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ABSTRACT

In this paper, we illustrate the development of a catalogue
of free energies for characterizing fully coupled thermo-electro-
magneto-elastic (TEME) behavior in the nonlinear or finite-
deformation regime. In particular, we connect with classical
equilibrium thermodynamics and use its formalism as a blueprint
for rigorously and transparently introducing free energies that
employ any set of intensive or extensive quantities as indepen-
dent variables. We then use restrictions imposed by the second
law of thermodynamics to derive the state equations associated
with each of these free energies, and explore the ramifications
of invariance and angular momentum. Each free energy in our
catalogue characterizes a particular TEME process. Each pro-
cess, in turn, correlates with a particular experiment, the inde-
pendent variables being controlled and the dependent variables
being the measured responses. The research presented herein
will thus serve as a starting point for the development of finite-
strain constitutive models for multifunctional materials with fully
coupled nonlinear TEME behavior.

1 INTRODUCTION

Multifunctional materials are a broad class of engineered
materials that provide structural integrity (e.g., strength, stiff-
ness, rigidity) while simultaneously accomplishing one or more
performance-based functions (e.g., sensing, actuation) [1]. The

∗Address all correspondence to this author.

novel capabilities afforded by multifunctional materials (e.g.,
self healing, power generation, power storage, crack remedia-
tion, and vibration mitigation) promise to (i) improve existing
actuating and sensing technologies by increasing efficiency and
reducing weight, cost, energy consumption, and size, and (ii) ex-
pand the performance space of the next generation of intelligent
systems, structures, and devices [2].

Multiferroics are a relatively new class of materials that are
promising candidates for a wide variety of multifunctional appli-
cations. A distinguishing feature of multiferroics is their simul-
taneous exhibition of ferroelectricity and ferromagnetism [3–6].
Multiferroic composites, in particular, are engineered to exhibit
large magnitudes of magneto-electric coupling [6]. Magneto-
electric coupling, or the magneto-electric effect, is the appear-
ance of an electric polarization upon applying a magnetic field,
or the appearance of a magnetization upon applying an elec-
tric field. Examples of multiferroic composites with magneto-
electro coupling include magnetostrictive particles dispersed in
an electro-active polymer matrix, magnetostrictive-piezoelectric
layered composites, and magnetostrictive and piezoelectric par-
ticles dispersed in a polymer matrix [6–14]. To characterize,
model, design, and optimize novel multifunctional materials like
these (and more!) with complex coupled behavior, we contend
that the associated mathematical models must have the breadth to
accommodate three-dimensional fully coupled thermo-electro-
magneto-elastic (TEME) behavior, finite deformations (geomet-
ric nonlinearities), anisotropy, and nonlinear constitutive re-
sponse (material nonlinearities).
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The foundation for this type of mathematical framework was
presented in [15–31]. Theoretial aspects of this seminal work
have been revisited in recent years in [32–36], while practical ap-
plications to nonlinear electro-elastic solids, nonlinear magneto-
elastic solids, and electro-rheological fluids have been pursued
in [37–54]. However, certain aspects of constitutive modeling
and material characterization, enabled through the principles of
thermodynamics, remain unexplored in the literature. For in-
stance:

(i) The constitutive models do not at the outset explicitly iden-
tify the intensive-extensive work conjugates in the second
law of thermodynamics, as is customary in classical ther-
modynamics [55]. As the electromagnetic work conjugates
differ from model to model in finite-deformation TEME
(more on this in Sec. 3.4), this leads to ambiguity in spec-
ifying the fundamental energetic relationship [55] (i.e., the
functional form of the internal energy). The fundamental
energetic relationship is the starting point for proceeding
transparently and rigorously with the formalism of Legen-
dre transformations, which is used to define new free en-
ergies [55]. Often, the fundamental energetic relationship
is not explicitly specified, blurring the connection between
the characterizing free energy in the constitutive model and
the internal energy of the system.

(ii) The constitutive models are not comprehensive in that
they do not consider all possible combinations of indepen-
dent variables and corresponding thermodynamic poten-
tials. Notably absent from many finite-deformation TEME
theories are free energies that employ stress as an indepen-
dent variable. From an experimental perspective, intensive
quantities like temperature and stress are often more con-
venient to control than extensive quantities like entropy, in-
ternal energy, and strain. Hence, it is important to iden-
tify all possible free energies to provide the experimental-
ist with optimal flexibility when characterizing novel multi-
functional materials.

In this paper, we address items (i) and (ii) and, in so doing,
take the necessary first steps toward creating a unified, compre-
hensive, and thermodynamically consistent model for designing
and characterizing novel multifunctional materials with nonlin-
ear fully coupled thermo-electro-magneto-elastic response. This
paper follows Ref. [56] by the same authors.

2 THE FIRST PRINCIPLES OF THERMO-ELECTRO-
MAGNETO-MECHANICS

We adopt the following Eulerian statements of the first
principles for a polarizable, magnetizable, deformable thermo-
electro-magneto-mechanical (TEMM) continuum [21, 26]:

Gauss’s law for magnetism

divb = 0, (1a)

Faraday’s law

curle = −b ′ − curl(b× v), (1b)

Gauss’s law for electricity

divd = σ , (1c)

Ampère-Maxwell law

curlh = d ′ + curl(d× v) + σv + j, (1d)

conservation of mass

ρ̇ + ρ divv = 0, (1e)

balance of linear momentum

ρ v̇ = ρ(fm + fem) + divT, (1f)

balance of angular momentum

ρGem + T − TT = 0, (1g)

first law of thermodynamics

ρε̇ = T ·L + ρ(rt + rem) − divq. (1h)

The thermo-electro-magneto-mechanicalfields appearing in Eqs.
(1a)-(1h) are Eulerian, i.e., they are functions of the present po-
sition x of a continuum particle and time t. These fields in-
clude the present mass density ρ , velocity v, mechanically and
electromagnetically induced specific body forces f m and f em,
Cauchy stress T, electromagnetically induced specific body cou-
ple Gem, specific internal energy ε , Eulerian velocity gradient
L = gradv = ∂v/∂x , thermally and electromagnetically induced
specific energy supply rates r t and r em, and Eulerian heat flux
vector q. Additionally, e, d, h, b, σ , and j are the electric field,
electric displacement, magnetic field, magnetic induction, free
charge density, and conductive current density. Note that e, d, h,
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b, σ , and j are the electromagnetic fields acting on the deform-
ing continuum as seen in its present configuration, measured with
respect to a co-moving frame; they are often referred to as the ef-
fective electromagnetic fields in the literature [25, 29]. In Eqs.
(1a)-(1h), div() denotes the Eulerian divergence, curl() denotes
the Eulerian curl, TT denotes the transpose of T, and

u ′ =
∂ u
∂ t

, u̇ = u ′ + (u ·grad)u

denote the Eulerian and material time derivatives of an arbitrary
vector u.

The pointwise first principles (1a)-(1h) are supplemented
by two additional sets of equations. One set, discussed in Sec.
3, consists of thermodynamic state equations that characterize
a general TEMM process by relating the independent and de-
pendent variables in the first-principle equations. A second set
quantifies the electromagnetically induced body force f em, body
couple Gem, and energy supply rate r em. The expressions for f em,
Gem, and r em vary from model to model, as each model is based
on a different set of principles and postulates [21, 25]. One such
model for a polarizable, magnetizable, deformable continuum is
coined the Maxwell-Minkowski formulation [21]:

ρfem = σe + j×b + (grade)T p + μo (gradh)T m

+ d̊×b + d× b̊, (2a)

ρGem = (e⊗p − p⊗ e) + μo (h⊗m − m⊗h) , (2b)

ρrem = j · e + ρe ·
˙(
p
ρ

)
+ ρμo h ·

˙(
m
ρ

)
. (2c)

In Eqs. (2a)-(2c), ()⊗ () denotes the dyadic product of two vec-
tors,

ů = u ′ + curl(u× v) + v(divu)

is a convected rate of an arbitrary vector u, and

p = d − εoe, m =
1
μo

b − h (3)

are the electric polarization and magnetization, with εo and μo

the electric permittivity and magnetic permeability in vacuo. As
with the other electromagnetic fields, p and m act on the de-
forming continuum as seen in its present configuration, and are
measured with respect to a co-moving frame [25, 29].

3 FREE ENERGIES AND STATE EQUATIONS

In this section, we specialize to elastic materials, and
demonstrate how thermodynamic restrictions can be used to de-
velop a catalogue of free energies and thermodynamic state equa-
tions for characterizing fully coupled thermo-electro-magneto-
elastic (TEME) behavior.

3.1 The Second Law of Thermodynamics

As our particular statement of the second law of thermody-
namics, we adopt the Clausius-Duhem inequality [57, 58]

ρη̇ − ρ
r t

θ
+ div

(q
θ

)
≥ 0, (4)

where θ is the absolute temperature and η is the specific entropy.
Inequality (4) is then algebraically combined with the first law of
thermodynamics (1h) to produce the reduced Clausius-Duhem
inequality

− ε̇ +
1
ρR

P · Ḟ + θη̇ + e ·
˙(
p
ρ

)
+ μo h ·

˙(
m
ρ

)

+
1
ρ

j · e − 1
ρθ

q ·gradθ ≥ 0, (5)

where P = JTF−T is the first Piola-Kirchhoff stress, J = ρR/ρ
is the determinant of the deformation gradient F = Gradx =
∂x/∂X, ρR is the reference mass density, and X is the reference
position of a continuum particle. Analogous to classical thermo-
dynamics [55], the fundamental statement of the second law (5)
consists of contributions from conjugate pairs of thermal, elec-
trical, magnetic, and mechanical quantities. Each of these con-
jugate pairs (or work conjugates) is the product of an extensive
quantity in rate form (F, η , p/ρ , and m/ρ) and an intensive
quantity in non-rate form (P, θ , e, and h).

3.2 The Fundamental or All-Extensive Formulation

For the remainder of the paper, we consider material re-
sponse that is path independent, reversible, and rate insensitive.
This implies that the deformation is elastic and fully recoverable,
and the material only undergoes non-dissipative processes (e.g.,
no electrical or magnetic hysteresis). It follows, then, that these
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non-dissipative thermo-electro-magneto-elastic processes can be
described through the principles of classical equilibrium thermo-
dynamics [55]. Analogous to classical equilibrium thermody-
namics, the fundamental energy potential is the internal energy
ε , which employs extensive quantities as its independent vari-
ables [55]. Hence, for the fundamental formulation, the natural
independent variables are the extensive quantities F, η , p/ρ , and
m/ρ appearing as rates in inequality (5), and the natural depen-
dent variables are the conjugate intensive quantities P, θ , e, and
h. To respect the reversible elastic nature of the processes, we
demand that the material response depends on the independent
variables F, η , p/ρ , and m/ρ only through their values at the
present time t, not their histories, rates, or gradients, i.e.,

P = P̆
(

F,η ,
p
ρ
,
m
ρ

)
, θ = θ̆

(
F,η ,

p
ρ
,
m
ρ

)
,

e = ĕ
(

F,η ,
p
ρ
,
m
ρ

)
, h = h̆

(
F,η ,

p
ρ
,
m
ρ

)
, (6)

ε = ε̆
(

F,η ,
p
ρ
,
m
ρ

)
,

where the superscript breve is used to distinguish a function
from its value. Equation (6)5 is referred to as the fundamen-
tal energetic relationship [55]. Use of the chain rule on ε =
ε̆ (F,η ,p/ρ ,m/ρ) gives

ε̇ =
∂ ε̆
∂F

· Ḟ +
∂ ε̆
∂η

η̇ +
∂ ε̆

∂
(

p
ρ

) ·
˙(
p
ρ

)
+

∂ ε̆

∂
(

m
ρ

) ·
˙(
m
ρ

)
, (7)

and substitution of this result into the second law (5) leads to

(
1
ρR

P − ∂ ε̆
∂F

)
· Ḟ +

(
θ − ∂ ε̆

∂η

)
η̇

+

⎛
⎝e− ∂ ε̆

∂
(

p
ρ

)
⎞
⎠ ·

˙(
p
ρ

)
+

⎛
⎝μo h− ∂ ε̆

∂
(

m
ρ

)
⎞
⎠ ·

˙(
m
ρ

)
(8)

+
1
ρ

j · e − 1
ρθ

q ·gradθ ≥ 0.

As is customary, we demand that the second law hold for all
processes [57]. Since the coefficients of the rates (Ḟ, η̇ , etc.) in
inequality (8) are independent of the rates themselves, and the
rates may be varied independently and are arbitrary, it follows

that the coefficients vanish, i.e.,

P = ρR

∂ ε̆
∂F

, θ =
∂ ε̆
∂η

,

e =
∂ ε̆

∂
(

p
ρ

) , h =
1
μo

∂ ε̆

∂
(

m
ρ

) . (9)

What remains of inequality (8), i.e.,

j · e − 1
θ

q ·gradθ ≥ 0,

is called the residual dissipation inequality, which, in this case,
quantifies losses due to Joule heating and heat conduction, both
transport processes. We collectively coin the set of extensive in-
dependent variables {F, η , p/ρ , m/ρ}, the thermodynamic en-
ergy potential ε = ε̆ (F,η ,p/ρ ,m/ρ), and the state equations (9)
the fundamental formulation (or, alternatively, the internal en-
ergy formulation or the all-extensive formulation).

3.2.1 Polarization and Magnetization as Indepen-
dent Variables. From an experimental point of view, it is
more practical to control the electric polarization p and magne-
tization m than the polarization per unit mass p/ρ and magneti-
zation per unit mass m/ρ . Hence, we modify the all-extensive
formulation presented in Sec. 3.2 to accommodate the use of p
and m as the electromagnetic independent variables.

We proceed by using the chain rule

˙(
p
ρ

)
=

1
ρ

ṗ +
1
ρ
(
F−T · Ḟ)p,

˙(
m
ρ

)
=

1
ρ

ṁ +
1
ρ
(
F−T · Ḟ)m (10)

to rewrite the fundamental form (5) of the second law:

− ε̇ +

[
1
ρR

P +
1
ρ
(e ·p + μo h ·m)F−T

]
· Ḟ + θη̇

+
1
ρ

e · ṗ +
μo

ρ
h · ṁ +

1
ρ

j · e − 1
ρθ

q ·gradθ ≥ 0, (11)

4 Copyright c© 2013 by ASME



where we have used

˙(
1
ρ

)
=

1
ρ

divv, divv = trL = tr(ḞF−1) = F−T · Ḟ, (12)

and F−1 denotes the inverse of F. In the modified form (11)
of the second law, polarization p and magnetization m appear
as rates (i.e., natural independent variables). Accordingly, the
thermodynamic potential ε is a function of F, η , p, and m, i.e.,
ε = ε̄ (F,η ,p,m); a superscript bar is used instead of a super-
script breve (cf. ε = ε̆ (F,η ,p/ρ ,m/ρ) and ε = ε̄ (F,η ,p,m)) to
signify a different internal energy function with the same value.
Use of the chain rule gives

ε̇ =
∂ ε̄
∂F

· Ḟ +
∂ ε̄
∂η

η̇ +
∂ ε̄
∂p

· ṗ +
∂ ε̄
∂m

· ṁ, (13)

and substitution of this result into (11), coupled with the use of
standard arguments (refer to Sec. 3.2), leads to

P = ρR

∂ ε̄
∂F

− J (e ·p+ μo h ·m)F−T, θ =
∂ ε̄
∂η

,

e = ρ
∂ ε̄
∂p

, h =
ρ
μo

∂ ε̄
∂m

. (14)

We collectively coin the set of independent variables
{F, η , p, m}, the thermodynamic energy potential
ε = ε̄ (F,η ,p,m), and the state equations (14) the deformation-
entropy-polarization-magnetization formulation.

3.3 Other Energetic Formulations

From an experimental perspective, process characterization
is most straightforwardly accomplished when the independent
and dependent variables synchronize with those one wishes to
control and measure, respectively. In experiments, it is of-
ten more practical to control intensive quantities than extensive
quantities; for example, temperature is easier to control than en-
tropy or internal energy. To change an independent variable in
the thermodynamic energy potential from extensive to intensive,
a new free energy is defined through a Legendre transforma-
tion [55], i.e.,

new free energy = internal energy − (intensive)(extensive).

Following this blueprint, we present in Tabs. 1-4 a catalogue
of the fifteen possible Legendre transformations of the internal

energy. These Legendre transformations are divided into four
families, each employing a common set of thermomechanical in-
dependent variables: Family 1, deformation and entropy (both
extensive); Family 2, deformation (extensive) and temperature
(intensive); Family 3, stress (intensive) and entropy (extensive);
and Family 4, stress and temperature (both intensive). For the
sake of brevity, we employ the compact notation E (a)(b)(c)(d)

for the Legendre-transformed energy potentials, where the su-
perscript letters (a), (b), (c), and (d) are placeholders for an ap-
propriate mechanical, thermal, electrical, and magnetic indepen-
dent variable, respectively. This compact notation denotes that
the Legendre-transformed energy potential E Fθ pm, for instance,
is a function of deformation F, temperature θ , electric polariza-
tion per unit mass p/ρ , and magnetization per unit mass m/ρ .
Note that the Legendre transformations in Tabs. 1-4 provide ex-
plicit connections between the new free energies E (a)(b)(c)(d) and
the primitive internal energy ε of the system, whose evolution is
governed by the first law of thermodynamics (1h).

To derive the state equations associated with the fifteen free
energies shown in Tabs. 1-4, we apply the standard Coleman-
Noll procedure [57], as was done in Sec. 3.2. 1 As an example,
we consider the all-intensive formulation.

3.3.1 The All-Intensive Formulation. The indepen-
dent variables for this formulation are the intensive quantities P,
θ , e, and h. The corresponding thermodynamic energy poten-
tial EPθeh is defined as the Legendre transformation of internal
energy ε = ε̆ (F,η ,p/ρ ,m/ρ) with respect to the mechanical,
thermal, electrical, and magnetic variables, from F to P, η to θ ,
p/ρ to e, and m/ρ to h,

E Pθeh = ε − 1
ρR

P ·F − θη − e · p
ρ
− μo h · m

ρ
. (15)

Taking the rate of (15) gives

ĖPθeh = ε̇ − 1
ρR

P · Ḟ − 1
ρR

F · Ṗ − θη̇ − ηθ̇ − e ·
˙(
p
ρ

)

− p
ρ
· ė − μo h ·

˙(
m
ρ

)
− μo

m
ρ
· ḣ, (16)

1For formulations that employ either the electric polarization per unit mass
p/ρ or the magnetization per unit mass m/ρ as an independent variable, as was
the case with the all-extensive formulation in Sec. 3.2, p or m can post facto
be introduced as the independent variable using the procedure described in Sec.
3.2.1.
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TABLE 1. ENERGY FAMILY 1

IVs Energy Legendre Transformation

F, η , p/ρ , m/ρ ε̆ N/A

F, η , e, m/ρ EFηem EFηem = ε̆ − e · p
ρ

F, η , p/ρ , h EFη ph EFη ph = ε̆ − μo h · m
ρ

F, η , e, h EFηeh EFηeh = ε̆ − e · p
ρ

− μo h · m
ρ

TABLE 2. ENERGY FAMILY 2

IVs Energy Legendre Transformation

F, θ , p/ρ , m/ρ EFθ pm EFθ pm = ε̆ − θ η

F, θ , e, m/ρ EFθem EFθem = ε̆ − θ η − e · p
ρ

F, θ , p/ρ , h EFθ ph EFθ ph = ε̆ − θ η − μo h · m
ρ

F, θ , e, h EFθeh EFθeh = ε̆ − θ η − e · p
ρ

− μo h · m
ρ

TABLE 3. ENERGY FAMILY 3

IVs Energy Legendre Transformation

P, η , p/ρ , m/ρ EPη pm EPη pm = ε̆ − 1
ρR

P ·F

P, η , e, m/ρ EPηem EPηem = ε̆ − 1
ρR

P ·F − e · p
ρ

P, η , p/ρ , h EPη ph EPη ph = ε̆ − 1
ρR

P ·F − μo h · m
ρ

P, η , e, h EPηeh EPηeh = ε̆ − 1
ρR

P ·F − e · p
ρ

− μo h · m
ρ

and substitution of this result into (5) yields

− ĖPθeh − 1
ρR

F · Ṗ − ηθ̇ − p
ρ
· ė − μo

m
ρ
· ḣ (17)

+
1
ρ

j · e − 1
ρθ

q ·gradθ ≥ 0,

a statement of the second law for this formulation. Use of stan-
dard arguments (refer to Sec. 3.2) leads to the state equations
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TABLE 4. ENERGY FAMILY 4

IVs Energy Legendre Transformation

P, θ , p/ρ , m/ρ EPθ pm EPθ pm = ε̆ − 1
ρR

P ·F − θ η

P, θ , e, m/ρ EPθem EPθem = ε̆ − 1
ρR

P ·F − θ η − e · p
ρ

P, θ , p/ρ , h EPθ ph EPθ ph = ε̆ − 1
ρR

P ·F − θ η − μo h · m
ρ

P, θ , e, h EPθeh EPθeh = ε̆ − 1
ρR

P ·F − θ η − e · p
ρ

− μo h · m
ρ

F = −ρR

∂E Pθeh

∂P
, η = −∂E Pθeh

∂θ
,

p = −ρ
∂E Pθeh

∂e
, m = − ρ

μo

∂E Pθeh

∂h
. (18)

We collectively coin the set of intensive independent variables
{P, θ , e, h}, the thermodynamic energy potential E Pθeh, and the
state equations (18) the all-intensive formulation.

3.4 Secondary Electromagnetic Quantities as Inde-
pendent Variables

Recall that the internal energy ε = ε̆ (F,η ,p/ρ ,m/ρ) is a
function of the extensive quantities F, η , p/ρ , and m/ρ . Ther-
modynamic energy potentials employing one or more of the in-
tensive quantities P, θ , e, and h as independent variables were
introduced using Legendre transformations of ε (refer to Tabs.
1-4). These intensive-extensive conjugate pairs or work conju-
gates (i.e., P and F, θ and η , e and p/ρ , h and m/ρ) appearing
in the fundamental form of the second law of thermodynamics
(5) are dictated by the choice (2c) of the electromagnetic energy
rem. It follows, then, that different choices of r em (of which there
are many options available in the literature; see, for instance,
[21, 26, 29, 32]) lead to different sets of electromagnetic conju-
gate pairs in finite-deformation TEMM. For instance, the electric
displacement d and magnetic induction b frequently appear as
parts of a conjugate pair (see, for example, [30, 32, 38, 43, 47]).

The formalism of Legendre transformations presented in
Sec. 3.3, however, does not enable us to use d and b as the elec-
tromagnetic independent variables in a free energy since they are
not part of the electromagnetic work conjugates employed in this
paper (i.e., e and p/ρ , h and m/ρ). We thus coin d and b sec-

ondary or auxiliary quantities. To overcome this limitation of
conventional Legendre transformations and use d and b as in-
dependent variables, we posit a Legendre-type transformation of
ε = ε̄ (F,η ,p,m), i.e.,

EFηdb = ε +
εo

2ρ
e · e + μo

2ρ
h ·h, (19)

whose rate form is

ĖFηdb = ε̇ +
1

2ρ
(εoe · e+ μoh ·h)F−T · Ḟ

+
1
ρ
(
εoe · ė+ μoh · ḣ) , (20)

where we have used (12). Note that the last two terms on the
right-hand side of the Legendre-type transformation (19) rep-
resent electrical and magnetic energies, respectively, in vacuo.
Substitution of (20) into the modified second law (11), and sub-
sequent use of the algebraic relationships in (3), leads to

− ĖFηdb +

[
1
ρR

P +
1
ρ

(
e ·d+h ·b− 1

2
εo e · e

− 1
2

μo h ·h
)

F−T
]
· Ḟ + θη̇ +

1
ρ

e · ḋ +
1
ρ

h · ḃ (21)

+
1
ρ

j · e − 1
ρθ

q ·gradθ ≥ 0,

the second law statement for this formulation. Note that d and
b appear as rates in inequality (21), i.e., as natural independent
variables. Use of standard arguments (refer to Sec. 3.2) leads to
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TABLE 5. ENERGY FAMILY 5

IVs Energy Legendre-Type Transformation

F, η , d, m EFηdm EFηdm = ε̄ +
εo

2ρ
e · e

F, η , d, h EFηdh EFηdh = ε̄ +
εo

2ρ
e · e − μo

ρ
h ·m

F, η , p, b EFη pb EFη pb = ε̄ +
μo

2ρ
h ·h

F, η , e, b EFηeb EFηeb = ε̄ − 1
ρ

e ·p +
μo

2ρ
h ·h

F, η , d, b EFηdb EFηdb = ε̄ +
εo

2ρ
e · e +

μo

2ρ
h ·h

TABLE 6. ENERGY FAMILY 6

IVs Energy Legendre-Type Transformation

F, θ , d, m EFθdm EFθdm = ε̄ − θ η +
εo

2ρ
e · e

F, θ , d, h EFθdh EFθdh = ε̄ − θ η +
εo

2ρ
e · e − μo

ρ
h ·m

F, θ , p, b EFθ pb EFθ pb = ε̄ − θ η +
μo

2ρ
h ·h

F, θ , e, b EFθeb EFθeb = ε̄ − θ η − 1
ρ

e ·p +
μo

2ρ
h ·h

F, θ , d, b EFθdb EFθdb = ε̄ − θ η +
εo

2ρ
e · e +

μo

2ρ
h ·h

the state equations

P = ρR
∂EFηdb

∂F
− J

(
e ·d+h ·b− 1

2
εo e · e− 1

2
μo h ·h

)
F−T,

θ =
∂EFηdb

∂η
, e = ρ

∂EFηdb

∂d
, (22)

h = ρ
∂EFηdb

∂b
.

We collectively coin the set of independent variables
{F, η , d, b}, the thermodynamic energy potential E Fηdb,

and the state equations (22) the deformation-entropy-electric
displacement-magnetic induction formulation.

Other Legendre-type transformations of the internal energy
are shown in Tables 5 and 6.

4 RAMIFICATIONS OF INVARIANCE AND ANGULAR
MOMENTUM

In addition to satisfying the restrictions imposed by the sec-
ond law of thermodynamics (refer to Sec. 3), the constitutive
equations for a particular material must satisfy invariance re-
quirements. In this paper, we emphasize a particular notion of in-
variance, known as invariance under superposed rigid body mo-
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tions (SRBMs). Invariance under SRBMs demands that if two
motions of a body composed of the same material differ only
by a SRBM (i.e., translation and rotation), the constitutive re-
sponse generated in the two motions must be the same, apart
from orientation. In this section, we demonstrate the procedure
for imposing invariance and angular momentum restrictions on
the state equations corresponding to a particular potential E Fθeh.
The state equations corresponding to this potential are derived
in [56]:

P = ρR

∂EFθeh

∂F
, η = − ∂EFθeh

∂θ
,

p = −ρ
∂EFθeh

∂e
, m = − ρ

μo

∂EFθeh

∂h
. (23)

In order to satisfy invariance under SRBMs, the free energy
EFθeh must depend on F, e, and h as follows:

EFθeh (F,θ ,e,h) = ẼFθeh (C,θ ,ee,he) , (24)

where

C = FTF, ee = FTe, he = FTh (25)

are the right Cauchy-Green deformation tensor, referential elec-
tric field, and referential magnetic field, respectively. It follows
that

T = 2ρF
∂ ẼFθeh

∂C
FT − p⊗ e − μo m⊗h, η = − ∂ ẼFθeh

∂θ
,

p = −ρ F
∂ ẼFθeh

∂ee
, m = − ρ

μo
F

∂ ẼFθeh

∂he
. (26)

Equations (26) are the frame-invariant forms of the state equa-
tions (23). It can be verified that the Cauchy stress (26)1 satisfies
balance of angular momentum (1g).

5 CONCLUSION

In this paper, we presented a catalogue of free ener-
gies for characterizing nonlinear thermo-electro-magneto-elastic
(TEME) behavior. To ensure a transparent development of this
catalogue, the fundamental energetic relationship (i.e., internal
energy as a function of extensive variables) was identified at the
outset, as is customary in classical thermodynamics. From this
thermodynamically consistent starting point, the formalism of

Legendre transformations was employed to derive free energies
that employed various sets of intensive quantities as the inde-
pendent variables. Parallel to this, novel Legendre-type trans-
formations were introduced that allowed previously inaccessible
secondary electromagnetic quantities to be used as independent
variables in a free energy. Restrictions imposed by the second
law of thermodynamics were used to derive the state equations
associated with each of the free energies in our catalogue, and
the ramifications of invariance and angular momentum were ex-
plored.

Each free energy in our catalogue characterizes a particular
TEME process. Each process, in turn, correlates with a partic-
ular experiment, the independent variables being controlled and
the dependent variables being the measured responses. Hence,
our framework provides a promising platform for the future de-
velopment of finite-strain constitutive models for multifunctional
materials with fully coupled nonlinear TEME behavior. We also
envision the research in this paper potentially leading to the
development of a new inverse design paradigm, whereby tar-
geted macroscopic-scale performance properties are converted
into conditions on the free energy through the state equations,
thereby providing a “recipe” for microscopic-scale material de-
sign and fabrication.
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