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Abstract
On active bending structures, the actuation direction and the excitation field direction are not the
same. Simple lumped parameter models are inadequate to describe the relationship between
output displacement and input field. In this paper, a dynamic distributed parameter model is
presented to describe the system dynamics of a galfenol bending actuator. To consider
nonlinearities and hysteresis in bending, a nonlinear magnetomechanical model is developed to
characterize the hysteretic magnetostriction generated by the galfenol layer. A dynamic real-time
control strategy is proposed to compensate for hysteresis. A nonlinear inverse filter is constructed
to linearize the hysteresis based on the proposed distributed parameter model. In order to
increase the calculation efficiency, a new iteration method is proposed to calculate the filter. The
iteration stepsize of the input field can be adaptively updated according to the inverting error.
Simulation results show that significant enhancement of convergence efficiency can be achieved
by using the proposed method compared with the existing fixed step size method. Experiments
have been conducted to verify the real-time control strategy.
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1. Introduction

Magnetostrictive materials exhibit dimensional changes in
response to magnetic fields and change magnetic state in
response to external stress. These effects have been used to
develop actuators and sensors for industrial [1, 2], aerospace
[3, 4] and manufacturing applications [5]. Galfenol is a
structural magnetostrictive material which is suitable for load-
carrying transducers operating under combined loads [6, 7].

However, the inherent hysteresis of galfenol hinders its
effective use, especially for dynamic applications. Model
based control design is an effective way to address the non-
linear hysteresis problem for magnetostrictive transducers,

especially when the system is operating in highly hysteretic
and nonlinear regimes. Model based control can be roughly
subdivided into two categories [8], nonlinear control designs
and linear control designs employing nonlinear inverse filters.
Examples of the former can be found in [9–11]. Usually the
control signal is obtained by analyzing the global stability of
the system [10], or by optimizing a nonlinear cost function
considering hysteresis [11], without constructing the inverse
filter. The latter method consists of constructing an inverse
filter to linearize the transducer behavior in the manner illu-
strated in figure 1. If the filter is sufficiently accurate, then the
transducer output can be designed almost the same with the
reference input. In this paper, we address the dynamic real-
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time control problem of a galfenol bending actuator by
employing the concept of inverse compensation.

Different models have been used to implement inverse
compensators. The filters are developed by using neural net-
work identification [12] or the Prandtl–Ishlinskii hysteresis
operator [13]. In [14–17], the inverse compensators are
implemented with Preisach operators. The nonmonotonic
hysteresis problem is solved in [14] by using inverse com-
pensation. The nonmonotonic hysteresis is modeled by
combining a monotonic Preisach hysteresis operator and a
quadratic operator. In [17], the persistent excitation conditions
for parameter convergence are discussed and the recursive
identification technique is developed to construct the com-
pensator. Another fixed point and closest-match algorithm is
presented in [16] to approximately invert the operator. These
methods are suitable for applications when only hysteresis is
involved. Other approaches have been attempted to incorpo-
rate the influence of system dynamics [18–20]. In [18], a
robust ¥H controller is developed for a piezoelectric stack
actuator. In [19, 20], hysteresis compensations for piezo-
electric actuators are discussed. System dynamics are mod-
eled as lumped parameter second order differential equations.
These simplifications can be adopted for applications in
which the actuation direction and the excitation field direction
are consistent, for example, a linear actuation stage. However,
for applications like bending actuators, these models are
inadequate to describe the relationship between output dis-
placement and input field, even if the model does incorporate
hysteresis effects. In this case a distributed parameter model
together with the hysteretic constitutive model needs to be
developed. This paper aims to develop a framework which
can be used for displacement control of bending structures.

Numerical iteration needs to be used to calculate the
inverse hysteretic model. This has been reported in
[8, 16, 21]. Fixed stepsize of input field is selected to
numerically calculate the inverse. It is demonstrated in [21]
that the computational speed of the compensator depends on
the iteration stepsize of input field. Higher convergence speed
can be achieved by using larger stepsize. However, the con-
trol accuracy cannot be guaranteed if the stepsize is too large.
Ideally, the compensator would be constructed by relating the
stepsize with the inversion error so that the stepsize can be
adaptively adjusted according to the varying error. In this
paper, we develop a distributed parameter model which can
be used for displacement control of bending structures. Also,
we propose a new iteration method to calculate the com-
pensator, in which the iteration stepsize of input field can be
adaptively updated according to the inverting error. The paper
is organized as follows: distributed parameter modeling is
discussed in section 2. Controller design, simulation and

experimental results are discussed in section 3. The conclu-
sions are given in section 4.

2. Governing equations of the actuator

2.1. Bending actuator

The bending actuator consisting of a galfenol layer bonded to
a nonmagnetic substrate is clamped at one end, while the
other end is free. Figure 2 shows the geometry and the
coordinates of the actuator. The x–y plane is set on the neutral
plane. The structural bending theory is employed to develop
the distributed parameter model. Here, we assume that the
out-of-plane strain of the actuator is negligible and the Pois-
son’s ratio of the materials is not taken into account since the
length of the actuator is much greater than the width. The x-
axis normal stress in the galfenol element and substrate layers
can be expressed as
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where sg denotes the normal stress and κ denotes the
curvature of the actuator, E is the Young’s modulus, z is the
distance from the neutral line, and λ is the linear
magnetostriction generated by the galfenol layer. The
subscript g and s represent the galfenol layer and the
substrate layer, respectively. The total bending moment is
calculated by integrating the differential moment due to stress
over the cross-sectional area:
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where w x t,( ) is the vertical deflection of the neutral plane.
The total shear force Q can be calculated as the differential

Figure 1. Concept of inverse compensation.

Figure 2. Geometry and coordinate system of the bending actuator.
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variation of the bending moment along the x-axis
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Application of force balancing gives the governing
equation for the bending actuator
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where c̃ is the Rayleigh damping coefficient, ρ is the material
density, and A is the cross area. Substitution of(3) into(4)
gives
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Equation (5) is the distributed parameter model of the
bending actuator. It is seen from(5) that the position of the
neutral plane h needs to be known to determine the dynamic
response. A detailed calculation of h is presented in [22]. The
influence of the adhesive layer is not considered; the neutral
axis can be determined by the following equation,
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saturation magnetization. In order to approximate the solution
of(5), the Galerkin method is employed to discretize the
model. The domain of the actuator is divided into N elements,
each having two nodes. The Hermite cubic interpolation
functions are used to discretize equation (5),
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where le denotes the element length and ξ is the local spatial
coordinate varying from −1 to 1. After discretization, the
globally assembled finite element equation is written as
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It is seen from(8) that the load vector is a function of the
magnetostriction of the galfenol layer. In order to quantify the
inherent hysteresis and the material nonlinearities of the
actuator, a constitutive model of galfenol is required. It can be
seen from equation (8) that the structural model is linear once
the magnetostriction is known. This means that more nodes in
the FEM discretization will not result in more calculation
burden. Most of the burden will be from the nonlinear con-
stitutive model.

2.2. Constitutive equations

An energy averaged model for the galfenol layer is considered
[23]. It is assumed that the material is composed of regions of
uniform magnetization Ms called domains [24]. Domain
rotation is modeled with the Stoner–Wohlfarth (SW)
approximation [25]. The orientation m of an SW particle can
be calculated from its Gibbs free energy G which has natural
dependence on the applied quantities magnetic field and
stress. The internal energy of a magnetic domain with
orientation = m m mm 1 2 3[ ] is due to the magnetocrystalline
anisotropy energy, which can be expressed as [23],

= + +U K m m m m m mm , 94 1
2

2
2

2
2

3
2

3
2

1
2( )( ) ( )

where K4 is the fourth-order, cubic anisotropy constant. The
Gibbs free energy is [23],

l m= - -G U MH T m T m H, , 100 s( ) ( ) · · ( )

where Ms is the saturation magnetization, T is the six-element
stress vector with the first three components the longitudinal
stresses and the last three the shear stresses, H is the magnetic
field andl l= m( ) is the magnetostriction. It is seen that the
local equilibrium domain orientations need to be determined
to calculate the magnetostriction. The derivatives of the Gibbs
energy with respect to m give the equilibria. Further details
can be found in [23]. The magnetization hysteron has six
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possible field and stress dependent magnetic states. The
microscopic magnetization depends on which branch of the
hysteron the domain orientation resides. The hysteron is
constructed by imposing an energy threshold Et that needs to
be met before the domain switches from the current branch to
the branch that minimizes the energy. This threshold comes
from material imperfections and anisotropy energy barriers.
Material imperfections also induce an interaction field Hi

which is superimposed on the applied field. The magnetiza-
tion of the hysteron M̄ in the direction ud is

=M M m u . 11ds¯ · ( )

The magnetostriction of the hysteron l̄ in the direction ud is

l l l l
l l l
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The subscripts of ud andl represent the different components
of the vectors. Thus the magnetization and magnetostriction
of the hysteron can be written as
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To calculate the macroscopic magnetization and mag-
netostriction, stochastic homogenization [26] is employed
with the probability density v E H,t i( ), which has the combi-
nation of Et and Hi at a material point. Thus the macroscopic
magnetization and magnetostriction can be calculated through
stochastic homogenization of the interaction field and
threshold energy [27],
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In equation (14) we assume that the energy threshold and
the interaction field are exponentially and normally dis-
tributed as quantified by the densities [26],

= s-v E e , 15E
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H

i
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where se and sh are positive model parameters. The physical
interpretation of the stochastic distributed functions has been
discussed in [26]. The density functions reflect the physical
observation that the interaction field and coercive energy
decay as a function of distance and guarantees that integration
against the piecewise linear hysteron yields finite magnetiza-
tion values. Thermal effects neglected and the temperature is
assumed to be constant (room temperature) in the application.
It is seen that the macroscopic magnetostriction is field and
stress dependent. In order to simplify the inverse of the
constitutive equation, we assume the variation of the internal
stress of galfenol is small and T is constant when
inverting(14).

It has been stated that the model is capable of describing
flexible structure dynamics. To demonstrate the performance

of the model, the frequency response of the bending actuator
has been studied. The magnetic field is calculated with
Ampere’s law

=H NI , 17c˜ ( )

where Ñ is the number of turns per length of coil and Ic is the
excitation current. Tip displacement of the bending actuator is
calculated by the combination of equations (8), (14) and (17).
Comparisons of simulation results and experimental measure-
ments are illustrated in figure 3. It is seen that the model can
effectively predict the frequency response of the bending
actuator. Predictions of the first three natural frequencies are
shown in table 1. The measurements consisted of a swept sine
frequency response with a frequency step of 10 Hz. We have
used the same discrete frequency in the simulation to
calculate the frequency response. The limited sampling
frequency in the simulation is the main reason that contributes
to the small error in table 1.

3. Real-time control strategy

3.1. Framework of the inverse compensation

This section presents a real-time control strategy for the
bending actuator using inverse compensation. The strategy is
illustrated in figure 4. The desired tracking signal y tr ( ) is
applied to the compensator which consists of the inverse of
the structural model and the constitutive model. The output
from the compensator is the magnetic field u t( ). This magn-
etic field will be calibrated into excitation current using the

Figure 3. Measured and calculated frequency response of the
bending actuator.

Table 1. Natural frequencies associated with different mode shapes.

Predictions (Hz) Measurements (Hz)

First mode 626 630
Second mode 4041 4030
Third mode 11640 11570
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relationship = -I HNc
1˜ . The control voltage can be obtained

by using an amplifier model, which will be discussed next. It
should be noted that the trajectory y tr ( ) does not need to be
known in advance. The inverse of the structural model is
simple since equation (8) is a linear differential equation.
When y tr ( ) is applied to the control system, we assume the

magnetostriction λ calculated from the inverse of(8) is *y t( ).
In the following context we take *y t( ) as the reference input
to invert the constitutive model.

To construct the compensator, numerical iterations are
needed to invert the nonlinear constitutive equation (14). It is
demonstrated in [21] that the computational speed of the
inverse compensator depends on the size of the step taken
when advancing the forward model with larger steps
increasing the speed while decreasing the accuracy. Smaller
stepsize leads to higher accuracy but is computationally
slower. Here we propose a variable stepsize method to
develop the compensator. The stepsize can be adaptively
adjusted according to the inverting error, as illustrated in
figure 5.

The control signal can be written as

* y= -u t P y t e t, , 181( )( ) ˜ ( ) ( ( )) ( )

where P denotes the physical plant, -P 1˜ is the inverse, and ψ

is the stepsize function. It should be noted that the existence
of -P 1˜ is guaranteed by the piecewise monotonicity of
hysteresis [28]. For a given magnetostriction, if the control
input is either nondecreasing or nonincreasing on some time
interval, the inverse of the hysteretic model can always be
identified. It is seen that the control signal is a function of
both the desired input and the iteration stepsize. The stepsize
is a function of inverting error e t( ). By using(18), the output

Figure 4. Scheme of the compensation.

Figure 5. Scheme of the variable stepsize method.

Figure 6. Flow chart of the variable stepsize method.

Figure 7. Value distributions of sigmoid function.

Figure 8. Flow chart for inverting the constitutive model.
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of the actuator can be written as

* y

=

= -

y t P u t

P P y t e t, . 191( )( )
( ) ( ( ))

˜ ( ) ( ( )) ( )

If the physical system P can be ideally characterized by the
direct model Pm and Pm can be inverted correctly, the desired
trajectory *y t( ) can be completely tracked by using the
scheme in figure 5.

The sigmoid function is employed to update the stepsize
adaptively [29]. The function is defined as a function of the
inverting error e(t)

y
b

a
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+ -
-t

e t

2

1 exp
, 20( )
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where α and β are the two design parameters to adjust the
shape and the clipping value of the saturation curve. Thus, the
set of equations that define the variable stepsize method are
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where J t( ) is the mean square error (MSE) of the inverting
error e t( ) and m t( ) is the stepsize in the iteration, *u t( ) is the
intermediate variable defined to invert the compensator. The
algorithm employed to numerically approximate equation (21)

Figure 9. Simulation results for fixed stepsize method. (a) Input reference, (b) Mean value of iterations NE using different stepsize, (c)
Maximum error eM and mean error eE using different stepsize, (d) Mean value of error eE versus mean value of iteration NE.
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is shown in figure 6. It can be seen that the stepsize is updated
via the sigmoid function y t( ), which is a function of the MSE
of e t( ). Thus the stepsize can be adaptively updated according
to the change of e t( ).

The value distributions of the sigmoid function are illu-
strated in figure 7. The function is bounded, real-valued and
monotonic. The value distributions are located at the first and
third quadrant, with a pair of horizontal asymptotes. The sign
of the function is consistent with the sign of e(t), which means
that the intermediate variable u*(t) is increased if the error is
positive and decreased if the error is negative. The mono-
tonicity of the function ensures that a value of u*(t) can
always be found for a given error bound Δe. Moreover, the
existence of asymptotes in figure 7 guarantees that the func-
tion values will be maintained at large values if the errors are
relatively large (see (e2, ψ2), (e3, ψ3) in figure 7). If the error
is decreased, u*(t) will decrease accordingly (see (e1, ψ1)). In
this way, the stepsize has been set up to be adaptively updated
according to the change of e(t). Efficiency can be increased

while the inversion accuracy can be guaranteed as well.
Equation (21) needs to be discretized in the time domain for
the control design. The discrete form of(21) can be written as

* *

* m
m by
y b a b

= - +

+ = +
=
= + - -
= -

-

⎧

⎨
⎪⎪⎪

⎩
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( ) ( ) · ( )

( )

where k denotes the discrete sampling sequence number. In
(22) the MSE of the inversion error e(t) is replaced with the
product of the two adjacent discrete data. In order to solve
(22), the control signal u k( ) needs to be known. This can be
obtained by solving the inverse of constitutive equation (14).
It is discussed in section 2 that in the magnetization process
the energy threshold Et needs to be reached before the domain
switches from the current orientation to the orientation that
minimizes the local Gibbs energy. Also, the interaction field
Hi needs to be calculated due to the material imperfections.
These two parameters need to be recorded when the domains
start to switch due to the applied field. For convenience, here
we define a state variable kX( ) as

*

=

- - -
´

⎡⎣k E k H k u k

u k y k y k

X E , , ,

1 , 1 , 1 , 23
rt i 1

T

( )( ) ( ) ( ) ( )

( ) ¯ ( ) ( )] ( )

where -y k 1¯ ( ) represents the result calculated from the
direct model Pm and ´E k H kE , rt i 1( ( ) ( )) is the column vector
that records the magnetization state of the magnetic domains.
The magnetization state includes two parameters, the energy
threshold Et and the interaction field Hi, which are
statistically distributed parameters. The change of the two
parameters is recorded with the column vector

´E k H kE , rt i 1( ( ) ( )) . The length of the vector r depends on
the number of gauss quadrature integration points used for
equation (14). The total length of kX( ) is +r 4. The flow
chart for inverting(14) is illustrated in figure 8.

Figure 10. Reference input in the comparative simulations.

Figure 11. Prediction errors of the two methods, (a) fixed stepsize method, (b) the proposed variable stepsize method.
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The output from the flow chart is the magnetic field u t( ).
Equation (17) shows the field-current relationship. The con-
trol voltage V t( ) can be obtained by solving the first order
model of the amplifier

= +V t L
I t

t
R I t

d

d
, 24c

c
c c( ) ( ) ( ) ( )

where Lc is the inductance of the coil and Rc is the resistance.
Thus the control voltage can be obtained when the magnetic
field u t( ) is known from the flow chart (figure 8). In figure 8,
the first step is to initialize the parameter vector X. The
element definition of X is given by equation (23). When the
desired magnetostriction *y k( ) is given, the inverting error is
calculated in the second step followed by a termination
condition. If the termination condition is not satisfied, the
value of magnetic field variable u k( ) will be adjusted
according to the adaptively updated procedure (see
equation (22)) and the updated u k( ) will be substituted

into(14) to generate a new magnetostriction, until the
termination condition is satisfied. Then u k( ) will be taken
as the right inverting result and accordingly the control
voltage can be obtained by the following equations

=

=
- -
D

+

I k
u k

N

V k L
I k I k

t
R I k

,

1
, 25

c

c
c c

c c

( ) ( )
˜

( ) ( ) ( ) ( ) ( )

where Dt denotes the sampling period.

3.2. Simulation results

The efficiency of the proposed strategy compared with the
existing method is discussed in this section. The reference
input is the tip displacement *y td ( ) and the output is the dis-
placement y t¯ ( ) calculated from the direct model Pm. It should
be noted that since our model is developed in the distributed
parameter form, the tip displacement is not the only option
that we could choose. Any other point on the flexible struc-
ture can be selected. It has been discussed that the control
accuracy is related with the iteration stepsize. In order to
compare the performance of the two methods, an optimal
stepsize needs to be determined to run the fixed stepsize
simulation. We choose different stepsize ranging from 5 to
100 Am−1 and the simulation results are illustrated in
figure 9. The input is a quasi-static sinusoidal signal
(figure 9(a)). In order to calculate the accuracy, the maximum
error, the mean error and the mean value of iterations are
defined as follow

*= -e y k y k , 26R d ( ) ¯ ( ) ( )

*= -e y k y kMAX , 27M d( )( ) ¯ ( ) ( )

*å
=

-
e

y k y k

N
, 28E

k d

l

( )( ) ¯ ( )
( )

Figure 12. Output response compared with the reference input for
stepsize 30 A/m.

Figure 13. Iteration numbers of the two methods, (a) Fixed stepsize method, (b) The proposed variable stepsize method.
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where eM is the maximum error, eE is the mean error, NE is the
mean value of iterations, Nk denotes the iteration numbers
used in figure 8 to satisfy the termination condition for one
*y k( ), and Nl is the total number of sampling points. It can be
seen from figure 9(b) that the iteration number decreases with
increasing the stepsize. The slope of the decrease is large
when the stepsize is small. After the stepsize reaches
50 Am−1, the change of the iteration numbers tends to be
stable and the steady state value is around 3.2. From
figure 9(c) it is seen that the change of the error is
approximately linear respect to the stepsize. Figure 9(d)
shows that small error eE can be obtained by increasing the
iteration numbers. To achieve the balance between the
efficiency and the accuracy, we choose 30 Am−1 as the
optimal value in the fixed stepsize iteration. Here we use
30 Am−1 to run the tracking control simulation for the
reference input in figure 9(a). The output response is
compared with the reference input and the result is shown
in figure 12. It is seen that the reference input can be tracked
with small errors and these errors are consistent with the
values illustrated in figure 9(c). A comparison is made
between the proposed variable stepsize method and a fixed
stepsize. The reference input is chosen as the ac excitation
signal illustrated in figure 10. The simulation results are
shown in figures 11 and 13. In order to compare the
magnitude of the errors, we have taken the errors in figure 11
as the absolute values. Calibrated reference and errors in the
time domain are plotted in figure 14.

Figure 11 shows the prediction errors of the two meth-
ods. It is seen from the figure that the error eR increases with
increasing the magnitude of the reference. This is because of
the termination condition we used in the flow chart (figure 8).
If the reference magnitude is monotonically increasing, the
control voltage will increase continuously until the current

Figure 14. Calibrated reference and error in the time domain.

Figure 15. Convergence of stepsize according to the change of
tracking error.

Figure 16. Simulation results by constraining the iteration numbers NE for the fixed stepsize method, (a) NE is constrained approximately the
same with the iterations in figures 13(b) and (b) the prediction error eR calculated with constrained iterations.
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output is larger than the input. Usually this will result in
relatively larger errors for larger reference magnitude. How-
ever, this termination condition gives much faster conv-
ergence speed than setting up a single tolerance. From
figure 11 the errors calculated with the variable stepsize
method are slightly smaller than the fixed stepsize method,
but the differences are very small. This means that if we use
an optimized value for the fixed stepsize method (30 Am−1 in
our case), both of the methods can achieve good accuracy.
However, the iteration efficiency will be different.

Figure 13 compares the iteration efficiencies of the two
methods where the iteration number Nk is plotted as a function
of time. This is because for each discrete sampling reference
*y k( ), numerical iteration Nk is needed to determine the
corresponding u k( ) (see figure 8). Thus, Nk can be plotted as a
function of time when the inverting process is completed. The
maximum value of Nk in figure 13(a) exceeds 1000 and the
maximum value of Nk in figure 13(b) is less than 180. The
mean values NE for the two plots are 4.8307 and 2.4553,
which means the iteration efficiency has been increased by
49.17% by using our method. Comparing figures 11 and 13
we can find out that both of the methods can achieve good
control accuracy. However, the proposed variable stepsize
method supplies much higher efficiency than the existing
fixed stepsize method.

Convergence of the stepsize has been plotted in figure 15.
We have selected several reference points (see legends in

figure 15) from the continuous signal to demonstrate the
convergence process. It is seen from the figure that the
stepsize can be adaptively updated according to the change
error eR. If eR is relatively large, the stepsize is maintained at a
large value. This is helpful to accelerate the convergence
speed. When the error goes smaller, the change of the stepsize
becomes faster and iteration can be terminated rapidly. These
changings are guaranteed by the properties of sigmoid func-
tion we discussed in section 3.1.

In figures 11 and 13 we have constrained the stepsize to
be the optimal value in the fixed stepsize simulation to
investigate the efficiency. Next we are going to investigate the
prediction error for the two methods when the iteration effi-
ciency is constrained. In order to constrain the efficiency, we
increase the stepsize value starting from 30 Am−1 until the
iteration number NE for the fixed stepsize simulation is
approximately the same with the proposed variable stepsize
method. The simulation results are illustrated in figure 16.
The mean value of iterations NE in figure 16(a) is 2.4567,
which is approximately the same with the value in
figure 13(b). It can be seen from figure 16(a) that maximum
value of Nk exceeds 220. The mean error eE and the maximum
error eM in figure 16(b) are 34.3% and 35.1% larger than the
values in figure 11(b), which means that if the same efficiency
is required for the computation, the proposed method can
achieve higher inversion accuracy.

3.3. Experimental results

The experimental setup comprises a dSpace ControlDesk
system, a displacement laser sensor, a linear current amplifier
and a galfenol bending actuator. The experimental procedure
is illustrated in figure 17. A control voltage is generated from
the dSpace system and the excitation current is applied to the

Figure 17. Experimental procedure and diagram of the bending actuator.

Table 2. Dimension and elastic properties of the bending actuator.

Parameter Galfenol Substrate (Brass)

Thickness 0.381 mm 0.3 mm
Length 25 mm 25 mm
Young’s modulus 6×1010 N m−1 ´1.1 1011 N m−1
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bending actuator via the amplifier. The output displacement is
measured with a laser sensor.

The magnetic path of the bending actuator is composed
of laminated electric steel and the thicknesses of galfenol and
substrate are very thin (0.381 mm). Eddy currents are thus
considered to be negligible. The dimensions and the elastic
properties of the bending actuator are illustrated in table 2. In
order to set up the controller, model parameters need to be
identified with quasi-static measurement. A 0.1 Hz sinusoidal
signal is used to excite the actuator and the measurement
result is illustrated in figure 18. The model prediction is
calculated by using equations (8) and (14) and the linear field-
current relationship(17). It can be seen from figure 18 that a
full hysteresis loop is attained in the quasi-static measure-
ment. The hysteresis and the saturation can be described by
the direct model. Since there is no bias magnetic field, the tip
displacement of the actuator demonstrates the butterfly-type
nonlinearity. The model parameters identified from figure 18
are illustrated in table 3. These parameters are used to set up
the real-time controller.

In order to run the comparative experiments, a well-tuned
PID controller has been developed to compare the perfor-
mance with the proposed controller. The step response test is
performed first to identify the controller parameters.

Experimental results are shown in figure 19 and the para-
meters are identified as follows, Kp = 0.05, Ki = 2.5 and
Kd = 0.0002. It is seen in figure 19 that the steady state error
is almost zero and there is no obvious overshoot. The settling
time is about 0.05 s. Control experiments of the proposed
controller are conducted at 0.1 and 10 Hz. The tracking results
are illustrated in figures 18–20. It should be noted that the
control framework we have developed in this paper is based
on the distributed parameter model, which offers the advan-
tage that displacement at any point of the bending structure
can be studied, not just the tip displacement. In figure 22, we
have used the proposed controller to control both the tip
displacement and the displacement midway from the tip,
without changing parameters. It can be seen from figure 20
that the reference trajectory can be precisely tracked by using
the inverse strategy. The nonlinearity is observed from the
control voltage in figures 20 and 21(c). This shows that the
nonlinearity of the bending actuator can be described by the
inverse compensator and the control voltage demonstrates the

Figure 20. Control voltage of the quasi-static tracking.

Figure 19. Step response of the PID controller.
Figure 18. Quasi-static validation of the bending actuator.

Table 3. Parameters used in the constitutive model.

Symbol Parameters Values

se Parameter of the energy thresh-
old distribution

0.4 kJ m−3

sh Parameter of the interaction
field distribution

3000 A m−1

T0 Magnitude of the bias stress 21.3 MPa
K4 Anisotropy constant 20 kJ m−3

Ms Saturation magnetization ´1.1698 106 A m−1

l100 Magnetostriction in < >100
direction

2/3×260 ppm

l111 Magnetostriction in < >111
direction

2/3×(−20) ppm
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nonlinearity that can be used to compensate the nonlinearity
of galfenol. Thus the linear relationship of reference input and
output can be obtained.

The error in figure 21(b) is larger than the quasi-static
result. This is because the control parameters are identified
from the quasi-static measurements. Model parameters could
vary in the dynamic case due to system dynamics. We assume
in equation (14) that the variation of the internal stress of
galfenol is small and the stress is constant when invert-
ing(14). In the dynamic case the influence of the internal
stress is one of the reasons contributed to the error in
figure 21(b). Tracking results of the PID controller at 10 Hz
are illustrated in figure 21(d). It is seen that there is a phase
lag between the reference and the output displacement. This is
the main reason contributed to the errors of the PID controller.

Experimental results of tracking a more complicated
trajectory for the proposed controller is illustrated in
figure 23. The trajectory is generated with a random source
generator. It is seen that the trajectory can be tracked with
good accuracy. Errors around sharp corners are relatively
larger than the smooth regions. This is because of the

termination condition used in the controller. At sharp corners,
the change of the reference is no longer monotonous, which
means the sign of the stepsize might be changed in the
iteration process and the error will be larger than the mono-
tonous region. This is consistent with the errors observed in
the simulation results (figure 14). The errors around the
reference peaks are relatively larger than those located in the
monotonous regions.

4. Conclusions

This paper addresses the dynamic modeling of a galfenol
bending actuator and the real-time control strategy. System
dynamics is modeled with a distributed parameter equation
instead of a lumped parameter model. In order to increase
the computation efficiency, a variable stepsize method has
been proposed to adaptively update the stepsize in the itera-
tion. Simulation results show that the iteration efficiency has
been increased by 49.17% by using the method. If the effi-
ciencies of the two methods are constrained approximately the

Figure 21. Tracking results of 10 Hz sinusoidal reference for different controllers, (a) control result for the proposed controller, (b) control
error of the proposed controller, (c) control voltage of the proposed controller, (d) control result for the PID controller.
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same, it is shown that the tracking error of the fixed stepsize
method is higher than the variable stepsize over 30%. The
real-time control experiments are conducted at different fre-
quencies. It is shown that the reference input can be tracked by
using the strategy. Tracking error is larger at higher frequency.
The assumption that the variation of the internal stress of
galfenol is small is one of the reasons contributed to the error.
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Figure 22. Tracking results of the quasi-static trajectory of the proposed controller.

Figure 23. Tracking results of the trajectory generated with a random source generator, (a) reference input and physical measurement, (b)
control error.
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