a given set of nonlinear experiments;
the independent variables being controlled and the dependent variables being

4



the measured responses. And for each such possible potential function, the
constitutive equations can be derived. Seventy-two possible characterizations
are worked out to obtain the constitutive equations for an unconstrained mate-
rial undergoing a rate-independent process. This is done following the rigorous

treatment of [17, 18, 24, 37].

2. Using the constitutive equations, an approach to evaluate the potential is laid

out employing conditions as constitutive limits (e.g., constant pressure).

3. The application of this framework to a new class of magnetostrictive iron-
gallium alloys (Galfenol) is investigated with the intent to implement these
alloys in a new class of fuel injectors to achieve unprecedented dynamic re-
sponse and performance. From the available experimental data of Galfenol,
attempts are made to numerically evaluate the potential. The state of the art
of the fuel injectors, failure of piezoelectric stack actuators, and the factors that

qualify Galfenol for fuel injector applications are also discussed.

B. Implementing a 3D nonlinear finite element formulation employing a phenomeno-
logical model.

So far, 3D nonlinear constitutive equations are not used to solve 3D boundary
value problems in the finite element method (FEM). Also, in most of the material
models, the Maxwell stress tensor term is neglected.

A 3D phenomenological model given in [12] is used to obtain the fully nonlin-

ear constitutive equations for magnetostrictive Galfenol. A boundary value problem



consisting of nonlinear constitutive equations, balance law of linear momentum, Am-
pere’s law and a set of appropriate BC’s is formulated and this can be solved using a

FEM formulation in the spirit of [40].

1.1 Outline of thesis

Chapter 2 focuses on a detailed description of the Minkowski formulation and the
approach followed in [18]. A summary of the governing equations from various authors
followed by detailed analyses is also presented. Chapter 3 focuses on an overview of
the seventy-two possible potentials and a detailed derivation of the constitutive equa-
tions from these potentials. Chapter 4 discusses the use of smart material actuators
in fuel injector applications, with an emphasis on failure of piezoelectric stack actu-
ators and the factors that qualify Galfenol actuators for fuel injector applications.
Chapter 5 presents the governing equations and 3D nonlinear constitutive equations

for magnetostrictive materials and the 3D finite-element formulation.



CHAPTER 2

MESOSCALE CHARACTERIZATION OF DEFORMABLE
THEMO-ELECTRO-MAGNETO-MECHANICAL (TEMM)

MATERIALS

A general thermo-electro-magneto-mechanical (TEMM) process is described by
the evolution up to the present time of thermal, electric, magnetic, and mechani-
cal quantities. The particular choice of which quantities interrelate to describe the
process, and the explicit forms of these relations, are the constitutive model for the
material. For a TEMM material, the interdependence is through the following spa-
tially and temporally varying fields,

Thermal:

0 — absolute temperature
n — specific entropy (entropy per mass = length? time™2 temperature™!)

Q — Lagrangian heat flux vector (energy per area per time = mass time*3)

(2.1)



Electric:

3 current 1)

e — electric field vector (mass length time™
p — polarization vector (length~2 time current)

d — electric displacement vector (length™2 time current) (2.2)

Magnetic:

h — magnetic field vector (length~! current)

m — magnetization vector (length™! current)

b — magnetic flux vector (mass time™2 current!) (2.3)
Mechanical:

P — non-symmetric Piola-Kirchhoff stress tensor (force per area = mass length™! time=2)

F — deformation gradient tensor (dimensionless) (2.4)
Energetic (energy per mass = length? time™?):

¢ — specific internal energy
1 — specific Helmholtz free energy
¢ — specific Gibbs free energy

X — specific enthalpy (2.5)
Source terms:

j — free current density vector (ampere per square meter = current length—2)
o — free charge density (coulomb per cubic meter = current time length™3)

(2.6)



The TEMM material we model has no memory, i.e. its response depends only on
the values of the above quantities at the present time, with no explicit dependence on
previous times or temporal rates. For example, the stress at location x and present
time ¢ depends only on the values of deformation, temperature, thermal flux, energy,
electric field, polarization, electric displacement, magnetic field, magnetization, and
magnetic flux, and perhaps their spatial (but not temporal) gradients, all evaluated
at the present location x and time ¢.

In the literature, there are many interaction models to characterize deformable
thermo-electro-magneto-mechanical materials. These models introduce four different
electromagnetic vector fields: e and b plus two other fields. Some models work with
d and h, others use p and m instead. A unique transformation from the variables
e,b,d, h to p, m exists. However, for each of these interaction models, the electro-
magnetic stress tensor and body force in the momentum equation are not unique.

The first law of thermodynamics states that the time rate of change of the internal
energy is balanced by stress power, the heat flux, and the energy supply due to
heat and electromagnetic effects. Since stress is non-unique, it follows that internal
energy, heat flux and electromagnetic energy supply cannot be determined uniquely
either. Likewise, the electromagnetic energy supply might contain a term that is the
divergence of some vector quantity, which could be absorbed in the heat flux vector.
In that case, heat flux can be called as energy flux [24].

From the many interaction models that exist in the literature, the Minkowski
formulation is selected. Two variations of the Minkowski formulation developed in
Hutter [24] and Green & Naghdi [18] are presented in this chapter. The final form of

the reduced energy equation is expressed in terms of e, h, p,m in [24] and e, h,d,b



in [18]. This difference arises as the internal energy considered in both works is not
identical.

A summary of governing equations developed by various authors is given. The
equivalence of these equations is also addressed.

This work deals with magnetizable and polarizable solids, which deform elastically
under the action of electromagnetic and thermal fields and which exhibit electrical
and thermal conduction. Mechanical dissipation, exchange interaction and magnetic
spin are not considered here. This work is done on the level of non-relativistic ap-
proximation.

A continuum theory of deformable bodies subject to electromagnetic fields amounts
to the presentation of the basic electromagnetic field variables, their relations to other
fields, as well as the postulation of electromagnetic body force, body couple and en-
ergy supply. Then, the Maxwell equations and the balance laws of mechanics and
thermodynamics can be expressed in terms of the variables of the model that is consid-
ered. The thermodynamic arguements are used to obtain the constitutive equations
in a form compatible with the second law of thermodynamics.

An important feature of this work is that it enables scientists and engineers to
assess the physical relevance of a particular posited pointwise model by seeing if there
exists a global statement. To be valid, pointwise equations must be derivable from
integral equations. Here we deduce the pointwise equations from global statements of

the first principles, modifying the rational treatment employed in thermodynamics.
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2.1 Global form of the governing equations for electrody-

namics and thermomechanics

The global form of the equations governing coupled thermo-electro-magneto-mechanical

/ b-da = 0,
oV
d
—/b-da + / e -dx = 0,
dt /s as
/d~da = /adv,
oV v
d . o
—/d-da—/h-dx+/]-da20,
dt Js o5 s

i/adv + /j*-da = 0, (2.7)
dt Jy av

electromagnetic media are

and

d 1 1
p /{ps + §(eoe* -e" + poh*-h*) + STASA SRS pT}dv = /{pr + pf" . vido
.

+ {T’v. — q — e xh" + —(eoe*-e* + poh* -h*)v+ R} - da,

oV 2
(2.8)
or
d
d —
ai ), P =0
d ext e
pvdv = p(f +£9)dv + t - da,
dt v [2)%
di p(x xv)dv = / p(x x (F' + £¢) + L)dv + / (x x t) - da,
tJy v v
d 1

— [ ple+ zvv)dv = / (pre™ + pre + p(£" 4+ £°) - v)dv + / (t-v — h)da,
dt Jy 2 v v

(2.9)

which must hold for all material surfaces S with closed boundary dS and any material

volume V with a closed boundary surface d) and outward normal n.

11



In equations (2.8), (2.9), p is the mass density, v is the velocity of the mass

t

particle, £¢** is the body force due to an externally applied field, r¢* is the specific

heat supply rate, t = Tn = P;]’;;“ is the surface traction vector, T is the stress tensor,
h=q-n= % -n is the heat flux, q is the heat flux vector, u, is the permeability

of the free space, €, is the permittivity of the free space, and pT', R are quantities
to be expressed as functions of electromagnetic fields. The force f¢, the couple L€,
and the energy supply rate r¢ are the effects of the electromagnetic fields on the
thermomechanical problem.

The quantities e*, h*, j* are the effective electric field strength, magnetic field
strength, and conductive current respectively, i.e., field and current per area act-
ing on the deformed body. The relation between the effective fields e*, h*, j* and
the primitive fields e, h, j is part of the characterization of the particular material.
Several electromechanical interaction models for deformable matter have been pre-
sented in the literature, deduced from various degrees of first-principle based modeling
of microscale behavior and empiricism. These interaction models include the Chu,
Minkowski, Lorentz, and statistical formulations.

Chu formulation:
e"=e+ v X uh, h* =h — v X ¢.e, J=j—ov, (2.10)
Minkowski formulation:
e =e+vxb, h*=h-vxd, JF=j—ov, (2.11)
Lorentz formulation:
1

e"=e+vVvxb, h*= —b —m — v X ¢, JF=j—ov, (2.12)
Lo

12



Statistical formulation:

1
e"=e+vxb, h*= —b—-¢vxe—m—vXxDp, if=j—ov, (2.13)
o

where e, h,j in (2.10) are the Chu’s electric field strength, magnetic field strength,
and free current density and the Minkowskian electric field strength, magnetic field
strength, and free current density in (2.11) and so on.

In this work, we employ the Minkowski formulation. In this; a rigid body moves
with constant velocity v relative to the laboratory frame, and a reference frame called
the rest frame is attached to the moving body. The equations of electrodynamics in
the coordinates of both the frames should be invariant. By postulating that the
energy balance is invariant under a super posed rigid body motion, the equations
of balance laws of mass and momenta are derived [24]. Although the Minkowski
formulation is based on rigid body motion, it has been applied to deformable bodies
in motion [37]. The physical motivations of the other three formulas can be found in
(22, 46, 19, 16, 23, 38, 39].

The balance law of entropy we employ is due to [18, 17]:

d
— [ pndv + / k da — /,03 dv = /,05 dv, (2.14)
dt Jy oV % v

where k is the entropy flux, s is the external specific entropy supply rate, and ¢ is the

entropy production. In this work, we adopt the constitutive assumptions

k:%-m s=__. (2.15)

13



2.2 Pointwise form of the governing equations for electrodynamics and

thermomechanics

With smoothness assumptions on the integrands in the equations (2.7), (2.8),(2.9),
and (2.14), the area integrals convert to volume integrals using the divergence theo-
rem. Line integrals convert to area integrals using the Stokes theorem, and the time
derivatives are taken inside the integrals using the transport theorem (the vectorial
generalization of Leibniz’s rule). Hence the equations (2.7), (2.8), (2.9), and (2.14)

reduce either to

/vgb(x, t) dv =0, or /Sgb(x, t)-da=0. (2.16)

Then, since the above integrals are valid for any arbitrary susbset V or S of
the present configuration, and the variables are assumed to be continuous, use of
localization theorem!® gives the pointwise field equations. The pointwise Maxwell

equations resulting from the global equations (2.7) are:

V-b = 0,
Vxe =-— g—lt) — Vx(bxv),

'If ¢ is a continuous scalar or tensor-valued field in R and
/ ¢(x,t) dv =0 for all subsets V of R,
%
for every part V then it is necessary and sufficient that

¢=0 for all points x in R

14



d
Vxh*:g—t+Vx(dxv)+av—|—j*,
. do
V- + e + V-(ov) = 0. (2.17)

There are two ways of obtaining the pointwise balance laws of mechanics. One
way is to obtain the equations from (2.9) and the second way is to obtain the equa-
tions from the global energy balance law (2.8). Using the same procedure as described
above for obtaining pointwise Maxwell equations, the pointwise balance laws of me-
chanics (2.19) are obtained from (2.9). The same set of equations are obtained from
(2.8) as described in the Minkowski formulation: In order to determine the unknown
quantities pT" and R in (2.8), one subjects the local form of (2.8) to a Euclidean
transformation. The values of pT" and R are obtained from invariance requirements
and substituted into the global form. From this the local form can be derived, which
with the use of the Maxwell equations and the constitutive equations may be written

as

. ]. . o * * o * © exr
(p + pV-v)(e + §V'V) + pé — et — e-p — pht-m* + V.q—pret —
{T + ¢e®p + ph*@m*}-L + {pv — V- T — pf"t —

oe* — jxb — (Ve)'p — (Vh)'m* — (dxb+dxb)}-v = 0.
(2.18)

ext

The invariance requirements under which p, €, T, (v — %), q, pre*t, Q, j*, e*, p,

h*, m*, d, b are assumed to transform as objective quantities then yield the pointwise
equations for mass, linear momentum, angular momentum, and energy :

p+pvv - 07

15



pv = p(fext + fe) + V. T,

Ty = pL

ij’
pe = prext + pr° — V-q + T-L. (2.19)

The force £¢, the couple L¢, and the energy supply rate r¢ are the effects of the elec-
tromagnetic fields on the thermomechanical problem. The nature of these coupling
terms is another important part of the material characterization. As an example, for

the Minkowski formulation,

pf® = oge* + jxb 4+ p-Ve* + pom*-Vh* + dxb+dxb,

1
P = 5(p@e” — e @p + pm ®@h" — h'om’),
d ., p d m*
N P (2 Jht . — , 2.20
pr j-et 4 pe dt(p)+pu ') (2.20)
where
m‘° = m + Vv XDp,

a=%24+vV-a+Vx(axv),V a,

[a X b]z] = aibj.

The coupling terms f¢, L¢, r¢ for the Chu, statistical, and Lorentz formulations can
be found in [24].

The pointwise entropy balance equation from (2.14):

pi + V-(3) = o+ = 0. (2.21)

Substituting e* from the Minkowski formulation in (2.17),, one obtains

V x (e+vxb) :—g—?—Vx(bxv), (2.22)
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which reduces to

Ob
Vxe——a.

Similarly, substituting h* and j* from the Minkowski formulation in (2.17)y4,

d
Vxh-vxd) = g_t + Vx(dxv) + ov + (j—ov),
reduces to
od
h=3i+ —. 2.2
V x ‘]+8t (2.23)

The pointwise Maxwell equations for an undeformed body are obtained by setting

v =0in (2.17),
V-b=0,
b
vxe——§7
V-d=o,
od
h=j+—. .
V x J—|—8t (2.24)

Note that (2.24) are same as the Minkowski Maxwell equations. The Maxwell equa-
tions in Minkowski formulation are in terms of e, b, d, h and those corresponding
to Statistical formulation are in terms of e, b, p, m. On using the relations (given
below) that connect p, m to d, h, one can find that the Maxwell equations from

Statistical and Minkowski formulation are same.

p=d — ee, o = b — poh, (2.25)

Upon satisfying the invariance property, (2.25) reduces to

p=d—e.€e", fom™ = b — poh*. (2.26)
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The Maxwell equations for the Lorentz and Chu formulations do not resemble those
for the undeformed body.

For example, (2.17), for the Lorentz formulation is

0 0
PV xb -6y =+ L 4V x (pxv)+V xm, (2.27)
ot ot
and (2.17)y for the Chu formulation is
oh  O(p,m)
Vxe+uoa—— T — V X (ftom X V). (2.28)

Although the form of Maxwell equations for the undeformed case and Minkowski for-
mulation are same, there is difference in the constitutive relation, as we now demon-
strate: Temporarily ignoring thermomechanical dependence until the next chapter,
constitutive assumptions in the electromagnetic problem must relate d,b to e, h in

the moving frame. The most general nonlinear couple dependence is

d =d(e,h), (2.29)
b = b(e, h),
J= j(ea h)

To satisfy invariance, the constitutive equations must be cast in the invariant frame,

~ ~

d =d(e,h'), b =b(e ), j=je, hn), (2.30)

The relation between the variables in the moving frame and the laboratory frame is

given by the Lorentz transformation as follows
e =e+vxb, h'=h-v xd, (2.31)

h e
d/:d+VXC—2, b/:b—VXE, (232)
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f=j—ov, o 1 (2.33)

The consequence of the invariance requirement is that e, h, and v must appear in

the constitutive assumption only in the combination

h N
d+vx— =d(e+vxbh-vxd), (2.34)
c
b—vx %:B(e—i—vxb,h—vxd),
c
j—ov=jle+vxbh—vxd),
or
d=d(e h,v), b =b(e, h,v), j=jle,h,v), (2.35)
As a special case, the constitutive equations for linear isotropic materials are
j=ve (2.36)

According to Minkowski formulation, the constitutive equations for linear isotropic

materials in a moving frame are

d' = e, b" = ul', j=ve. (2.37)
Expressing the above variables in the coordinates of the laboratory frame,
d = ce + (ep — €oto)V X h,
b = ph + (€opto — €11)v X e,
(2.38)

j—ov=v(e+vxb).

Neglecting €,pt, = C%, the above constitutive equations reduce to

d =ce+ eu(v x h),

19



b = ph —eu(v x e),
j—ov=v(e+vxb). (2.39)

In the Minkowski formulation of electro-magnetism in a deforming material that
we employ, the effective fields through deforming areas through the rigid body motion

given by the Lorentz transformation:

e =¢, h* =h', =7 (2.40)

The governing equations (2.17) — (2.21) in the spatial description. A material
description is generally more useful in describing the deformation of solids, because
the boundary conditions for solids are usually prescribed on the undeformed body,
which is generally the body in its reference configuration. In the material description,

the governing equations of mechanics and the entropy balance law [24] in pointwise

form are
Po = pJ,
PV = po(£7 +£°) +V - P,
BliaFjja = poLsij,
Pof = po(r® +7) =V -Q+P - F, (2.41)
poi + V() (g =0 (2.49)
where
P=JTF 7, Q=JFq, o= Jo, j=JF ", p=JF'p,
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pof¢ = F T (5e+jxb+(Ve ) p+u,(VhT)m+d x b+dxb)+VF TF(pRe+emeh),
polLf; = F[WFBJ,I] (p®e+ pom® h),

por=j-e+p-&+pm-h+F TE@@p+ph@m) F. (2.44)

2.3 Jump conditions

In order to model physical problems where finite jumps arise in any of the elec-
tromagnetic field quantities or mechanical quantities in the governing equations, we
allow a surface of discontinuity in the body. Since the presence of such a surface vi-
olates the smoothness assumptions, we cannot apply the transport theorem and the
localization theorem to the integral forms of the governing equations and hence the
pointwise equations which we presented above do not hold. We derive jump condi-
tions by using a new transport theorem which allows for the surface of discontinuity;,
and the localization theorem by assuming that the jump is a continous function on
the surface of disconstinuity. If the surface of discontinuity is material, then these
jump conditions serve as boundary conditions.

The jump conditions for the Maxwell equations and the balance laws of mass,

momentum, and energy [24] are

capyllEs]Ny + [[BaWn]] = 0, [(b]lNa = 0,
capyl[PllNy + [[daWn]] = 0, [[do]]Na = 0,
oWl = 0,

I o= _ = -
[poviWn]] = [Tia + F, il(daeﬁ + bahg) — 2 |7 | Failcﬁ 1’7(606/367 + tohghy)]|Na =0
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1 1 - _ o - -
H(ipovivi + Po€ + 2 |7 | Caﬁl(EOeaeﬂ + Nohochﬂ))WN]] — [[viTia — Qo — Capy€phy

- - 1 - L o I
+E (dats + bahg)vi — 5 | | Fo' gl y(€08pey + prohphy vl No = 0
(2.45)

2.4 Alternative formulation for governing equations

In section (2.1-2.2), we present the equation for conservation of energy governing
TEMM materials involving the electromagnetic variables e, h, p, and m. In this
section, we present an alternative formulation that has the equation for conservation
of energy involving the electromagnetic variables e, h, d, and b following the work of
[18]. We do this in order to accomodate the family of potentials that involves various
combinations of the electromagnetic variables presented in both formulations.

Let (; be an arbitrary material subset of body B at time t in the current configu-
ration. For any subset ¢; of B, denote K ((;) as the kinetic energy in (;, H((;) as the
heat energy in (;, £((;) as the electromagnetic energy in (;, R((;) as the external rate
of supply of mechanical work to (;, Q((;) as the external rate of supply of heat to ¢,
T'((;) as the external rate of supply of electromagnetic energy to (;, and W((;) as the
internal rate of supply of energy (mechanical, thermal and electromagnetic) within

(. These terms are

K@) = [ govevio. 0@ = [ pin. B@G) = [(@-e +bw)in (240
R(¢) = /Vpb -vdv + /av t - vda, Q(G) = /Vps@dv — /av kOda, (2.47)
T(G) =— / ee*-vdv+ [ {(h* xe").n+t. v}ida, (2.48)

% av

W(&) = /V(pf v+ pld — i - e" + pw)do, (2.49)
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where p, 1, s, k, £, w, 6, e are scalar-valued functions, d, b, j*, t., E), t, f are vector-
valued functions of (X, t), and t, t. and k depend on the outward unit normal n. The

vector t. is defined by
t. = T.n, T.=e"®d+h"®Db. (2.50)

It was observed that the integrands in (2.46) 3, (2.47); 2, and (2.48) are linear in the
independent variables

{v, 0, ¢, h'}, (2.51)

but no explicit statement has been made in regard to the dependence of the scalar w
in (2.49). Since the first three terms in the integrand (2.49) are already linear in the

variables (2.51), with a reasonable generality, w is assumed to be linear in the set of

variables
a0 ov ., -,
{07 %7 %7 €, h }7 (252)
and has the form
. 00 0 ) -
pw:pn10+p1-——Tl-—v—l—dl-e*—f—bl-h*, (253)
ox ox

where p; = p1(X,t), d; = di(X,?), by = by(X,t) are vector valued functions of
(X,t), Ty = T1(X,t) is a second order tensor valued function.

The first law of thermodynamics in presence of electromagnetic effects states that
[18]:

(i) For any subset (; of the body B in the current configuration, the rate of
change of kinetic energy K((;), heat energy H((;), and electromagnetic energy E((;)
is balanced by the external rate of supply of mechanical work R((;), the external rate
of supply of electromagnetic energy T'((;), the external rate of supply of heat Q((;),
and internal rate of supply of energy (mechanical, heat and electromagnetic) W (¢;),

23



(ii) The total heat energy Q, mechanical work R and rate of supply of electro-
magnetic energy T supplied to or extracted from (; in a cycle is zero. Expressing
statement (i) mathematically,

—%[K(Q) +H(G) + E(C)] + R(G) + Q(G) + T(G) + W(G) =0, (2.54)

or equivalently

E(t) = —%/v[p(%v.wd.e*+b.h*)]dv+ (2.55)

/[p(E)-V+f-V+SH—|—§€—|—w)—ee*-v—j*-e*]dv+
%

/ [t-v—kf+ (h* xe") - n+t. v|jda=0.
oV

The integrands in (2.55) are functions of (2.51) with coefficients that are independent
of these variables, although pw does depend on their space and time derivatives. The
energy balance (2.55) is valid for every choice of the variables (2.51); but, because of
the expression in (2.53), in general £(t) will change its form. However, if (2.51) is
replaced by

{v+¢c 0+¢ e +e, h*"+h}, (2.56)

E(t) is form invariant. Thus introducing (2.56) into (2.55), the equation is valid for
every choice of {¢, ¢, e;, h;} and hence the integral expressions were obtained.
With the usual smoothness assumptions and boundedness properties, the application

of these integral expressions to an arbitrary tetrahedron resulted in
t = Tn, k=p-n, (2.57)

where T is a second order tensor function and p is a vector function of (X, t). Upon
substituting (2.57) in the integral expressions (2.55) and applying the divergence the-
orem, transport theorem, and the localization theorem, we obtain their corresponding
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local forms. We obtain local form of energy equation (2.55) using a similar approach.

Then the statement (i) is used to obtain

d

W(G) = —¥@. Q)= [ pudn (2.58)

Combining the local form of energy equation and (2.58), the reduced energy equation

is obtained. Then, the unknown quantities are identified as shown in the following

table.

P mass density in the current configuration of B
b external body force per unit mass

pfe + ee* | internal body force per unit mass in V due to electromagnetic fields
t surface force (or the stress vector) per unit area over 9V
f internal force per unit mass in V
s external rate of supply of entropy per unit mass
13 internal rate of supply of entropy per unit mass
k flux of entropy per unit area across 0V
T stress tensor per unit area 9V
) entropy flux vector per unit area of 9V
n density of entropy per unit mass

s6(=r) external rate of supply of heat per unit mass

kO(= h) flux of heat per unit area across OV
no heat density per unit mass
() Helmholtz free energy per unit mass
d electric displacement
b magnetic induction
e free charge

Table 2.1: Quantities - Minkowski formulation
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Under non-relativistic approximation, the reduced energy equation was considered

invariant under a special Galilean transformation,
x" = at + Qx, tt =t, (2.59)

where a is a constant vector and Q is a constant proper orthogonal tensor. The above
identified variables under this transformation are substituted back into the reduced
energy equation, and it is found that f = 0. The final forms of the integral expressions
are

d

— dv = 0
dtfppv )

d X
— [ pvdv = /{pb —ee'}dv + / (t + t.)da,
dt Jp P P

4 pndv = /p(s+§)dv — / kda,
dt Jp P oP

d
—/ ddv = — / (ev+j)dv+ | {nxh"+ (nd)v}da,
dt Jp P ap

d

— [ bdv= [ {e€" xn+ (n-b)v}da,
dt Jp op
—/edv—i—/ n.d da =0,
P aP
/ n.b da =0, (2.60)
oP

and their corresponding local forms are
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p + pdivv = 0,

pv = p(b +1£,) + divT,

pip = p(s + &) — divp,

curlh* = d + ddivv — Ld + j*,

—curle* = b + bdivv — Lb,

divd = e,
divb = 0, (2.61)
where
oe* oh*
f. = d+ —Db, 2.62
P ox * ox (2:62)
and the reduced energy equation is
. . 89 3 - 1 = LE3 *
—p(w+n9)+(T+T6)-L—p-a—X—pge—d-e—b~h+J -e" =0, (2.63)
where
e=FTe¢*, d=F'd, h=F"h*, b=F'b. (2.64)

2.5 Summary of governing equations from different authors

The governing equations developed by five authors Pao [37], Hutter [24], Naghdi83 [17],
Naghdi95 [18], Smith [44] are summarized and the differences in these equations are

presented in the sections that follow.
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2.5.1 Conservation of mass

Pao, Hutter, Naghdi83, Naghdi95 presented same equation for conservation of mass:

Integral form:

d
— dv =0
at ),
Pointwise form:
d
d—? + pdivv = 0

2.5.2 Conservation of linear momentum

(2.65)

(2.66)

Integral form

Pao %fvpvdv:favt-alaJrfV pfedv
Hutter and Naghdi83 % Jypvdv =[5, t - da+ [, p(£°t + £¢)dv
Naghdi95 % Jy pvdv = [5,(t +t°) - da+ [, (pfe®t — ee*)dv

Pointwise form

Pao pv = pf€ + divT
Hutter and Naghdi83 pv = p(f¢ + £¢7t) + divT
Naghdi95 pv = p(fe + fe¥) + div'T
t=Tn
Pao pf¢=ce+jxb—3[Vb-h—Vh-b—Ve-d+ Vd- e

Hutter and Naghdi83 | pf¢ = oe* + j*xXb + p:-Ve* + pom*-Vh* + dxb+dxb

t*=T°n, T‘=e*®d+h"®b

Naghdi95 Jy ptedv = [5,t°-da— [|, ee*dv

_ Oe* oh*
pfe = Fed+ B

Table 2.2: Conservation of linear momentum
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The equation for conservation of linear momentum from Hutter and Naghdi83
are same. The balance laws for Hutter are deduced from an energy balance law.
According to [24], the balane laws presented in Pao are not invariant in the non-
relativistic sense, and hence they can never be deduced from an energy balance.
Hence, the equations from Hutter do not agree with those of Pao. Also, Pao did not
take external body force into consideration. The conservation of linear momentum

equation that is considered in this work is from Hutter and Naghdi83.

2.5.3 Conservation of angular momentum

Integral form

Pao L [L(xx pv)dv = [,,(x x t) -da+ [}, p(c® +x x £)dv

Hutter and Naghdi83 % Jpxxpv)dv = [y, (xxt)-da+ [),p(ct+xx (£ 4 £¢)dv

Pointwise form

Pao, Hutter, and Naghdi83 T[l-j] = pL

e
ij

e _1_ . _e
Lij = 5€;jkCy, Or

Lfu = c® X u for every vector u

Pao pL¢ =1(e®d+h®b—-d®e—b®h)
Hutter pLe = %(p@e* — e*®p + pom*®h* — h*®@m*]),
Naghdi83 pL¢ = L(e*®d+h*®b—d@e* —b@h")

(PL®)Naghdig3 = (PL®)Hutter

Table 2.3: Conservation of angular momentum

The equations for conservation of angular momentum given by Hutter and Naghdi83

are same. Although the form given by Pao looks similar to Hutter or Naghdi83, the
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expression given by Pao is in reference frame coordinates where as the later is in mov-
ing frame coordinates. In this work, the conservation of angular momentum equation

from Hutter or Naghdi83 is adopted.

2.5.4 Conservation of energy

Integral form

Pao % Jy(pe + %pv “V)dv = [5,(t-v —q-n)da+ [, p(r? +r° 4 f° - v)dv
Hutter and Naghdi83 % Jolpe+ 2pv-vidv= [y, (t-v—a-n)da+ [, p(re® +r¢+ (£78 4+ £°) - v)dv
Hutter- % fuloe + 3(e0c€*-€* + poh*-h*) + Lpv-v }dv = [, p{re=t + fe=t.v}dv
Minkowski formulation + [ou{Tv — @ — e*xh* + %(Eoe* -e* 4+ poh*-h*)v}.da
Naghdi95 L [Llp(A3v-v+n0)+d-e* +b-h*|ldv= [,,[t-v—k0+ (h* xe*) n+t-v]da

+ [yl - v + 50 4 (0 + w) — ee* - v — j* - e*]dv

Pointwise form

Pao pe =T L — divq + pre
Hutter and Naghdi83 pé =T - L — divq + pré + prevt
Naghdi95 —p(p+m0) +T-L—p-22 —pCh—pf-v—d-& —b-h*+j* e =0
Smith dU =0-de+ E-dP +TdS — TdS;yr

electromagnetic energy supply rate r°¢

Pao pre =j* e +ih- 92 _p.dh 1 q.de . dd
Hutter-Minkowski pre = j*-e* + pe*'%(%) + PHoh*'%(mT*).
Naghdi83 pre =j*-e* +e* .d+h*-b+ (e*-d+h*-b— %(eoe* -e* + poh* - h*))divv
Naghdi95 pw—pnf+T -L-p-2 _—d.é&*—b-h*=0

pw + pip + pf - v + pfC —§* - e* =0

Table 2.4: Conservation of energy
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The basic form of equations for conservation of energy is same for Pao, Hutter,
Naghdi83. The expression for electromagnetic energy rate is different from one author
to other including Hutter and Naghdi83. Since Minkowski formulation is followed in
this work, the global energy balance law from Hutter and Naghdi95 are presented.
In all the equations for conservation of energy, the electromagnetic energy rate is
represented by r¢ and it is later postulated with respect to a particular formulation in
question. But in Minkowski formulation, the electromagnetic energy term is intrinsic
in the global energy balance law. In Hutter, by subjecting the global energy balance
law to invariance requirements, the pointwise form of conservation of mass, momen-
tum, angular momentum and energy are obtained. In the same way, in Naghdi95, by
subjecting the global energy balance law to invariance requirements, first the integral
equations for mass, momentum, energy and also Maxwell equations are obtained.
Then, the pointwise equations are obtained from the use of divergence, transport
and localization theorems. Comparing the Minkowski formulation from Hutter and
Naghdi95, it appears that Naghdi95 gave a holistic picture as balance laws of mechan-
ics as well as Maxwell equations are derived from its global energy balance law where
as only pointwise equations of balance laws of mechanics are obtained from Hutter.
The global energy balance law from Hutter when compared to Naghdi95 has an addi-
tional term (e,€*-€* + poh*-h*) on both left hand side as well as right hand side
of the equation. Due to this reason, the final form of reduced energy equation from
Hutter has the electromagnetic coupling effect in terms of e, p,h,m. The reduced
energy equation from Naghdi95 has the electromagnetic coupling effect in terms of
e,d, h,b. For the characterization of TEMM materials in the next chapter, all the

electromagnetic terms e, p,d, h, m, b are taken into consideration. Hence, depending
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on the state variables in question, the switching from global energy balance law of
Hutter to Naghdi95 is done. In order to check the equivalence of Minkowski formula-
tion given by Hutter and Naghdi95, the additional term as mentioned above is added
to Naghdi9b’s global energy balance law. In such a case, the integral equations of

balance laws of mechanics and Maxwell equations cannot be deduced from it.

2.5.5 Balance law for entropy

Integral form

Hutter, Naghdi83, and Naghdi95 % Sy pndv = [, p(s + &)dv — [, kda

Pointwise form

ext

Pao and Hutter m + V. (%) - p(5=) 2 0
Naghdi83 and Naghdi95 P+ V(D) - p(IE 48 = 0
Smith ds = 492 +dS;,,

Table 2.5: Balance law of entropy

Naghdi83 and Naghdi95 represented the irreversible part of second law with the
term ¢. Pao and Hutter replaced this irreversible term with an inequality sign. This
is generally known as the Classius-Duhem inequality. Although Smith presented the
second law which has the irreversible component in it, he neglected it and considered

a reversible second law for the purpose of obtaining linear constitutive equations.
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CHAPTER 3

CHARACTERIZATION OF RATE-INDEPENDENT

TEMM MATERIALS

Chapter 2 presents the governing equations of balance laws of mechanics and
Maxwell equations describing a thermo-electro-magneto-mechanical (TEMM) mate-
rial. This chapter gives overview of thermodynamic potentials and presents a detailed
derivation of constitutive equations necessary to evaluate thermodynamic potentials.

The quantities (2.1)-(2.5) are divided into four sets:

1. the fundamental potential function (a scalar function which provides a complete

description of the TEMM state)
2. independent variables (the arguments of the fundamental potential function)

3. primary dependent variables (determined by the independent variables through

derivatives of the potential function)

4. secondary dependent variables (determined algebraically from the independent

and primary dependent variables)
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The different choices of this division constitute different formulations of the same
characterization of a rate-independent TEMM material.

The potential function can be any one of the four energies, temperature, or en-
tropy [42]. If the potential is Helmholtz free energy 1, the thermomechanical indepen-
dent variables must be deformation and temperature?. Any one of the three electrical
vectors and any one of the three magnetic vectors complete the set. Therefore, there
are nine possible Helmholtz free energies associated with a TEMM material. For
example, if we choose electric field e and magnetization m to be the independent

2Consider ¢ as a function of the mechanical independent variable F, thermal independent variable

7, electrical independent variable e and magnetic independent variable m denoted by
e =¢(F,n,e,m), (3.1)

With regards to this potential, the thermal constitutive equation

Oe
— =—0 3.2
5= . (32)
which gives directly
0 = 0(F,n, & m). (3.3)
Assuming the function is invertible, one can obtain
n="n(F,0,em) (3.4)
Substituting (3.4) into (3.1), one gets
e=¢F,n=n(F,0,e,m),em), (3.5)

Therefore internal energy e can post facto be expressed as a function of temperature so as to compute

_ o8 :
c = 3 for instance.
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electromagnetic variables, then the Helmholtz free energy is
v =¢""(F,0,e,m), (3.6)

where 1) is the value of function %™ and the superscript Ffem denotes the par-
ticular choice of independent variables. For this particular potential, the primary

dependent variables are stress, entropy, polarization and magnetic field.

8¢F96m _
Po—5E =P+F T(e®p+ uhem), (3.7)
al/}FOem
ag = -,
awFGem
o Je = - p,
awFOem
° Om = /vLoh-

where p, is the mass density in the reference configuration, p = p,det F is the mass
density in the current configuration, and u, is the permeability of free space. If the
potential is Gibbs free energy, the independent variables include stress and tempera-
ture.

The different choices of this division constitute different characterizations of a

rate-independent TEMM material. To generate the possible characterizations:

1. one of stress P or deformation F is selected as the mechanical independent
variable, with the other identified as the mechanical dependent variable; (con-

jugates)

2. one of temperature 6, entropy 7, or energies €, 1, ¢, x is selected as the ther-
mal independent variable, another as the potential function and the remaining

quantities are identified as thermal dependent variables. The particular choice
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of thermal and mechanical independent variables dictates which energy is em-
ployed:

deformation F, entropy n < internal energy ¢

deformation F, temperature 6 < Helmholz free energy v

stress P, entropy 1 < enthalpy ¢

stress P, temperature 6 < Gibbs free energy

3. one of e, p or d is selected as the electrical independent variable, with the other

two considered as the electrical dependent variables;

4. one of m, h or b is selected as the magnetic independent variable, with the

other two considered as the magnetic dependent variables.

Hence from (i) — (iv) the possible characteristics of rate independent TEMM material
are grouped according to their potential functions.

The seventy-two characterizations are arranged in eight families, each sharing the
same thermomechanical independent variables, and hence the same thermodynamic
potential. For example, the formulations of Family1 share the same thermomechanical
independent variables deformation and entropy, so that the potential function must

Frdb

F'r]em’ c

Fopm - in Familyl is to distinguish

be internal energy €. The notation ¢ vy €
the nine different energy potential functions that appear in Family 1. The utility of
having seventy-two potentials is to characterize potentials based on limits/special

cases and to design experiments for full 3D characterization
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Potential functions

Familyl Family2 Family3 Family4 Family Family6 Family7 Family8

Ean'm nFspm wFOp’m 9F'L/)p7n XP7]p7n anpm ¢P0pm GPdenL
EF‘nem nFsem ,(Z)Fﬂem ngem XPnem anem ¢P6em 9P¢>em
Eanh T]Fsph wFGph erph XPnph anph ¢P€ph qubph
EFT]eh nFseh ,l/)FGeh 9F1,Z)eh XPneh aneh ¢P95h 0P(j>eh
5F'r]d'm ,nFEdm ,LpFedm aFwdm XPndm ,r]dem ¢P9dm 9P¢d'm
<€F'r]pb nFpr ¢F9pb 9F'¢pr XP'r]pb anpb ¢P9pb 9P¢pb
eFndh nFedh wFBdh gFvdh XPndh andh ¢P0dh gFPodh
aFneb 77Fa-:eb ,¢,F95b erpeb XPneb aneb ¢P05b anbeb
gFndb nFedb QJ)FOdb gFdb XP'r]db andb ¢P9db P odb

Table 3.1: Potential Functions

3.1 Background

For a set of n independent variables and corresponding conjugates, there will be
2™ potentials. Consider the case when n = 3, and the conjugate pairs are given by
(la,2a,3a) and (1b,2b,3b). There are eight possible potentials, and each potential

will yield three constitutive relations. The potentials are denoted ¢;.

e1 = ¢1(la, 2a, 3a)
g9 = €9(1a, 2a, 3b)
E3 = 83(10,, 2b, 3@)
&4 = 84(1@, 2b, 3b)
&5 = 65(1b, 2@, 3&)
g6 = €¢(1b, 2a, 3b)
g7 = €7(1b, 2b, 3a)
£g = 88(1b, 2b, 3())

Constitutive relations:
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1b =

1b =

1b =

1b =

la =

la =

la =

la =

15,58}
dla
Oey
dla
Oes
dla
Oey
dla
Oes
alb
Osg
alb
Oy
alb
Oeg
alb

2a,3a

2a,3b

2b,3a

2b,3b

2a,3a

2a,3b

2b,3a

2b,3b

2b =

2b =

20 =

20 =

2b =

2b =

2a =

2a =

Oey
92a
Oey
02a
Oes
2b
Oey
02b
Oes
02a
Osg
02a
ey
92b
Oeg
92b
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la,3a

la,3b

la,3a

la,3b

1b,3a

1b,3b

1b,3a

1b,3b

3= 25
83CL la,2a

862

3 = —2
‘ agb la,2a

3h = Oz
d3a la,2b

884

3a = —
‘ 831) la,2b

3p = Ozs5
d3a 1b,2a

886

3q = —2
¢ 83b 16,2a

3y = 27
g?” 16,2b

€8

3a = —
d3b 15,26



3.2 Unconstrained material

The conservation of energy equation in material description (2.41) is

pot =( P+ FTe@p + phem))F — V-Q + p,r® + jé + p-& + pom-h.

(3.8)
The entropy balance equation (2.42) multiplied by temperature is
: Q 00 ;
0 . - 2 Ot —p,k0 = 0. .
polll + V-Q — o = por™ = pok 0 (3.9)

Combining (3.8) and (3.9),

—poée + P+FTe®p + pheom))-F + pyif + p-¢ + pom-h + B = 0,

(3.10)
where
- _ Q 60
B=j-e — —=— — p,&8. 11
j-e 25X~ Pt (3.11)
The relation between various potential energies is as follows:
Pt = poE — pont, (3.12)
PoX = poc — P - F, (3.13)
Po® = poc — P - F — p,nb. (3.14)

Substituting (3.12) in (3.10),

—pot + (P+ FT@e®p + pheom))-¥F — pnf + €-p + ph-m+ B = 0.
(3.15)

Substituting (3.13) in (3.10),

—poX — P-F + p + e6-p + poh-m+FLFp-e6+ puoF 'LFm-h + B = 0.
(3.16)
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Substituting (3.14) in (3.10),

—pod» — PF — pnf + &-p + ph-m+F 'LFp-&+ uoF 'LFm-h + B

(3.17)
3.2.1 Family 1
Case (a) :
Consider € = ¢(F,n, p,m), one can write
elmrm . Delmpm Oelmem elmrm
T = p, F 0 j o——D ’ n. (3.18
Pof P +p8nn+paﬁp+pamm( )
Substituting (3.18) into (3.10), and rearranging gives
deglmpm _ : HeFmrm _
—(po ~(P+FT(e®p + phom)-F — (p, —pob)iy (3.19)
OF on
deltnpm . Detmnpm o
~ (p, o) b — (0 _h)-m 4+ B = 0.
(p o €) b — (po—g=—"—Hoh) m +
The constitutive equations thus have the form
Delmpm T _
P = P+F 7 '(e®p + pho®m), (3.20)
o Fnpm
e _ 9
on
Heknpm
pO ap - e’
Delmpm _
o = oha
Po—5= 7
and the residual equality is
_— Q 00
e - L by 21
A G 0 (3.21)
Case (b) :
Consider € = ¢(F,n,e,m), one can write
8€Fnem . aanem aanem . 85Fnem )
O-Fnem — o F o S o e o m. 3.22
Pof Po5F +pann+paée+pamm( )
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The corresponding Legendre transformation is

Poet ™ = pe — P - @, (3.23)

Pl ™ = pé —p-e—p-e. (3.24)

Substituting (3.24) into (3.10),

—pefmem L P+FTe®p + phom))-F + pif — p-é + pom-h + B = 0.
(3.25)
Substituting (3.22) into (3.25), and rearranging gives

aanem

on

a&.Fﬁem o B _ B .
~(po—p——(P+F (ewp + pwhom)-F — (p

— P (3.26)

Oelmem | Oetmem _.
— (po 5 +p)-e — (poa—m—uoh)~m + B = 0.

The constitutive equations thus have the form

a€Fnem o ~ B B
P = P+F  '(e®p + wh®m), (3.27)
aEFnem

on
aanem

P e
8€Fnem

o = oﬁ-
Po—— o

Case (c) :

Consider € = ¢(F, n, p,h), one can write

Fnph | Fnph Fnph Fnph .
e e e . e

F ) : D y——h. 2
5F +pann+p8pp+pah (3.28)

Do gFmph

= pO
The corresponding Legendre transformation is

poel™ = poe — pom - h, (3.29)
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Pt = poé — pom - h— ftoim - h. (3.30)
Substituting (3.30) into (3.10),

- F'nph

—pocfh 4 P+FTe®p + phom))-F + pgi + p-& — pom-h + B = 0.

(3.31)
Substituting (3.28) into (3.31), and from rearranging, one arrives at the constitutive

equations

Hetmph

Pogp = P+FTe®p + uhem), (3.32)

aanph
on

Hetmph

= 0’

aanph

Poon — T Hem

Case (d) :

Consider € = ¢(F,n,d, m), one can write

) aEFndm . 8€F17dm ) aEFndm; aEFndm )
Fndm F + po=—g + po——=—d + Po—p——, (3.33)

PoE = Po

The corresponding Legendre transformation is
Pl = pé+ e, JF Te. (~L'FTe+ FTe) +¢,F Te-Fledivv. (3.34)

Substituting (3.34) into (3.10),

-F'ndm

— ot + P+FTewd + phom))-F + pif + e-d + pm-h + B = 0.

(3.35)
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Material Description Spatial Description

coJFTe. (-L'FTe+ FTe) +¢,FTe -FTle divv €,e* - €" + ¢,e* - e*divv

toJFTh- (~LTF~Th + F*Tﬁ) + 1,F~"h - F~Th divv | poh* - h* + poh* - h*divv

Substituting (3.33) into (3.35), and from rearranging one arrives at the constitutive

equations
aandm T B _
po—gp— = PH+E” (e®d + poh®m), (3.36)
aandm o
on
8€F7ydm -
pO aa - e7
8€F17dm _
Pogm — Heb
Case (e) :

Consider € = ¢(F,n, p,b), one can write

Ogtmmh . Detmpb et | Ogtmpd -

= o F o1, . P y——b. 3.37
L mat B i~ L (3.37)

et

The corresponding Legendre transformation is
poEF ™ = poé + 1o JFTh - (~L"FTh+ F"h) + 4, F "h-F"h divv.  (3.38)
Substituting (3.38) into (3.10),

—pocf® 4 P+FTe®p + h®b))-F + pif + e p + pwh-b+ B = 0.

(3.39)
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Substituting (3.33) into (3.35), and from rearranging one arrives at the constitutive

equations
Oetmrd - _
poa—F = P+F7 (é®13 + h®b), (340)
Hetmpd _ 9,
on
Oetmpb -
o — = €,
p op
Oetmpb _
Po ob = poh

3.2.2 Family 2

Case (a) :

Consider n = n(F,e,e,m) The Legendre transformation is
P M0 = pi +p-€+p - . (3.41)
Substituting (3.41) into (3.10),

poﬁFaeme + (P—I—F_T(é®f) + Mofl®ﬁl))'F _pog' — I_gé + ,LLOI’;II'B—FB = 0.
(3.42)

The corresponding constitutive equations are

877F€em
OF
8?7Feem 1
Oe 0’
on
oe
In

Poea—m = —Nol_l-

pol =-P+FTe®p + phem)), (3.43)

pot
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Case (b) :

Consider n = n(F,e,d, m) The Legendre transformation is
po) 0 = ponf — €, JF Te- (~L'FTe + F'e) —¢,F Te-F e divv. (3.44)
Substituting (3.44) into (3.10),

poﬁFsde + (P—l—F_T(é@a + ,%fl@ﬁl))‘F —poé — e-d + Hofh-ﬁ+ B

(3.45)
The corresponding constitutive equations are
anFeem o B B B
poea—F =—P+F ' (e®d + phom)), (3.46)
anFaem B 1
oe 0
In
00_— = _77
Pl%9a = ~°
an _
o—— = —p,h.
1% om M

The terms which will get added in the Family 1’s legendre transformation will get
subracted in the Family 2’s legendre transformation. In this way one can obtain the

constitutive equations for all the cases in Family 2.

3.2.3 Family 3

For family 3 potentials, one needs to subract nf from the corresponding family 1

potentials. For example

Consider the case ¢ = ¥(F, 0,d,b) The Legendre transformation is

2ﬂFOdb —

gFndb _np, (3.47)

p0¢F9db = poéFndb — pontl — poné' (3.48)
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Substituting (3.48) in the corresponding equation for e¥7d,

Pl = pé + e, JF Te - (~LTFTe + FTé) + ¢ ,F Te-F Te divv (3.49)

+110JFTh - (~L*FTh + F_Tﬁ) + 11F " Th - F~Th divv — poif — ponf.

Substituting (3.50) into (3.10),

—popF" + P+FTe®d + h®b))-F —pmf + e-d + puh-b+ B = 0.
(3.50)

The constitutive equations are

awF@db

PooF
8¢F9db

80 - T]?
awFGdb
Po5d
HipFob ~
Po—gp Mol

=P+F "(e®d+uheb), (3.51)

:é’

3.2.4 Family 4

The terms that get added in Family 2’s legendre transformation get subracted in
Family 4’s legendre transformation.
For example, Consider the case § = 0(F, 1, e, h) The Legendre transformation for this
case is

pon0" " = pml —p-€—p & — pom - h — pornr - b, (3.52)

where as the corresponding Legendre tranformation for family 2 is

poﬁFaehg _ poﬁg +p- e + 13 e+ ,Uom . B + ,uoﬁl - h. (353)



Substituting (3.52) into (3.15),

—ponfFh 4 P+FT(e®p + whom)-F —pyp — p-é& — pom-h + B
(3.54)

The constitutive equations are

80F¢eh T _
pot—m— = (P +F"(e@p + poh@m)), (3.55)

opFveh
o n’

aer/;eh
PoWT =P,

opFveh

ol| "™ ~7  — — oﬂ1
Poll Ih 2

3.2.5 Family 5

For family 5 potentials, one needs to subract P - F from the corresponding family

1 potentials. For example
poXPndh = poandh -P- F’ (356)
pox 1 = pefmih _p.F —F . P. (3.57)

Substituting (3.57) into the corresponding equation for ef"

poxTMh = poé + e JF T (~L'FTe + F1é) + ¢ ,F Te.-FTe divv — (3.58)

uom-ﬁ—ugrh-ﬁ—P~F—F-P.

Substituting (3.59) into (3.10)

—pox"M — F-P + pyi + e-d — pom-h + F'LFd-& + F'LFm-@.59)

+ B = 0.

47

0.



The constitutive equations are

P
o = —F, 3.60
5P (3.60)
Pndh
ox _p
an
aXPndh -
““od O
NRLL
Poom  — e
The residual equality is
_ _ 9 _
F'LFd-e + F'LFm-h — %S—X — pfO + j-e = 0. (3.61)

3.2.6 Family 6

The form of Family 6’s Legendre transformation equation is same as Family 2’s.
The only difference is, the Legendre transformation of Family 6 is substituted in
(3.16) where as the one for Family 2 is substituted in (3.10). For example, Consider

the case n = n(P, x, e, b): The Legendre transformation for this case is

Pl X0 = pyiif — 1,JF " Th-(~LTF"h+F "h) — i ,F Th-F~Th divv +p-&+p &,
(3.62)

where as the corresponding tranformation for family 2 is

poitFe0 = ponf — 1o JFTh- (—~LTF Th+F Th) — yoF Th-F Th divv+p-6+p-e
(3.63)

Substituting (3.62) into(3.16),

poiitx9 — px — F-P — p-é6 + puoh-b +F'LFp-&8 + F'LFb-h + B = 0.
(3.64)
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The constitutive equations are

PN ) (3.65)

The residual equality is

Q 90

F'LFp-e + F'LFb-h — 95K P8 + j-e = 0. (3.66)

3.2.7 Family 7

Because the temperature 6, stress P, electric field €, magnetic field h are easier
to control as independent variables in characterization of thermoelastic materials, it
is usual practice to use them as the independent variables and the Gibbs free energy
as the potential. In order to get the legendre transformation for Family 7, we need
to subract P - F + p,nf from the corresponding potentials of Family 1.

For example, consider the case ¢ = ¢(P,0, e, h) The Legendre transformation is
pod’ " = p,ef Mt — P - F — pynb), (3.67)

poq'bPHeh — pOéFUEh —P. F —F. P — poﬁg — poné, (368)

Substituting (3.68) into the corresponding equation for e

—uorh-fl—uorh-l_l—P-F—F~P—poﬁ9—poné. (3.69)

i)
Q
<
N
>
)
>
|
i)
Q
™.
T
o
|
T
ol
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Substituting (3.69) into(3.10),

—pedtm _F.P — pf—p-&—pom-h+FILFp-& + uF 'LFm-h + B

(3.70)
The constitutive equations are
8¢P6€h
Po—5p = —F, (3.71)
HpPoeh -
60 - 777
8¢P96h .
Pooe  — P
HpPoeh B -
““on "
The residual equality is
_ 9 _
F'LFp-e + uF 'LFm-h — %S_X — O + j-e = 0. (3.72)

3.2.8 Family 8

The form of Family 8’s Legendre transformation equation is same as Family 4’s.
The only difference is, the Legendre transformation of Family 8 is substituted in (3.17)
where as the one for Family 4 is substituted in (3.15)For example, Consider the case

0 = 0(P,,p, h) The Legendre transformation for this case is

pon0F " = pomf — pom - h — porm - h, (3.73)

where as the corresponding legendre transformation for the Family 4 is

pon0FYP" = ponf — pom - h — poim - h. (3.74)
Substituting (3.73) into (3.17),
— o — pb—F-P+e-p—pom-h+F LFp-& + puoF 'LFm-h + B
(3.75)
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The constitutive equations are

DYrovh
pon 8P
DYrevh

o n’
3913 oph

~ _F, (3.76)

ooP v

of)——— = — [l
Pl o1 Iz

The residual equality is

Q o0

F'LFp-e + u,F'LFm-h — X Pl + j-e = 0. (3.77)

Comparing the constitutive equations given in [35], [44], the equations that involve
stress as independent variable are same; there is difference in the equations which
has strain as independent variable. In the mechanical constitutive equation that are
derived in this work, apart from the mechanical Piola-Kirchoff stress component,
there is electromagnetic stress term. Moreover, the constitutive equations in [35], [44]
are based on linear elasticity where as the most general non-linear form is presented
here. The process of obtaining these constitutive equations in [35], [44] started from
the differential form of equation for the reversible processes. Here, the integral form
of equations are presented and the differential form of equations are deduced from
them. Also, the irreversible component of the second law is considered. There is

residual inequality obtained in derivation of constitutive equations.
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3.2.9 Legendre transformations and constitutive equations

The legendre transformation and constitutive equations for all the seventy-two

potentials are given in the following tables.

Familyl-Transformation

Potential

Transformation equation eqn no. Subs eqn no.
EF”p"L EF”p"L = £ fla 3.10
gFmnem pocFMe™ — p e —p.& flb 3.10
eFnph pannph = poe — pom - h flc 3.10
gfmeh poefmeh — p e — p-&8— pom-h f1d 3.10
eFmdm poefmdm — ¢ 4 e, JF Te. (-LTF Te+F T&) 4+ ¢oF Te-F Te divv fle 3.10
e Fnpb poef Pl = p é 4 o JFTh. (~-LTFTh+ F Th) + poF~Th - F~Th divv f1f 3.10
eFndh poefndh — 5 ¢4 ¢, JF Te. (—LTFTe+ FT8) + ¢,F To-F Ta divy — pom - h — po - h flg 3.10
efmebd poefmet = p ity JF Th- (-LTF Th+F Th)+ uoF Th-F Thdivw—p-6—p-8& flh 3.10
gfmdb poefMdb — ¢ 4 e, JF Te. (~LTF Te +F~T8) + eocF Te-F~Te divv f1i 3.10

+10JF Th - (—LTF " Th+ F Th) + uoFTh - F~Th divv

Table 3.2: Family 1 - Legendre transformations
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Familyl- Constitutive Equations

Residual Equality: j-& — % g—)e( — pokH =0
potential Mechanical Thermal Electrical Magnetic
cFmpm | 05T P FT(e®p + poh@m) | D —g | p BT — g | p 05T
cfmem | p 0= I —p 4 FT(e®@p+uoh@m) | 25 =g | p, 05 = _p | p 027
cFmvh | p 0l —p FT(e@p tuohom) | 20 =g | p 00— | p 0eT N o,
cfmeh |y 0s it P P T(e@p 4 uoh@m) | gt —g | p 00T g | p 0TI
gfmdm ﬁo%:P%—F*T(é@a-&-uoB@ﬂl) %ze poaei)#:é Po%:ﬂoﬁ
Fnpb D$:P+F*T(é®p+ﬁ®5) W:G pn$:é po%:uoﬁ
eFmdh po%:PJrF_T(é@aeroﬁ@ﬁl) %:0 po%:é p(,%:fuom
efneb PU$ZP+F7T(<§®?+B®5) %ﬁeh:@ poaag—g“’?f’ po%gi"wﬁ
efmdb Po%zpﬁ‘FiT(é@a"’/‘oB@B) #_6 poﬁzé po%zﬂoﬁ
Table 3.3: Family 1 - constitutive equations
Family2-Transformation
Potential Transformation equation eqn no. Subs eqn no.
nfepm nFerm — f2a 3.10
pFeem ponFE€™O = po0 +Pp-6+p -8 f2b 3.10
nfeph poi]FEp}‘H:pnﬁ9+uorﬁ~};+,u0n%1-l_l f2c 3.10
ptieeh ponFeM0 = po0 +p -6+ P -8+ pom-h+ porn - h f2d 3.10
pledm o409 = po0 — e JF~Te. (—LTFTe 4+ F~T8) — ¢oF Ta-F Ta divv f2e 3.10
nfepd 0o FeP0 = poitf — o JF~Th - (—LTFTh + F~Th) — 4oF~Th - F~Th divv fof 3.10
nFedh 00Ty = pono — e JF"Ta. (—LTFTa+ F~T8) — ¢cF~Ta.F~Ta divv + piom - h + poinr - h f2g 3.10
nfeeb 00T 0 = poif — poJF " Th- (—LTFTh+F Th) — yoF Th-F Thdivw+p - &+p & f2h 3.10
nfedb pon T = p .90 — e, JF Te. (—LTFTe+F T8&) — ¢ocF Te-F Ta divv £2i 3.10
— 116 JF " Th - (~=LTFTh + F Th) — uoF~Th-F~Th divv

Table 3.4: Family 2 - Legendre transformations
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Family2- Constitutive Equations

Residual Equality: j- & — % g—;}( — polh =0

potential Mechanical Thermal Electrical Magnetic
nFerm | po0 " = e FTeeptuhem) | 0T o1 | 000 = s | 0217 = ok
nFeem | 02— (P FT(e@p+phom) | LT 1| gt | o T g
nteph po8 20T f;;ph =-(P+F T(e®p+ph®m)) B Zi”" =% po 2T 5;’” = - Poﬂi‘?”g;ph = pom
nFeeh | a0 2ne (PP T(e@p+pchem) | 27— 1 | pe2n g0t
pFedm poew =—(P+F T(e®@d+ poh®m)) @ =1 poew — paow = —poh
nfepb P02 — (P 4+ F T(c@p+hob) e pﬁngpb ——e | po02 ™ — 4k
nfredh pot Pge— ;d” =-(P+F T(e®d+ poh®m)) e I;Zdh =3 pot P g;d" =—e pot 20 ZE‘“L = pom
nFeed b2l — (PP Teep+heb) | 2270 -1 | pe2nf 5 | 00 o R
pFedb p09# — _P+F T(e®d+heb)) # -1 poga,,,ggdb _ pogay,ggdb —

Table 3.5: Family 2 - constitutive equations

Family3-Transformation

Table 3.6: Family 3 - Legendre transformations

Potential Transformation equation eqn no. Subs eqn no.
7,DF9PWL d}Fep"” =efmpm _ g f3a fla
poem phoem — cFnem _ 9 £3b f1b
W FOph $FOPh _ Fph _ g 3¢ fle
yFoch YFOch _ (Fneh _ g £3d f1d
Fodm pFodm _ Fndm _ g 36 fle
yFopd pFOPb — Fnpb _ g £3f fla
ngdh wFOdh — EFndh —no f3g flg
pFoed YFoeb _ (Fneb _ g £3h f1h
1/)F‘Gdb wFGdb — andb _ 770 £3i f1i
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Family3- Constitutive Equations

Residual Equality: j-& — % g—)e( — pokH =0
potential Mechanical Thermal Electrical Magnetic
wForm | T p P T(e@p 4+ poh@m) | Lt =y | p, 20T o |, 00T g
proem | p 0l _p P Teeptpohem) | QT =y | T o | p 20 R
F0Ph Po nglfph =P+F T(@®p+ poh@m) ngsph =-n Po awgsph =8 Po ngph = —pom
ploeh 81/’5126}1 =P+F T(6®@p+noh®@m) 781/’(1;:6}1 =-n | po 3”’§§Eh =-p | ro 6’”;:6’1 = —pom
pFodm | 20 p L pTegd+ pohom) | Lt =y | p, 20T g | 0000 p
»FOopb Po% —P+F T(e®p+h®b) aw;‘;pb - oo aw;‘;z)b s oo awggpb — b
P Fodh Pv% =P+F T(6®d+ poh®m) @,wgsdh _ oo aw;“gdh s o awggdh — o
Foeb p()% —P+F T(eop+hab) dwg(be S o di/zgésﬁb -5 oo Bw§:6b = uoh
podb po%ﬁdb =P+F T(@®d+pu,h®b) “”’gﬁdb =-n Po aw;‘jdb =8 Po "’”’gf‘“ = poh
Table 3.7: Family 3 - constitutive equations
Family4-Transformation
Potential Transformation equation eqn no. Subs eqn no.
gFvpm oFvrm — ¢ f4a 3.15
pFvem ponbF¥e™m = p b —p-6—p -8 fab 3.15
gEFvph ponbF¥Ph = 5 nb — pom - h — pom - h fdc 3.15
pFveh po'r]G‘Fweh =pond —p-é—p-8—pom-h— pom-h f4d 3.15
gFwdm pondFVa™ — 5 nb + e, JF T . (—LTFTe + FT&) + eocF Ta-F Ta divv fde 3.15
g vpb pon@F¥P = 5 onb + o JFTh- (~LTF"Th+ F~Th) + uoF~Th - F~Th divv faf 3.15
pFbdh ponfF¥dh — 5 o 4 e JFTe. (—LTFTa + F~T&) + ¢oF Ta.-F~T& divv — poim - h — porn - h fag 3.15
pFveb ponbF et = poné + o JFTh- (—LTF " Th+F Th) + uoF " Th-F Thdivwv—p-6—p-& fah 3.15
gFwdb pondF ¥l — 5 1o + e, JF~Te. (—LTFTe+F~T8) + ¢oF Ta-F Ta divy f4i 3.15
+16JF Th - (~LTFTh + F~Th) + uoF~Th - F~Th divv

Table 3.8: Family 4 - Legendre transformations
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Family4- Constitutive Equations

Residual Equality: j - & — % g—;}( — polh =0

potential Mechanical Thermal Electrical Magnetic
grvrm pun% =P+F T(6®p+ poh®m)) %ﬁ,pm =—7 Po’]%:é pw% = poh
prvem | 20t — (B L FT(@®p+ poh@m)) | 20U o 1| 0000 g | 007Nk
gFvrh poniaegiph =®P+F T(e®p+noh@m)) 7891;;6% = poni‘%ggph =8 ponia"f;’g’"h = —pom
gFveh poni‘”gﬁe}L =P+F T(e®p+uh®m)) 7‘”25” = *%, poni‘”gien =-p poni‘”ggeh = —pom
grvdm | 00T (p pTegadtphem) | 2050 1|, qoof it g, a0t A g
oFvpb pon 20 — (P4 FT(e@p+hob) 76951)“ =— ponif’@g;f““ =& poﬂ;"’gﬁ’pb = jioh
grvdh ﬁonLgidh =®P+F T(e®d+p,h®m)) Lgflh = poniaeggdh =8 poni‘aegédh = —pom
gFveb ponif"’f;;”eb =(P+F T(e®p+h®b)) 78"55“ =-1 ponif"’g;“b = - pnni")aggeb = poh
gFvdb ﬂoniaegﬁdb =P+F T(e@d+h®b)) 7891;::(“’ =— ﬂoniaeg;bdb = poniasggdb = poh

Table 3.9: Family 4 - constitutive equations

Family5-Transformation

Potential Transformation equation eqn no. Subs eqn no.
XP"’p"" pgxp""”” = pOEF"’P"” —P-F f5a fla
xFPnem poxFnem = p eFnem _p. g 5b f1b
XPr,ph, poXP”ph’ = poeF"ph —P.F f5¢ flc
yPreh poxPeh = p cFneh _p g 5d f1d
K Prdm poxFNdm = p cFndm _p g 50 flo
x Fnpb pox Pl = p eFnPb _p . £5¢ fla
x Pndh pox PNl = p cFndh _p . g f5e flg
yPreb pox Pl = pocFneb _p g £5h f1h
x Prdb pox P — p cFndb _p g f5i i

Table 3.10: Family 5 - Legendre transformations

o6




Family5- Constitutive Equations
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Residual Equality: A+ J-&— 2 28 — p,£0 =0

potential Mechanical Thermal Electrical Magnetic A

K Prrm pow - _F axgﬁ —0 Oaxggpm —5 po# —puoh | F-'LFp &+ uoF 'LFm - h

Prem | p XTI | XTI g | ox PN | 0T R | FTILFp- &+ uoF'LFm- b

xF et po I g % =9 Po BX;’;” =& | po BX;’M = —pom | F-'LFp &+ uoF 'LFm-h

e | g T g | ot g | o | x| FMLFp e+ uoF ' LFm -

xEPndm Po axl;;;dm = -F w =0 Po % =e Po axg;:]dm = poh F !LFd &+ puoF 'LFm-h

xFneb pﬁX;lJ"b =-F %:pb =9 po%spb —e pnaxgg”b = poh F-lLFp.-e+F 'LFb-h

yPrdh Po axggdh - _F axggdh —0 Po axggdh -5 o 6><§;d’h — —pom | F-'LFd -8+ uoF 'LFm -k

R e I I e Y i e F~ILFp &+ F LFb.

K Pndb oo Gxggdb - _F d)(g:db —9 pa%‘:db —& oo 8)(21’)"”’ = poh FILFd.&+ F 'LFb - h

Table 3.11: Family 5 - constitutive equations
Family6-Transformation

Potential Transformation equation eqn no. Subs eqn no.
nExpm nExpm — 5 f6a 3.16
nPxem ponTXE™MG = p o6 +P-6+p -8 f6b 3.16
nPxph poi]PXPhG:p,,r‘]@-&-/,toﬁl«f)-&-uoﬁl»l_i f6c 3.16
pPxeh ponPXM0 = po0 + b -6+ P8+ pom - h+ porn - b 6d 3.16
nExdm ponTXamg = 5 90 — e, JF Te. (—LTFTe+F T&) — ¢ocF Te-F Ta divy f6e 3.16
nPxpb 0o FXP0 = o0 — o JF " Th - (~LTFTh + F~Th) — uoF~Th-F~Th divv f6f 3.16
nPxdh poinPXdhg = 510 — e JF T . (—LTFTa + F~T8) — ¢F~T&.F~T& divv + pomm - h + poth - h f6g 3.16
nFxeb ponTX9 = poin0 — o JF " Th - (—LTF"Th+F Th) — uoF " Th-F Thdivw+p-6+p-8& f6h 3.16
nFxdb pon X = p 10 — e, JF Te. (—LTFTe+ FT&) — ¢cF Te-F Ta divy f6i 3.16

— 116 JF Th - (=LTF " Th+ FTh) — uoF~Th-F~Th divv

Table 3.12: Family 6 - Legendre transformations
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Family6- Constitutive Equations
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Residual Equality: A + j-& — T 5x — pokf =0
potential Mechanical Thermal Electrical Magnetic A
npxpm p(,@ay’};#:]? 8772% :% puew = - puﬁ‘%’g% = —poh F_lLFﬁ<é+qu_lLFﬂ]<B
nPxem poew —F W =1 poee’"i;# =p poeanlaj# — —poh | F'LFp-&+ puoF~'LFm-h
nPxph pOQW —F ﬂ% =1 poe""ggph - po9@% =pom | F ILFp-&+ poF 'LFm-h
pPxeh | g X _p | onfXEh 4| ponXth g po0 @1 X" _ s | FILFp-6+ u,F~'LFm-h
nPxdm poew —F a”gidm =1 poew - & poew — —poh | F-'LFd-&+ poF'LFm-h
nExpb poew =F "”g;‘pb =1 poﬂw =-& pOG%p—b = —poh F-lLFp-a+F lLFb-h
nExdh pOQ@%dh -F @1};:—“ =1 poein%dh S poﬁaj%dh = pom F~lLFd &+ uoF 'LFm - h
nPXEl | @ X g | angX g gom X | g0t X k| F-lLFp.e 4 F 'LFb-h
nPxdb poew —F 6”'};;‘% -1 poew - pOGW — —poh F-'LFd.s+F !LFb-h
Table 3.13: Family 6 - constitutive equations
Family7-Transformation
Potential Transformation equation eqn no. Subs eqn no.
pFopm popTOP™ — p cFnPm _p F _ 5 06 f7a fla
pFoem popFlem = poeFnem _p.F _ p 0o £7b f1b
¢P9ph pD¢P8ph = poanph, —P-F — ponb f7c flc
pFoeh podFOeh — pocFneh _p . F _ 5. no £7d f1d
pPodm popPOdm — p Fndm _p g _ 5 ng e fle
pFoPb podpTOPY = p cF1Pb _p.F — p 0o 7t fla
pPOdR pod POl — 5 Fndh _p . g _ 5 g 7 fig
pFoeb podF 0t — p cFneb _p g _ 5 om0 £7h f1h
$POdb podF 0 — 5 cFndb _p g _ 0o 71 i

Table 3.14: Family 7 - Legendre transformations
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Family7- Constitutive Equations

Residual Equality: A+ j-& — % g—f( — pokf =0
potential Mechanical Thermal Electrical Magnetic A
gPorm |, 00000 _ g | pellem 5’4)22’”” =5 po 20T _ k| FTlLFp-e+ uoF 'LFm-h
gPoem |, 2070 _ g | pellem | oellem o) ,,000%" _ k| FTILFp e+ uoF LFm - h
oPorh | p 00l _ g | 0elIrt ) | 00000 g | 2000 m | F'LFp & uoF~'LFm -k
oPoeh | p 0070t g | oslleh 0000 | p 20l m | FTILF -6+ puoF ILFm - b
gPodm |, 00T0M _ g | pelldm _ | 04)1;?” —e po 20000 _ b | FTLFd -6+ uoF 'LFm-h
T oPb Po 8¢§§pb =-F %55"” =-n Po %;}f”” =s po% = poh F 'LFp-e+F 'LFb-h
oPotn | p 000t g | 20ttt | 000t g | 00 2 _ ) m | FTILFA -8+ uoF'LFm -k
pPoct | 200 _ _p | el _ |, 0000 _ po 220 — k| FILFp-s+F ILFb-h
pPodb G220 g | 20TV _ pov8¢§§db = pova¢§:db = poh F~!LFd-&s+F !LFb-h
Table 3.15: Family 7 - constitutive equations
Family8-Transformation
Potential Transformation equation eqn no. Subs eqn no.
oF epm oPerm — g f8a 3.17
grPem ponfFPe™ = p mb—p-6—p-8 f8b 3.17
ogPorh ponbP P = 5 mé — om - h — pewm - h f8¢ 3.17
gPoech ponépd)eh’ =pond —p-é—p-8— pom-h— puom-h f8d 3.17
gFedm pondF?4™ = 5 16 + e, JF~Te. (—LTFTe+ F~T8) + ¢ocF Ta-F Ta divvy f8e 3.17
o opd pon@P PP = poné + o JF"Th (~LTF"Th+F~Th) + uoF~Th - F~Th divv 8f 3.17
pPodh pon@P P — p b+ e JF " To. (—-LTFTa+ FT&) + coF To-F Ta divy — pom - h — poin - h f8g 3.17
oFbed ponbF e = ponb + poJF Th - (-LTFTh+F Th) + uoF " Th-F Thdivw—p-6—p-8& f8h 3.17
P Pdb pondF?d = p 1o+ e, JFTe. (—LTFTe+F78é) + c,F Te-F Ta divv £8i 3.17

+116JF " Th - (~=LTF " Th + F~Th) + uoF~Th - F~Th divv

Table 3.16: Family 8 - Legendre transformations

29




Family8- Constitutive Equations

Residual Equality: A+j-& — % g—)e( — pokf =0

potential Mechanical Thermal Electrical Magnetic A

oPopm pon% =-F % =— pon% = pon% = poh F~!LFp &+ poF 'LFm-h
gPdem pon% =-F %ﬁem =— ponw =-p pon% = poh F !LFp &+ puoF 'LFm-h
gFPorh p(,n% = -F % :7% po'q% =e pon%p—h’ = —pom F_lLFf)»é+poF_1LFﬁl»B
gFoch pon% =-F aggfh =-1 pon% =-p pon% = —pom | FTILFp &+ uoF 'LFm - h
gPedm Poﬂ% =-F % =— ponae};# =8 Po"]% = poh F 'LFd &+ puoF 'LFm - h
P opb pan%ﬁpb =—F %{f’w :7% pon%gpb =6 pon%gpb = poh F 'LFp-e+F 'LFb-h
P Pdh pun‘”gig‘”l =-F %jdh :7% pon% =& pon% = —pom | F-'LFd- &+ pu,F 'LFm-h
oPéeb pon% =-F %jﬁeb = 7% Po"]% =-p ponael;:eb = poh F LFp-e+F 'LFb-h
P edb pon% = _F %ﬁdb = —% pon% —e pon% = puoh F lLFd -+ F LFb-h

Table 3.17: Family 8 - constitutive equations

Next, for a case of constant pressure as a restricted form of internal energy, an

attempt is made to obtain the expression for the potential.

Consider the potential e£7". The constitutive equations for this potential are

aaneh T B

Po g =P+F ' (e®p+ uh®@m), (3.78)
aaneh

po— =0,

an

aaneh -

PoW =P
aaneh -

Po— (a7~ = —HoIM.

Jh
Let P be constant Piola-Kirchoff stress tensor. Since Pressure is constant,

oP
OF
oP
on
oP
oe
oP
oh

— 0, (3.79)
— 0,
— 0,

— 0.
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Combining (3.78) and (3.79), we obtain the following conditions:
826Fneh i

PooFE R
825F77'3h 0

ple = Iy
OFOn on

aQEFneh o

€® P + fioh ® m), (3.80)

€ ® P+ ptoh ® m), (3.81)

0 mmas . T Al e p 01_1 Y ) .82
PoFae — 9ge® P+ uh®m) (3.82)
aQeFr]eh o _
——— = —(e P Jh®m). 3.83
On performing integration, one obtains
aaneh B T _
poﬁ—F =P+ F (é@f)—i-uoh@)ﬁl) (384)

Integrating (3.84) again, one gets the expression to evaluate the internal energy for a

case of constant pressure,

poct1h =P . F + / F'e®p+uhem) dF +c(neh). (385

3.3 Determination of potential from Galfenol data

Magnetization vs field, magnetization vs stress, strain vs field, strain vs stress plots
of magnetostrictive Galfenol obtained by [12] are shown in Figures (3.1),(3.2). The
3D versions of these graphs are shown in (3.3), (3.4). Considering two independent
state variables (T, h), the corresponding constitutive equations are

9 _ 9o _

Considering unidirectional magnetic field and stress, integration of (3.86) gives

o(h) = — / %m(h)dh ta (3.87)
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S(T) = / ie(T)dTﬂQ (3.88)

The plots of potential as a funtion of field and potential as a function of stress are

shown in Figures (3.5)

3.3.1 Results

magnetization vs stress at constant field
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Figure 3.1: Magnetization as a function of stress and potential [12] (a) magnetization
as a function of magnetic field at constant stress and (b) magnetizaton as a function

of stress at constant field
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strain vs magnetic field at constant stress strain vs stress at constant magnetic field
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Figure 3.2: Strain as a function of stress and potential [12] (a) strain as a function

of magnetic field at constant stress and (b) stress as a function of stress at constant

field
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3D plot of magnetization, stress and magnetic field 3D plot of magnetization, stress and magnetic field
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Figure 3.3: 3D plot of magnetization as a function of stress and potential (a) at

constant stress and (b) at constant magnetic field
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3D plot of strain, stress and magnetic field 3D plot of strain, stress and magnetic field
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Figure 3.4: 3D plot of strain as a function of stress and potential (a) at constant

magnetic field and (b) at constant stress
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3D plot of potential, stress and magnetic field

3D plot of potential, stress and magnetic field
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Figure 3.5: 3D plots of potential, stress and magnetic field (a) potential as a function

of magnetic field and (b) Potential as a function of stress
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CHAPTER 4

USE OF SMART MATERIALS IN FUEL INJECTORS

A fuel injection system consists of a pump that brings the fuel up to a high pres-
sure level of up to 2000 bar and a nozzle that injects finely dosed quantities of fuel
into the engine cylinder with the aid of a valve. There are two kinds of injection
designs that are dominant today: common rail injector and pump injector. In the
common rail fuel injector, the fuel is fed by a separate pump to the injection nozzle
via a common rail and injected via a valve. In the pump fuel injector, the injection
pump and the nozzle are integrated in a single module. The camshaft of the engine
drives the pump cylinder of the injection element via a roller rocker arm. A needle
in the valve doses the necessary quantity for injection. The valve needles in both
systems are activated by either electromagnetic or smart materials.

The characteristics of fuel injectors are [20]:

1. Injection quantity

2. Injection pressure

3. Direction of control valve

The performance evaluation parameters are [20]:

1. Injection control
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2. Injection mounting interference

3. Actuator capability in engine environment

Improving fuel injection strategies is the key to optimized engine performance. Con-
siderable research has been conducted to control the injection quantity, pressure and
profile of the fuel injection in order to reduce harmful emissions. In general, the
higher the pressure and the more accurate the dosing and time of injection, the more

efficient and less polluting the combustion [43].

4.1 Conventional Fuel Injectors

Conventionally, a fuel injector is activated through an electromagnetic solenoid
arrangement. A solenoid is an insulating conducting wire wound to form a tight heli-
cal coil. When current passes through the wire, a magnetic field is generated within
the coil in a direction parallel to the axis of the coil. When the coil is energized, the
resulting magnetic field exerts a force on a moveable ferromagnetic armature located
within the coil. This causes the armature to move a needle valve into an open po-
sition in opposition to force generated by a return spring. The force exerted on the
armature is proportional to the strength of the magnetic field; the strength of the
magnetic field depends on the number of turns of the coil and the amount of current
passing through the coil [8].

The needle movement in conventional fuel injectors depends on various factors like
spring pre-load holding the injector closed, the friction and the inertia of the needle,
fuel pressure, eddy currents in the magnetic materials, and the magnetic character-
istics of the design. The armature will not move until the magnetic force builds to a
level high enough to overcome the opposing forces. In the same way, the needle will
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not return to a closed position until the magnetic force decays to a low enough level
for the closing spring to overcome the fuel flow pressure and needle inertia. Once the
needle begins opening or closing, it may continue to accelerate until it impacts with its
respective end-stop, creating wear in the needle valve seat, needle bounce, unwanted
vibrations, and noise problems. Electromagnets waste a large amount of input power
through resistive heating losses. Electronically optimized control of the opening and
closing of the valve reduces operating switching time by 30% and makes multiple
injections possible. However, two-way solenoid valves are typically limited to digital
operation: they are either fully open or fully closed. This characteristic is beneficial
for controlling fuel quantity, and in some cases the injection timing, but is generally
poor for shaping the flowrate profile. Thus there is a need for an improved fuel in-
jector actuation method that will provide reduced noise, longer seat life, elimination
of bounce, and full actuator force applied during the entire armature stroke, where
the force is large as compared with the force resulting from fuel pressure effects. An
electronic, high speed, proportional control valve could add rate-shaping capability to
simple injection timing and fuel quantity control. This should also reduce particulate

matter and nitrogen oxides in diesel engine emissions [8].

4.2 Piezoelectric based fuel injectors

Some of the smart materials that are in use today are piezoelectric materials,
shape memory alloys, electrostrictive materials, magnetostrictive materials, electro-

rheological fluids, magneto-rheological fluids. Three types of proportional actuators
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that can be considered for the ACC fuel modulation system (piezoelectric stacks, elec-
tromagnetic shakers, and magnetostrictive actuators) are currently the most promis-
ing technologies available for proportional, high-bandwidth, linear actuation. Piezo-
electric and magnetostrictive materials are capable of driving proportional actuators
to frequencies exceeding 1kHz. Other types of materials such as shape memory alloys
and electrostrictive materials were not appropriate for this application. Commercially
available electrostrictive actuators offer no significant advantages to piezoelectric ce-
ramics and the response time for shape memory alloy actuators is far too slow for
active combustion control [43].

Use of active materials over conventional electromagnetics is preferred for a num-
ber of reasons. Piezoelectric actuation enables proportional authority over the injec-
tor’s control valve, as opposed to traditional digital (on/off) operation. Piezoelectric
actuators have the bandwidth needed for extremely fast switching. Typical switching
times are less than 100 pus with no delays, while solenoid valves are up to ten times
slower and have substantial lag due to magnetic reluctance. Active materials are ca-
pable of delivering much higher actuation forces (50,000 N). This characteristic lends
itself to opening larger valve flow sections than comparable solenoid actuators to en-
able faster needle velocities. The actuation delay is a order of magnitude shorter and
the control valve rise time is three times faster for a piezo. The spray cone angle for
the piezo driven injector is about ten degrees larger than that of the solenoid injector
system. The piezo-driven injector also reaches maximum injection rate quickly be-
cause the overall system losses are low, hence more pressure energy is converted into
fuel kinetic energy leading to higher liquid velocities. This leads to better atomiza-

tion. Another advantage of piezoelectric actuation is that the piezostack applies full

70



force during the armature travel, allowing for controlled trajectory operation. Hys-
teresis of a piezoelectric stack does not play a significant role in a pulsed application
such as a fuel injection system. Electrical energy conservation is also an advantage,
since energy can be regained from a piezoelectric load due to its capacitive nature.
Its wear proof and can be used in low temperature environment. On the whole, the
piezoelectric fuel injection system has a simple structure, compact size, good displace-
ment accuracy, low power consumption, high reliability, fuel consumption reduction
to 20%, reduced carbondioxide emissions, exact control of injection discharge rate
and injection fuel quantity, faster fuel intake, better air entrainment and faster spray
vaporization [34].

The most common form of piezoceramic used today is based on lead zirconate
titanate (PZT). Very high voltages must be applied to ensure that larger piezoelectric
crystals or ceramic blocks expand significantly. In contrast, no more than 160 V is
needed to trigger the piezo-effect in a single ceramic layer about 80 pm thick. But the
layer thickness then changes by only 1/ 10" of a micron. So, the key is to stack many
of these layers together, sinter them monolitically and connect them mechanically in
series but electrically in parallel with several hundred piezo layers stacked upon each
other so that each piezoelectric ceramic plate has the same voltage. Since the direction
of polarization is along the axial direction of piezoelectric multilayer actuator, its
displacement is equal to the sum of the displacements of all the ceramic plates and
thus effective elongation becomes 80 um. Such a stack can generate a force of about
2500 N.

There are two types of piezoelectric stack actuators; plate through and co-fired.

The plate through actuators are manufactured by stacking a large number of very thin
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(0.2 mm) piezoelectric discs, with copper shims in between each disc to act as ground
and positive electrodes to opposite sides of the actuator stack. External connectors
enabling the activation of all the actuator elements are then used to connect all of the
ground and positive electrodes. Although these actuators provide good piezoelectric
actuator properties, they require high operating voltages (500 to 1000 V) and are
very expensive to manufacture.

The co-fired multilayer technology offers the major advantage of edibility of com-
ponent design (enabling much thinner ceramic layers, a customized internal electrode
structure, and processing of a variety of forms and shapes). In this type, the elec-
trodes are incorporated while growing the crystal. These inner electrodes which are
connected in series do not completely cover the piezoceramic layer. If the ceramic
layers are 10 times thinner, then the operating voltage needed to obtain the equiv-
alent electric field strength and strain in the actuator can be reduced by a factor of
10. These kind of actuators are mass produced and hence cheaper compared to plate
through actuators.

The piezostack may be attached to a mechanical member or needle performing a
similar function as the needle in the conventional injector. When the piezostack has
a high voltage potential applied across the wafers, the piezoelectric effect causes the

stack to change dimension, thereby opening the fuel injector.

4.2.1 Failure of Piezoelectric stack actuators

Under the extreme dynamic, large signal driving conditions and hostile environ-
ment, that fuel injectors endure, life times of more than 10° cycles and long term

failure rates lower than 107° must be guaranteed. By examining the S-N diagram
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of a piezo stack, it can be seen that they fail at approximately 1000 cycles, which is
far too low for the desired application. This failure can be attributed to two factors.
PZT ceramics are brittle and hence cannot withstand tensile or shear stresses. If the
co-fired piezoelectric stack actuator is put to use for fuel injector application, then
this design could potentially fail due to tensile stresses. Also, with commercial PZT
composition in the operating temperature and pressure range, a tetragonal to mono-
clinic phase transition can occur. In monoclinic phase, shear stresses are stable in the
presence of hydrostatic pressure and due to this reason, the fuel injector employing

the piezoelectric stack actuator can undergo failure.

AWV

AWM

MMM

Figure 4.1: Cracks due to tensile stresses [1]

In co-fired stack actuators, since the inner electrodes do not completely cover the
piezoceramic layer, there are inactive insulation volumes (gaps) which are not field

accessed. In every layer of inner electrode, there is the active region and inactive
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region (gap). When the whole stack starts expanding or contracting, the active
regions expand along the actuator axis where as the inactive regions do not. Thus,
tensile stresses are induced in these inactive regions. Due to repeated cycling, in
the presence of these tensile stresses, cracks start forming in the gaps as shown in
Figure 4.1. Once the conducting electrode material enters into the crack, short-
circuiting takes place and the whole stack fails. The higher the tensile stresses, the
higher the probability of formation of uncontrolled cracks in axial direction. This
can cause either a dielectric breakdown or just separate an internal electrode from
the termination. It can be shown that the tensile stresses increase when the actuator
height increases and the inactive volume increases as well. The magnitude of the
tensile stress increases with increase in number of ceramic layers. The magnitude of
the displacement decreases as the length of the inactive part increases. One possibility
to limit this stress accumulation could be the segmentation of the actuator by gluing
chips together. Then the stress would be released partially by the glued layers. But
this solution has principal drawbacks. Chips, as well as actuators, do not have precise
mechanical dimensions when they are fired. So either all the single chips have to be
grounded before gluing, which is expensive and needs thick passive layers in the design
(i.e., stress concentration and loss of strain), or they are glued “as fired”, which results
in non-homogeneous gluing and termination layers.

At high temperatures PZT is cubic with a pervoksite structure. When the tem-
perature is lowered, the material becomes ferroelectric, with symmetry being tetrag-
onal for Ti rich compositions and rhombohedral for Zr rich compositions. The mor-
photropic phase boundary (MPB) is at x=0.48 Ti. The maximum values of dielec-

tric permittivity, electromechanical coupling factor, and piezoelectric coefficients of
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or, equivalently, S=s*T+d E
D=dT+&E

where d* denotes the transpose of d.

S i s ¥ 80 D 0|0 0 d.]|FE
S, 55 & ®: 0 D 0|6 0 4 )T
Si| |48 £ & 0 © o|@a o 445
S,/ 1o 0o o s£ 0 0|0 d, 0]T,
S;l=lo 0o 0o o0 s&5 ofd, 0 o]|F
ss/ o o o o o s&|lo o ol
D |0 0 0 0 4, 0| 0 0]JE
D,/ 0o 0 0 d, 0 0|0 & o0]|E
D] |dy dy dy 0 0 0] 0 0 SEJ;_LES_

Figure 4.2: Condensed matrix notation of linear constitutive equations [9]
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Figure 4.3: Elastoelectric matrices for tetragonal symmetry [35]
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Figure 4.4: Elastoelectric matrices for monoclinic symmetry [35]

PZT occur at room temperature on the MPB boundary. Hence, this composition
Pb(Zro 59T 45)O3 is used in commercial PZT materials. A PZT sample with x=0.48
is tetragonal just below Curie temperature and rhombohedral below room temper-
ature. From cubic phase, when the temperature is lowered, the tetragonal phase is
observed around 300 K. Below this temperature (at around 200 K), new features ap-
peared in diffractograms. They are not comparable with rhombohedral phase or with
a mixture of both tetragonal or rhombohedral phases. They correspond to monoclinic
symmetry. Thus, the so called morphotrophic phase boundary is not a boundary, but
rather a phase with monoclinic symmetry. This can be seen in Figure 4.5. At ambient
pressure, below 210 K, low temperature monoclinic phase exists. From 210 to 305
K, high temperature monoclinic phase exists; and at 305 K, transition to tetragonal
phase results. The monoclinic phase is found to be particularly stable with respect

to hydrostatic pressure.
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The elastoelectric matrices of the tetragonal symmetry as shown in Figure 4.3
clearly indicates that there is no possibility of shear strain in the presence of hydro-
static stress. On the other hand the elastoelectric matrices of the monoclinic symme-
try in Figure 4.4 indicates that there is non-zero shear strain possible in the presence
of hydrostatic stress. As PZT ceramics are brittle and cannot withstand shear mode,

failure of PZT stack actuators occurs due to monoclinic phase transition.
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Figure 4.5: Monoclinic phase at MPB [36]

4.3 Magnetostrictive based fuel injectors

Magnetostrictive actuators have advantages in terms of durability and supply
voltage. These actuators also excel in resonant applications because of large dynamic

strains and high electromechanical efficiencies. While piezoelectric materials require
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very large electric fields ( 5kV/cm) and may suffer from self-heating problems, magne-
tostrictive materials require current carrying coils to produce varying magnetic fields,

which can make the actuator bulky.

4.3.1 Principle of operation

A coil is provided for generating a magnetic field. The coil is arranged in the prox-
imity of the magnetostrictive element. When the coil is energized, electrical current
flowing through the coil induces a magnetic field which acts to realign the magnetic
domains in the magnetostrictive material. As the domains rotate, they distort the
atomic structure causing the material to grow and contract as the current is applied
and removed. This efficiently converts the electricity into motion thereby actuating
the valve. The result is proportional, positive and gives repeatable expansion in mi-
croseconds. Since the relationship between magnetic field and mechanical strain is
quadratic, positive expansion results regardless of the direction of the magnetic field.
Therefore, a preload mechanism similar to the type used with a piezoelectric stack
is employed to compress the materials. Some prestress opposing the direction of the
desired displacement of the magnetostrictive member is preferred. This is because
a slight compression by a disk or coil spring results in greater needle displacement
when the magnetizing force is applied. The prestress should not be so great as to
prevent the displacement of the magnetostrictive material. Magnetostrictive strain
and prestress should be considered in selecting the geometry of the magnetostrictive

member so as to avoid surpassing the yield stress of the materials [8].
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4.3.2 Terfenol-D based fuel injectors

Terfenol-D, an alloy of Terbium, Dysposium, and Iron exhibits giant magnetostric-
tive properties. It exhibits large magnetostriction (~2000ppm) at room temperatures.

An applied magnetic field is not the only factor that controls the magnetostrictive
properties of a Terfenol-D actuator. Terfenol-D has a Curie temperature of 380°C
which lets it provide this magnetostrictive performance from room temperature to
around 200°C (Automotive applications operating temperatures are in the range of
-40 to 150°C). There is also a lower operating temperature limit of 15°C. Lower
temperatures can be reached by adjusting the stoichiometry of the alloy. This can
be done to enable fuel-injector applications which require operation down to —40°C.
At lower frequencies, say 10 to 100 Hz, Terfenol-D actuators can provide repeatable
displacements in the range of hundreds of micrometers or even greater. This makes
them candidates for the high precision motion necessary to realize various state of the
art manufacturing processes. The material can also respond at very high frequencies,
in excess of 20 kHz, while still producing a large amount of force. Under a pre-
stress and bias condition, it is equivalent to piezoceramics low stiffness value and can
operatre under high pre-stress.

The ratio of reaction time of the Terfenol-D to the current pulses is very fast,
allowing for fuel injection on the order of 6,000 cycles per second. The high injection
speed allow for the injector to deliver precise combustion control, maximizing the
power of each piston stroke. The control leads to significant gains in fuel economy,
lowered emissions, and uniform power output from all cylinders.

One of the drawbacks of Terfenol-D is that it is brittle which limits its ability to

withstand shock loads or operate in tension.
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4.3.3 Galfenol based fuel injectors

Galfenol is an Iron-Gallium alloy, Fe;_,Ga, (0.13 < < 0.3) developed at the
Naval Surface Warfare Center [5, 6, 7]. It demonstrates moderate magnetostriction
(~350ppm) under low magnetic field (~100 Oe) and has very low hysteresis, while
demonstrating high tensile strength (~500 MPa). It has high curie temperature
(675°C), and in general machinable, ductile and corrosion resistant [26, 27, 28, 29].
Magnetostriction peaks in FeGa alloys at a volume fraction of 17 percent Gallium.

Magnetostrictive FeGa alloys have certain unique properties, which may make
them better suited than either piezoelectrics or Terfenol-D in certain actuation and
sensing applications. For example, the high tensile strength (20 times that of typical
piezoelectric and Terfenol-D) may enable the use of these alloys as actuators and
sensors in harsh and shock prone environments. The bias field required for FeGa
alloy is ten times smaller than that for Terfenol-D. Its material cost is low when
compared to Terfenol-D. Galfenol is tough and can be machined, while Terfenol-D is
a brittle material. Its mangetostriction is only a third to a quarter that of Terfenol-
D, but can operate at significantly lower drive fields. The magnetostriction can be
increased by applying preload to the material. Recent research has also shown that
Galfenol can operate in tension and compression, something no other high frequency
smart material can do [11].

Galfenol could fundamentally change the manner in which fuel injectors are made.
Recent advances suggest that these new alloys are rapidly approaching the energy
density requirements of common-rail fuel injectors, while their structural grade me-
chanical properties promise improved durability, design flexibility, ease of control, and

lower costs over the most advanced designs (piezoelectric injectors).
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CHAPTER 5

APPLICATION OF THE FRAMEWORK TO GALFENOL

Chapter 2 presents the governing equations of balance laws of mechanics and
Maxwell equations describing a TEMM material. Chapter 3 develops a framework
that results in the constitutive equations necessary to evaluate thermodynamic poten-
tials. This is part of the inverse problem. As the prospects of Galfenol in fuel injector
applications is explored in Chapter 4, Chapter 5 focuses on creating a framework that
can be used to solve a boundary value problem consisting of magnetostrictive Galfenol
through finite-element method in the spirit of [40]. In this respect, the constitutive
equations that will be used here are obtained from a potential developed from a phe-
nomenological model [12]. This is part of the direct problem. For a magnetostatic

problem, the Maxwell equations (2.17);, (2.23) reduce to

V-b=0, (5.1)

\Y Xh:jf, (52)

where j; is the prescribed current density. The equation for conservation of linear

momentum (2.19), can be rewritten by writing the electromagnetic force in terms of
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Maxwell stress tensor. The density of the material is assumed to be constant p,.
V - (T + Tur) + pof = poii, (5.3)

where £ is the specified force, u is the displacement, Tj; is the Maxwell stress

tensor which for magnetostrictive materials reduces to
1
Ty=h®b-— Euo(h-h)I. (5.4)

The constitutive equations that are presented here are adopted from [13]. The free en-
ergy has terms for magnetic anisotropy, magnetomechanical coupling, zeeman or field
energy and elastic strain energy. These energies will be expressed while idealizing the
complex domain structure of ferromagnetic materials as a system of non-interacting,
single-domain, Stoner-Wohlfarth (S-W) particles. The total free energy of the mate-
rial is

G=> "G+ TsT, (5.5)
k=1
where G* is the energy of the S-W particle in easy direction c* given by

1
Gk = éKk|mk — Ck|2 — >\k -T — MoMsmk - h. (56)

For cubic materials, the (100) or (111) tend to be the easy directions. The anisotropy
coefficient K* in each direction family is the same, thus K* = Ko for all six (100)
directions and K* = K,;; for all eight (111) directions. The magnetostriction \F
is only a function of stress and field through its dependence on m which for the

longitudinal components is

3
)\f = 5)\100m§27i = 1, 2, 3 (57)

and shear components
)\IZ = 3)\111771]{:771]5, (58)
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)\]g = 3)\111m§ml§, (59)

The magnetic orientation m* is given by

1— Ck: . (Kk>—1Bk L

m* = (K¥) (B + (K)o c), (5.11)

where the magnetic stiffness matrix K* and force vector B* are

K* =3\t =3\ Ty =311 Ts
K* = =3 Ty KF =31 =3 715 ,
=316 =3MuTs  K* — 30073

BX = (( AK* 4 poMehy SKY 4 i Mehy  SKY 4 i, Mhg )"
The constitutive equations are
b = p,(h+m(h, T)), (5.12)
S =S¢+ Spe(h,T), (5.13)
where S, is the elastic strain given by
Se = sT, (5.14)

s is the compliance coefficient, S,,. is the magnetoelastic strain. The macroscopic

magnetization and magnetostriction are the sum of the contributions of the six domain

families.
Sme = »_&F A, (5.15)
k=1
m =M, ¢m" (5.16)
k=1
The equilibrium volume fraction for each of six domains is given by
_gk
¢k = e—wm‘ (5.17)



The constants have the values of

 kph

vl 500 — 1200 /m?

oMs = 1.6.

The compatibility equations are

S = V?u,

b=V xA.

(5.18)

(5.19)

(5.20)

(5.21)

In order the magnetic potential A is unique, Coulomb guage condition is established

V-A=0.

The strain operator V* is defined as

o) o)
RN
s— — — — —
v - 0 81’2 0 81’3 O axl 8m3
0 0 2| o G|B
Ox3 | Oxa  Oxy Oxa

The divergence operator V- is
9 d o \T

The curl operator VX is

ol o]

O Tom ey

VX = 8_003 (a) _8_901
“%m; U

The operator V? in the above equation relates to a tensor component order

T = (T11, Tag, Ts, Toz, Tiz, Tha, Tsa, Ts1, Tor) "

= (Tb T27 T37 T47 T57 T67 T77 T87 Tg)’n,
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5.1 FEM formulation

The nodal unknowns of this problem are
{u7A}t = {u17u27u37A17A27A3}T‘ (525)

Weak form:
The Maxwell equations and linear momentum equation are weighted by the auxiliary

functions (variations)
{wu, wa ! = {Way s Wy Wugy WA, , WAy, WAz} - (5.26)
These functions satisfy homogeneous form of essential boundary condition
wy, =0,wa =0 on 082,00 . (5.27)

After some transformations based on integration by parts, vector analysis and the

divergence and stokes theorems, one gets

—/(szu)TadQ+/ wftdf+/w§poFdQ—/proﬁdQ =0,
0 09 0 0

- / (V x wy) hd2 + / whhdl’ + / whjrdQ = 0. (5.28)
Q oy, Q
Galerkin form:
The zero-derivative variables {u, A}T, {w,,wa}? are discretized through simple poly-
nomial expansions. These spatial polynomials, called shape functions, N(z) = >~ ; N?(x)
are predetermined and each of them is related to a node, globally numbered with the
integers A, B from 1 to n,, (number of nodal points). The coefficients of these

polynomial expansions are the nodal unknowns, u;, A; in each spatial direction i:

Nnp

{u(i]’ Ag}T = Z{usz Af}T’ (5'29)
B=1
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Nnp

Lwi = ZNB{CUZ i1 (5.30)

where superscript (q) denotes approximation for the spatial discretization and the

B

parameters ¢ are auxiliary, without clear physical meaning. Since N are spatial

functions, the previous variables are also functions of the position: u?(x) etc. In what
follows the summation over B will be implicit from the index repitition with the range
B=1,....,npp, e.g. for the first of equations, u? = NPuP. Also, since the problem is

non-linear, further variables need to be discretized. For i=1,2,3 and j= 1,....,6,
h!{=NPh?, — of=NPo?. (5.31)
Linearity of V*® V., Vx operators ensures

(Vewi) = (e)(B3,)',  (Vxwh) = () (B))". (5.32)

The FE compatibility matrices B , BY are again spatial functions, with different

values for different integration points. At each point B we have
BE, =V*NB(x), BE=vVxNB®). (5.33)

To denote the columns of the compatibility matrices, we will use the subscripts i=1,

2,3 as in BE | BE. Using (5.29) — (5.33), the weak form equation (5.28) becomes
cl | / NBtdl + / poNEFdQ) — / (BE.)'od) — / NEpihd =0,  (5.34)
a0y Q Q ‘ Q

ol / NBh;dl' — / (BE)hidQ + / N%35;dQ) = 0. (5.35)
"oy, o Q
As a next step, the residual vector is formed:

The expressions inside parenthesis in (5.34), (5.35) must vanish independently of the
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coefficients ¢?, although in the context of a non-linear solver a set of six residuals for
each node B is defined as

R” = {R/,R{}", (5.36)

with values (from now on the superscript q is removed for the sake of clarity)

(BE.,)'oPd — / (NPI)p,udl’, (5.37)

RP = / (NPI)tdl + / (NPI)p,FPdS) — /
o0y Q Q

Q

RE = / (NBI)hdl + / (NP1);8d0 — / (BEYhBdQ. (5.38)
o, Q Q

Starting from an initial guess, for each step it will be necessary to iterate the above
non-linear equations until the norm of R (vector valued in all nodes) is set to zero,
up to a fraction of the precision machine for instance, with a good enough set of
basic variables. Note that in the above equations, several values: TP u” h? are
not known at the beginning of a step, but the values from the previous one can be
used, resulting in a good convergence rate. The next stage is to build a consistent
tangent matrix. Fach entry of this matrix is obtained as the negative of the partial
node A with respect to the corresponding field variable at a generic node B. In these
residuals there are tensors defined in previous equations, for which the chain rule will
have to be used several times. From the compatibility equations (5.20), (5.21) and

the expansion equations (5.29),

S b
5F = B, 947 BE. (5.39)

j
From (5.39) and the constitutive equations (5.12), (5.13) the derivatives of the stress

tensor and magnetic field are obtained.

o =T+ Ty, (5.40)
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8uf aujB auf} ’ (541)
AT ~ 9AP T gar (5:42)
h= ~b—m(h,T), (5.43)
oh 1 ob Om(hT)
ul N E@uf ouf 7 (5.44)
oh _ 1 0b  omnT) 55

0AT ~ 11,0AF ~ QAP

orT 9T oh oh

One can evaluate the expressions uF> DAF BuF’ DAT from the constitutive equa-

tions (5.12), (5.13). These expressions are not presented here.

OTy  oh oh

I b (P Th e T, 4

8u§3 auf © K (8uf) ® (5-46)

oT oh oh

a7 = gar P~ mlzz) b el (547)
J J J

Each tangent nodal matrix (6x6) represents the interaction between the degrees of
freedom of node A (rows) and those of B (columns). Upon derivation of the residuals

in equations,

ORA oo
Ky = ——2% = [ (B&,)' =—=dQ . i=1,2.3 5.48
ij auf /Q( Vi) auf ’ W, » < ( )
ORA 5,
Kua,;, = _aA%Z = /Q(Béf)taZBdQ, i=1,2,3,7=4,5,6 (5.49)
J J
ORY. oh
Ka,. = — i — [ (B2, Y'=——d0 ' =4.56,7=1,2.3 5.50
Auj 8UJB /Q< sz') au]B ) t y9,0,7 ) ( )
OR4. oh
Kua, =—55 = /(Bés,)t—dfz. i,j =4,5,6 (5.51)
DAL o xi’ OAP

Equation(5.3) contains a dynamic term 0 wiht a second time derivative; it is a hy-
perbolic equation. If the corresponding mass matrix is lumped (diagonal), a central

difference integrator can be used. Assuming t,=0 and t,,1 = t, + At

u(tye1) — 2u(t,) +u(t,_1)
A '

88

(5.52)

u=



All unknowns are defined at time step t,, .1, while the rest of the variables at time %,
or t,_1 are known from the previous steps. From these results and equations (5.29)

evaluated at time ¢,,1,

it (NPI),
8uf_ At (5.53)

where (NPI); is the jth column of this diagonal matrix. Derivation of the residuals in
equations (5.37), (5.38) with respect to the dynamic unknowns 1 yields the non-zero

terms of the dynamic matrices:

OR:} 1
- auBZ Nz Q(NAI)i/Oo(NBI)j- (5.54)
J

M., =

The above submatrix equation is diagonal, but that does not mean that the global
dynamic matrices including all M, are also, unless a diagonalization technique is
applied. Thic could be especially useful for the inertia matrix, since it allows us to
apply a simple central difference integrator and to directly compute eigen solutions.
Once the dynamic nodal values have been computed, the spatial dynamic variables

can be approximated over the domain with polynomial expansions as in equations
il = NPiP. (5.55)

From equations (5.48) — (5.51), (5.54) the profiles of the complete matrices are

K:|:Kuu KuA:|’

Kaw Kaa
M 0
Mech __ uu
M _[ L 0}.

The total tangent matrix is automatically assembled as

K «— ¢ K + coMMech, (5.56)
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where ¢, k = 1, 2, 3, are scalars that include the values of time steps, integration

weights etc. The complete non-linear system can then be represented as

aKuw + oMy, oK, A du | | R,
_ClKAu ClKAA dA o RA .
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CHAPTER 6

CONCLUSION

6.1 Fully-coupled characterization of TEMM materials

For a rate independent process, the complete combinatorial analysis of possible
potentials and state variables that describe 3D, nonlinear, coupled, material behavior
of TEMM materials is created. In all, the combination of mechanical and thermal
state variables correspond to four basic potentials (Gibbs free fnergy, Helmholtz free
energy, enthalpy, internal energy). With the inclusion of electrical and magnetic
state variables, the combinatorial analysis results in seventy-two possible potential
functions. In order to obtain the constitutive equations for each of the seventy-two
potential functions, a detailed analysis of the possible governing equations that are
to be considered is presented. The Maxwell equations and balance laws of mechanics
are presented in both integral and pointwise form. These equations and the jump
conditions are rewritten in material description as it is suitable for solids. For second

law, balance law of entropy [1][4] is used instead of Classius-Duhem inequality. For an
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unconstrained material, with Maxwell equations, balance laws of mechanics and bal-
ance law of entropy, the constitutive equations for each of the seventy-two potentials
are derived in a systematic way and tabulated.

A case of constant pressure process is taken and the expression to evaluate the
potential is derived. From the strain-stress, strain-field, magnetization-stress, and
magnetization-field plots obtained from the experimental data, numerical integration
is carried out to obtain the plots of potential as a function of field and potential as a

function of stress.

6.2 Nonlinear 3D FEM formulation

The 3D tensorial frame work of the basic equations for magnetostrictive materials
is combined with constitutive equations that are obtained from a nonlinear phe-
nomenological model [12]. A finite element formulation for a boundary value problem

set up using these equations is given in detailed manner.

6.3 Future Work

e For the case of the constant pressure process shown in this research work, novel
approximation methods can be explored to perform integration and evaluate

the potential.

e Similarly, an approximation method can be explored to evaluate numerically the
potential as a function of stress and magnetic field from the plots of potential

vs field and potential vs stress
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e The finite element formulation laid out can be implemented using COSMOL or
FEAP or self written code. More complicated geometries close to experimental

set up of fuel injectors with Galfenol actuators can be considered as a next step.
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APPENDIX A

STATISTICAL MODEL FOR MAXWELL EQUATIONS

Magnetic field originates from current which in turn is the product of charge
density and velocity. The magnetic interactions between parallel currents depend
only on the product of the currents, neither on the charge densities nor on velocities
separately. Electrons in vacuum can travel in the order of velocity of light. Electrons
in conductors on average have a drift velocity in the order of 107* m/s. Positive and
negative ions travel in fluid at a relatively slower speed. Mesoscale electromagnetic
behavior depends only on the average current of a mesoscale collection of electrons.
The mechanism of charge transport i.e., many charges moving slowly or few charges
moving at greater speeds do not matter. If there is a current of 3.3 x 1073 A, it does
not matter whether this current is composed of high-energy electrons moving with 99
percent of the speed of light, of electrons in a metal executing nearly random thermal
motions with a slight drift in one direction, or of charged ions in solution with positive
ions moving one way, negative the other. All these charge carriers can contribute to
same amount of current. The Lorentz force equation which is mentioned later in this
section is no way restricted to small velocities, either for the charge carriers in the

wire or for a moving charge q [41].
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Figure A.1: Electrons (charged particles) and atoms (stable groups) [37]

According to statistical formulation, charged particles in the material medium
are gathered into stable groups which are termed as atoms. The location of the ith

electron in the kth atom is denoted by (Fig.1)
Xpi = Xk + Chi (A1)

where x;, is the position vector of the center of mass of the stable group and (;, the
internal coordinate within the atom. At an observation point x, the microscopic fields
&(x) and b(x) are generated by large number of atoms, each containing many electrons
(the electrons here are different from the electrons in the modern atomic theory by

J.J. Thompson). These fields are governed by Maxwell equations in aether [37].

V-b=0,
_ b
V x e+ E = O,
e,V €= Zquié(xki —x),
ki
1o V x b — 60@ = Z quiikié(a@ki — ) (A.2)
(0] at k Z )



where ¢; is the charge of the ith electron in the kth atom, q;%x; is the convective
current.
The fields at x generated by a single electron ¢;; at x;; can be calculated by solving

(8) and (8), with [37]

€,(7) = —Va[q;/(dmeo|x — xy5))],

bij(x) = Vo x [aidi;/ (4meoc?[x — xi5))]. (A.3)

The Lorentz force represents force on a charge particle in the presence of electric

and magnetic fields. For an ith electron in kth atom, this force is defined as [37]
F = q4i(& + Xy X by), (A.4)

where €;, l~)t are the total electric field and magnetic induction at the location x;;.The
total field represents sum of the intra-atomic field, inter-atomic field and external field.

While the Maxwell equations describe how electrically charged particles and ob-
jects give rise to electric and magnetic fields, the Lorentz force law completes the
picture by describing the force acting on a moving point charge in the presence of

electromagnetic fields. We define [37]
1 :
=D v =Y il Ve = §ZQkiCkiXCkia 0= G0(xr—X),

f):Z,uk(S(xk—x), E:quické(xk—x), rh:Z(,ukxick—l—uk)(S(xk—x).

k k k (A5)
Because of the presence of the delta functions, these microscopic fields fluctuate
rapidly in space. However, the physical dimension of phenomenological laws are

much larger than the size of each atom. The macroscopic field quantities are defined
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in terms of statistical average of the microscopic fields over regions that contain a

large number of atoms. In statistical mechanics, the averaging formula used [3] is

h(x,?) = (R) = / B(x: 1) f(t: 1) dr, (A.6)

where r represents the ensemble (xy, Xg, Cxi, C}a‘), and dr = dxdx;I1(dC, dC}m-) is an
element of fluxion space. The product fdr represents the probability to find h in the
fluxion space element dr.

According to this definition, the macroscopic field variables are represented [37]

as

<é> = e, <b> =b, <13> =DP; <ﬁ1> = m, <0q> =0, G) =] (A7)

The Maxwell equations expressed in terms of these macroscopic field quantities [37]

are

V-b=0,

Jb
VXG—FE—O,
e&V-e=o0—V-p,

=j+a—p+V><m. (A8)

Oe
SV xb— e,
Ho % ¢ ot

ot

The Lorentz force on a single charge particle is written. These forces add up, to
obtain the net force on the atom and then statistical averaging is done to obtain the
Lorentz force on the whole body. The balance laws of mechanics are first written
for atoms and statistical averaging is done in a similar way to get the macroscopic

equations.
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APPENDIX B

DENSITY OF GALFENOL

Density of Gallium is 5.91e3 kg/m?3, Density of Iron is 7.874e3 kg/m?3. Galfenol

used in the experiments is 18.5% Gallium and the remaining percent is Iron.

PGalfenol = 0.185 * pgaltium + 0.815 * pron = 7.51066e3 (Bl)
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