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Abstract

Magnetostrictive materials convert energy between the mechanical and magnetic

domains. They deform in response to applied magnetic fields and change their mag-

netic state when stressed. Because these processes are due to moment realignments,

magnetostrictive materials are well suited for sensing and actuation mechanisms with

a bandwidth of a few kHz. Significant research has been focused on two magnetostric-

tive alloys: Terfenol-D (TbxDy1−xFe1.9−2.0, 0.27 ≤ x ≤ 0.3) and Galfenol (Fe1−xGax,

0.15 ≤ x ≤ 0.3), for their ability to produce large magnetostrictive strains at moder-

ate fields. Both alloys have strengths and weaknesses. Terfenol-D has higher energy

density and magnetomechanical coupling factor than Galfenol but it is brittle and

suffers from poor machinability. Galfenol on the other hand has excellent structural

properties. It can be machined, welded, and extruded into complex shapes for use in

transducers with 3D functionality. However, Galfenol exhibits lower energy density

(almost ten times smaller than Terfenol-D) and lower magnetomechanical coupling.

When employing magnetostrictive materials in transducers, advanced modeling

tools are necessary both at the constitutive and system level. At the constitutive

level these materials exhibit nonlinear and hysteretic coupling between the magnetic

and mechanical domains while at the system level electromagnetic coupling is present.

This work addresses the development of a unified modeling framework to serve as a

design tool for 3D, dynamic magnetostrictive transducers. Maxwell’s equations for
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electromagnetics and Navier’s equations for mechanical systems are formulated in

weak form and coupled using a generic constitutive law. The overall system is ap-

proximated hierarchically; first, piecewise linearization is used to describe quasistatic

responses and perform magnetic bias calculations. A linear dynamic solution with

piezomagnetic coefficients computed at the bias point describes the system dynam-

ics for moderate inputs. Dynamic responses at large input fields and stresses are

described through an implicit dynamic solution method based on the trapezoidal

rule. The framework simultaneously describes the effect of magneto-structural dy-

namics, flux leakage, eddy currents, and transducer geometry. Being a fully coupled

formulation, it yields system level input-output relationships and is applicable to

both actuators and sensors. The framework is unified in the sense that it works for

any magnetostrictive material as long as a differentiable 3D constitutive law for the

material is supplied.

An anhysteretic 3D discrete energy-averaged constitutive law for Galfenol is incor-

porated into the framework to describe the dynamic performance of Galfenol trans-

ducers. A parameter identification algorithm is developed which takes as input the

1D magnetomechanical characterization curves of the material and calculates the 3D

constitutive model parameters. The parameter identification algorithm is integrated

with the finite element model such that the only inputs required are the constitu-

tive parameters for passive materials (permeability, conductivity, Young’s modulus

etc.), the transducer geometry, and the 1D magnetostrictive material characterization

curves. A case study on a Galfenol unimorph actuator illustrates the model’s ability

to accurately describe the dynamic mechanical and magnetic response of Galfenol

transducers.
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A new energy-averaged model is formulated for Terfenol-D based on an implicit

definition of domain volume fractions and a weighted anisotropy energy. The model

is shown to simultaneously describe the strain-field and magnetization-stress behav-

ior of a large number of Terfenol-D alloys including the composition commercially

produced by Etrema Products, Inc. The model is formulated in a form which is

straightforward to implement in the unified finite element framework. Since most

Terfenol-D transducers are axisymmetric, the 3D unified model is reduced to a 2D

axisymmetric form to exploit the axisymmetric geometry of the transducer. A case

study on a hydraulically amplified Terfenol-D mount actuator illustrates the frame-

work’s ability to model Terfenol-D transducers. Apart from describing the dynamic

electrical and mechanical response of the actuator, a parametric study on the trans-

ducer reveals key design parameters which can be changed to achieve over 100 %

performance improvement compared to the current design.
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Chapter 1: INTRODUCTION

1.1 Overview of Magnetostrictive Materials

Magnetostrictive materials exhibit coupling between the magnetic and mechanical

energy domains. They undergo lattice deformation in response to applied magnetic

fields and change their magnetic state when stressed. Short response times (in the

millisecond range) combined with resolutions in the order of microstrains make these

materials well-suited to precision sensing and actuation mechanisms.

Magnetostriction was first found in ferromagnetic materials such as nickel, cobalt,

iron and their alloys. However, magnetostrictive strains were restricted to below

100 ppm. Early applications such as use of magnetostrictive nickel-based alloys in

SONAR transducers during the first world war generated interest in magnetostrictive

material research. However, emergence of piezoelectric ceramic materials capable of

delivering higher frequency bandwidths and strains of the order of 1000 ppm in the

late 1940s [60] shifted the focus away from magnetostrictive materials.

In the 1970s researchers at the US Naval Ordinance Laboratory first synthesized a

new alloy of terbium, iron and dysprosium called Terfenol-D which is capable of gener-

ating giant strains (≈ 1600 ppm) with moderate applied magnetic fields (200 kA/m)

at room temperature. The emergence of Terfenol-D (Ter - terbium, fe - iron, D-
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dysprosium, and nol - Naval Ordinance Laboratory) generated renewed interest in

magnetostrictive transducer technologies. Being brittle and thus difficult to machine,

Terfenol-D is available only in 1D geometries such as rods or bars. As a result, trans-

ducers employing Terfenol-D primarily have one-dimensional functionality. Further,

because of its low tensile strength, Terfenol-D transducers are restricted to work in

the compressive regime only.

To overcome the poor machinability and low tensile strength of Terfenol-D, a new

magnetostrictive alloy of iron and gallium (Galfenol) was developed at the Naval

Ordinance Laboratory. Galfenol uniquely combines moderate magnetostriction (≈

250 ppm) at very low fields (≈ 10 kA/m) and steel-like structural properties. It can

be machined, rolled, welded, and extruded into intricate shapes opening up avenues

for magnetostrictive transducers with 3D functionality. Galfenol is capable of with-

standing tension, compression, and shock loads making it uniquely well-suited for

application in sensors and actuators which can perform structural functions as well.

The response of magnetostrictive materials is nonlinear and history dependent.

The main nonlinearities are due to anisotropy and saturation. However, magne-

tostrictive transducers are often biased and operated with moderate inputs so that

the resulting material response can be approximated by a set of linear simultaneous

equations known as the linear piezomagnetic relationships:

∆B = µT∆H + d∆T, (1.1)

∆S = dT∆H + sH∆T. (1.2)

Here B and H are the magnetic flux density and magnetic field vectors while S and

T are mechanical stress and strain tensors. µT is the differential permeablity at

constant stress while sH is the compliance at constant stress. The matrix d relates
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strain to field and flux density to stress. Together µT, sH, and d are known as the

piezomagnetic coefficients. Although these equations are a considerably simplified

representation of the actual processes, they are helpful in defining figures of merit of

a magnetostrictive material. For example, free strain is defined as the strain induced

in the sample at constant stress (S = dT∆H). This gives a measure of the maximum

stroke that can be obtained from a sample. Similarly, blocked stress is the stress

generated in the rod at zero strain (sH−1
d∆H), and gives a measure of the maximum

force that the sample can generate.

Another feature of these materials which can be understood through the linear

piezomagnetic equations is the ∆E effect or change in apparent Young’s modulus of

the material. The compliance under magnetically blocked condition (∆B = 0) can

be obtained as sH − dT
(
µT
)−1

d. Thus the compliance in the magnetically blocked

condition reduces by dT
(
µT
)−1

d.

Assuming linear material behavior, the energy density of the material is given by

half the product of blocked stress and free strain. For a 1D case when the applied

magnetic field (∆H) is low enough to assume linear operation, the energy density is

given by d2∆H/sH . An important factor which determines the transduction efficiency

of the material is the magnetomechanical coupling factor,

k =
Gcoupling√
GmechGmag

, (1.3)

where the energies can be defined by breaking the Gibbs free energy into three parts

using (1.1) and (1.2):

G =
1

2
(T · S + H ·B)

=
1

2
T · sHT︸ ︷︷ ︸
Gmech

+
1

2

(
T · dTH + H · dT

)︸ ︷︷ ︸
Gcoupling

+
1

2
H · µTH︸ ︷︷ ︸
Gmag

. (1.4)

3



For the 1D case the magnetomechanical coupling coefficient simplifies to d/
√
µT sH .

The following sections of this chapter provide a review of the magnetomechanical

properties and structure of Terfenol-D and Galfenol, followed by a literature review

on available constitutive and transducer level models for these materials. The last

section introduces the main objectives of this research and outlines the flow of this

dissertation.

1.2 Terfenol-D

Early magnetostrictive alloys of nickel, cobalt, and iron provided magnetostric-

tion below 100 ppm. The emergence of piezoelectrics and electrostrictives capable

of producing induced strains on the order of 1000 ppm over a bandwidth of 1 MHz

and higher hindered research on magnetostrictive materials. In the early 1960s, with

the advancement in low temperature measurement techniques, researchers at the US

Naval Ordinance Laboratory found that some rare earth metals such as terbium and

dysprosium showed giant magnetostriction (≈ 5,000 ppm) at temperatures close to

absolute zero but the strain became negligible close to room temperatures. These ele-

ments were alloyed with iron to form compounds of the form RFe2 which showed high

magnetostriction at room temperature. However, because of the large magnetocrys-

talline anisotropy, the fields required to reach the saturation strains were extremely

large (≈ 106 kA/m) [22]. It was observed that the anisotropy constants of TbFe2 and

DyFe2 had opposite signs which led to attempt at combining the two alloys to achieve

anisotropy cancellation. Subsequent studies led to the determination of an optimal

combination of terbium and dysprosium which minimizes the anisotropy. Clark et
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al. [19] first suggested the alloy Tb0.3Dy0.7Fe2 with the fourth order anisotropy con-

stant K1 = −0.06× 106 which exhibited saturation magnetostriction of ≈ 1600 ppm

at room temperatures at moderate applied magnetic fields (≈ 200 kA/m).

Crystal structure and magnetization process

The negative anisotropy constant of Terfenol-D implies that moments prefer to

align along the 〈111〉 orientations when no stress or field is applied, i.e., the 〈111〉

directions are the easy magnetization axes. Terfenol-D has a large magnetostriction

anisotropy, where the strain constant along the 〈111〉 directions is much larger than

the 〈100〉 directions (λ111 = 1640 ppm, λ100 = 90 ppm). Fabrication of 〈111〉-oriented

single crystals is complex and time consuming [81]. Under normal conditions Terfenol-

D exhibits a [112̄] dendritic growth with [111] plane normal (Figure 1.1). The appli-

cation of field and stress along the [112̄] axis gives rise to five sets of 〈111〉 directions

with different energies (depending on their angle with [112̄]) - [111̄] (19.5 ◦), [11̄1̄] and

[1̄11̄] (61.9 ◦), [111] and [1̄1̄1̄] (90◦), [11̄1] and [1̄11] (118.1◦), [111̄] (160.5◦). For single

crystal samples, the magnetization process is expected to proceed by domains prefer-

entially aligning along the first set of 〈111〉 for positive saturation fields (+Hs), to the

last set for negative saturation fields (−Hs) and occupying the intermediate sets for

moderate fields. However, the crystal growth along [112̄] allows for the easy develop-

ment of twins formed through a 180 ◦ rotation about the [111] twin plane normal thus

making the magnetization process more complex. The inability of domain-rotation

based models in describing Terfenol-D’s slow approach to saturation has mainly been

attributed to this twin formation. Many theories have been put forward regarding the

effect of twins on the magnetization process of Terfenol-D. Clark et al. [25] proposed
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Figure 1.1: Crystallographic structure of Terfenol-D.
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that the two twins react very differently to applied fields. While the magnetization

of one twin jumps to the [111̄], the other twin undergoes gradual domain rotation

leading to a slow approach to saturation. However, no quantitative analysis of this

theory was presented. Zhao and Lord [88] proposed that the magnetization process of

Terfenol-D can be broken up into two phases. In the first stage, the domains aligned

along the [111] axis by the applied stress rapidly redistribute to the [111̄] direction

closest to the applied field as well as to the [11̄1̄] and [1̄11̄] directions; and during the

second stage, the domains occupying the [11̄1̄] and [1̄11̄] directions redistribute to the

[111̄] successively by non-180 domain-wall motion. Only qualitative comparisons with

measurements were presented. Zhao and Lord [89] proposed another theory that the

redistribution of domains results in the accumulation of magnetic charges on the twin

boundaries and consequently gives rise to demagnetization fields normal to the plane

of twin boundary. The parent or twin platelet dimension along [111] axis was found

to be much smaller than those along [112̄] and [110] respectively and therefore, each

platelet can be considered as an infinitely thin foil with plane normal along [111]. No

validation for the model against experiments was provided. The micromagnetic phase

field model of Huang and Jin [42] showed that there is strong interaction between the

domains across the twin boundaries giving rise to complex domain microstructure

evolution. There is considerable magnetization rotation causing domains to signif-

icantly deviate from the easy axes. The exact magnetization process for twinned

Terfenol-D crystals remains unclear.
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Characterization

Basic characterization of magnetostrictive materials for actuation requires the de-

termination of the magnetization-field and strain-field curves at different prestress

values. Determination of the sensing curves (magnetization and strain versus stress

at different bias fields) is useful for sensor design. Additional characterization in-

cludes the effects of temperature variation. Clark et al. [22] reported room tem-

perature magnetostriction for the alloy Tb0.3Dy0.7Fe2. Clark et al. [19] showed that

the anisotropy constants for the alloy were low but strongly dependent on chemical

composition. It was also shown that anisotropy constants became positive below

10◦C, thus making the 〈100〉 axes magnetically easy and drastically reducing the sat-

uration magnetostriction. Clark et al. [21] reported magnetostriction measurements

on twinned Tb0.27Dy0.73Fe2. The measurements performed by Moffett et al. [62] on

grain oriented Tb0.27Dy0.73Fe1.93 has been used for transducer design and constitutive

model validation for Terfenol-D. Clark et al. [20] investigated the temperature depen-

dence of Terfenol-D’s magnetostriction. Busbridge [10] and Mei et al. [61] reported

the magnetostrictive properties of twin-free 〈111〉 oriented single crystal Terfenol-D.

Kellogg et al. [51] characterized the Young’s modulus of Terfenol-D based on both

major and minor loops. Etrema Products, Inc. provide magnetostriction measure-

ments for commercially available Terfenol-D [43]. Characterization of Terfenol-D is

challenging because of the apparent high variability in performance of the material

fabricated under similar conditions [45]. A statistical analysis of the material proper-

ties by Dapino et al. [27] revealed that such variations are typically due to imperfect

control of operating conditions during testing.
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1.3 Galfenol

Magnetostrictive iron-gallium (Fe-Ga) alloys (Galfenol) promise to address some

of the limitations of Terfenol-D [24]. Fe-Ga alloys exhibit moderate saturation mag-

netostriction (250 ppm) at low fields (10 kA/m). The reduced saturation magne-

tostriction is compensated by its mechanical reliability, ability to be manufactured

with conventional techniques such as machining [78] and welding [79], and ability to

be packaged into smaller transducers due to its high permeability.

Crystal structure and magnetization process

Galfenol has a body centered cubic structure with Ga atoms randomly substituted

throughout the lattice structure. Galfenol has a positive fourth order anisotropy

constant which implies that the [100] directions are the easy axes. Fe-Ga crystals

exhibit a [100] growth front with λ100 >> λ111. The fact that the axis of maximum

magnetostriction is also the easy magnetization axis and the axis for crystal growth,

makes the magnetization process much simpler than that of Terfenol-D. A typical

Galfenol rod has its [100] and [1̄00] directions aligned with the sample axis and the

other four 〈100〉 orientations orthogonal to this axis. This means that application

of compressive stress aligns the moments along one of these four orientations while

application of field along the axis results in gradual rotation of domains towards the

axial [100] direction. At a critical field, the Zeeman energy overcomes the anisotropy

and moments switch to the easy axis of application of field. Unlike Terfenol-D since

the direction of field application is aligned with the easy axis orientation, no further

domain rotation takes place and hence there is no noticeable increase in magnetization

or magnetostriction after saturation.
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Characterization

Clark et al. [26] showed that maximum room temperature magnetostriction in

these alloys was obtained at 19 at. % Ga. Experiments conducted on Fe-Ga al-

loys with Ga concentrations varying from 4 % to 27 % revealed that there are two

peaks in λ100 as a function of Ga content, with λ100 = 265 ppm near 19 % Ga and

λ100 = 235 ppm near 27 % Ga [23]. Kellogg et al. [54] performed tensile testing

on [100] and [110] single crystal Galfenol (17 % Ga). Both samples had an ulti-

mate tensile strength above 500 MPa and displayed negative Poisson’s ratio. Kellogg

et al. [53] compared the performance of single crystal Fe81Ga19 and polycrystalline

Fe81Ga19 textured using 3 different techniques (directionally solidified, extruded, and

extruded plus annealed [52]). Saturation magnetostriction of the single crystal sam-

ple reduced by 12 % over the -21 ◦C to 80 ◦C temperature range. Magnetostrictive

strains in the polycrystalline samples were found to fall far short of their single crys-

tal counterparts. Wun-Fogle et al. [85] measured the properties of stress-annealed

Galfenol and found that with stress-annealing nearly full magnetostrictive response

can be obtained without applying any pre-stress. Summers et al. [77] characterized

polycrystalline Fe81.6Ga18.4 grown by the zone melt crystal growth method. It was

shown that upon machining, a 15 % increase in magnetostriction was observed due to

removal of off-axis grains located at the periphery of the sample. Rafique et al. [67]

measured the magnetocrystalline anisotropy constants of five different Galfenol alloys

with Ga concentration ranging from 5 % to 20 %. Atulasimha et al. [5] measured

the sensing response of two different Galfenol alloys with 19 % and 24 % Ga. The

lower % Ga sample was found to have better sensitivity in the 20-80 MPa stress range

while the higher % Ga sample was more sensitive in the 0-20 MPa range. Evans [33]
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characterized [100] oriented single crystal Galfenol alloys with 18.5 % and 20.9 % Ga

(both research grade and production grade). Remarkable kinematic reversibility in

magnetomechanical coupling in both grades was reported.

1.4 Constitutive Modeling

Jiles-Atherton model

The Jiles-Atherton model [49] was first formulated for isotropic ferromagnetic hys-

teresis. The total magnetization is modeled as the sum of a reversible component due

to domain wall bowing and an irreversible component due to domain wall motion.

The non-linear shape of the M-H curve is obtained by using an analytical function for

the anhysteretic magnetization. The exact form of the function depends on the form

of anisotropy in the material. The model has been extended to include the effects

of anisotropy [68, 69] and stress [48] on the magnetization of the material. The ex-

tensions were achieved by making appropriate modifications to the anhysteretic mag-

netization curve. Hysteresis in the magnetization versus stress curves was modeled

by extending the original law of approach [48] to include terms which are analogous

to those in the Rayleigh law [58]. Extensions were also made to include dynamic

terms in the formulation to model eddy current losses [46]. Although the original

model is scalar in nature, a vector generalization was proposed by Bergqvist [9]. This

model has been widely used to describe the dynamic response of Terfenol-D based

actuators [30, 74].

Phenomenological models

Phenomenological models use the Taylor series expansion of an energy functional

and use analytical relationships (usually formulated phenomenologically) to express
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the derivatives of the energy functional with respect to the independent variables.

Carman et al. [12] expanded the Gibbs free energy in a Taylor series up to the second

order terms resulting in an expression for strain which is quadratically dependent on

field with one coefficient dependent on the pre-stress. The model produces reasonable

fits for the strain-field curves of Terfenol-D in the low and moderate field region.

However, it is incapable of describing saturation and thus has significant deviations

from measurements at high fields. Wan et al. [82] extended the model by using

hyperbolic tangent functions in the Gibbs free energy definition to model magnetic

saturation. However, extremely high errors (≈ 100 %) were recorded in the strain-

field curves in the moderate field region. Zheng and Liu [90] increased the accuracy

of these models by including higher order terms in the Gibbs energy expansion and

using a Langevin function to describe the nonlinear magnetization-field relationship.

Additional terms are added to model the effects of varying stress on magnetization.

Similarly, strain is described as a function of stress and magnetization enabling the

model to describe the ∆E effect. The model is well suited for engineering applications

as it can generate the strain-field curves with good accuracy with only five parameters

which can be easily estimated from measurements.

Models based on energy-averaging

Energy-averaged models describe bulk properties of materials based on an ex-

pected value of a number of possible energy states. The Armstrong model [3] describes

the magnetization and magnetostriction behavior of anisotropic magnetostrictive ma-

terials based on energy-weighted averaging principles. The energy functional is based
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on the sum of magnetocrystalline anisotropy, magnetoelastic, and magnetic field en-

ergy terms. Bulk magnetization and strain are obtained as an expected value of a

large number of possible energy states (or moment orientations) with an energy-based

probability density function. An energy distribution parameter, ω, models the effect

of material impurities by controlling the spread in the density function distribution

about the minimum. A larger value of ω implies a material with more impurities

and hence a wider distribution. To increase the model efficiency, Armstrong et al. [2]

restricted the choice of moment orientations to the easy magnetization axes and used

a discrete version of the probability density function. Hysteresis is introduced by con-

sidering irreversible losses in the evolution of volume fractions due to field application

only. As a result the model yields hysteretic curves for field application and anhys-

teretic curves for stress application. The increase in model efficiency due to restric-

tion of possible moment orientations however came at the cost of reduced accuracy.

This is because with fixed orientations, the model could not describe domain rota-

tion exhibited at low fields and moderate stresses by both Terfenol-D and Galfenol.

Atulasimha [4] overcame this restriction in the Armstrong model by expanding the

number of possible orientations to 98 important crystallographic directions.

Evans and Dapino [32] proposed an alternative approach to increase the efficiency

of the energy-averaged class of models. Instead of evaluating the energies over a large

number of possible orientations, they restricted the number of possible orientations

by considering only those orientations which minimized an energy functional locally

defined around each easy axis. Macroscopic behavior is obtained by conducting an

energy weighted sum of the magnetization and magnetostriction of domains in each of
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these orientations. This approach models domain rotation as the minima are allowed

to rotate with the application of field and stress.

The discrete energy-averaged model employs a new general formulation for magne-

tocrystalline anisotropy energy. Rather than defining a global energy which includes

the local energy minima or preferred orientations, the energy is defined locally about

the known preferred orientations. This approach has two significant advantages.

First, the model can be applied to materials with any crystal symmetry which is par-

ticularly useful for Galfenol as its crystal symmetry can be changed through stress

annealing. Secondly, it allows for the derivation of analytical expressions for orien-

tations which minimize the energy functional locally defined about each easy axis.

These analytical expressions enable the model to preserve accuracy while restricting

the choice of domain orientations to the local energy minima. This makes the model

up to 100 times faster than previous energy weighting models. Another significant

improvement offered by this model is that it describes magnetic hysteresis for both

magnetic field and stress application. The effect of reversible changes in domain walls

from wall bowing is included, while restricting the effect of irreversible processes so

as to exclude the unphysical behavior of negative susceptibility.

1.5 Magnetostrictive Transducer Modeling

The main idea behind magnetostrictive transducer modeling is to obtain rela-

tionships between transducer level input-output variables (voltage, current, field, dis-

placement) by solving the equations describing the structural and magnetic dynamics

of the system. Complete magnetostrictive transducer models use constitutive laws to
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couple three main components - voltage-field relationships, structural dynamics, and

eddy currents.

Description of voltage-field relationships and eddy currents typically requires infor-

mation of complete transducer geometry and solution of the 3D Maxwell’s equations.

Hence, many 1D and 2D transducer models take magnetic field as the input and

assume magnetostatic operation eliminating the need to solve Maxwell’s equations.

In some cases, effects of variation of stress on magnetization of the magnetostrictive

material are neglected resulting in a unidirectionally coupled model where the con-

stitutive law takes magnetic field as the input and computes the magnetostriction

which is used as an input to the structural dynamics model. Dapino et al. [30] fol-

lowed this principle and coupled the Jiles-Atherton model with a partial differential

equation describing the axial vibrations. The main advantage of this approach is

its quick convergence due to the assumed one-way coupling. However, the accuracy

of these models may be poor when stress variation has considerable effects on the

magnetostrictive material. In such cases, a constitutive law capable of describing the

effects of stress on magnetization must be incorporated and the model must be solved

with two-way coupling [29].

In case of dynamic operation at high frequencies, the effect of eddy currents may

become significant. Eddy currents result in heating up of the material and a spatial

variation in the magnetic field distribution. Eddy currents inside the magnetostrictive

material can be described either in the constitutive law or (for cylindrical samples) by

solving the 1D magnetic field diffusion equation. Huang et al. [41] followed the first

procedure and coupled a lumped parameter vibratory model with the Jiles-Atherton
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equations extended to model eddy currents [46]. Sarawate and Dapino [74] imple-

mented the second strategy by coupling the 1D magnetic field diffusion equation with

a lumped parameter model descrbing the structural dynamics using the Jiles-Atherton

constitutive law. A constant permeability and conductivity assumption yields an ana-

lytical solution of the diffusion equation for harmonic field application. This provides

an analytical expression for the radial variation in magnetic field inside the magne-

tostrictive rod. Since the vibratory model is not radially variant, an averaging must

be done over the cross-section of the rod to reduce it to a scalar form. This averag-

ing can either be done directly on the magnetic field [74] (before it is entered to the

constitutive model) to obtain a mean field, or it can be done on a radially dependent

magnetostriction (obtained by entering the radially dependent field in the constitu-

tive model) to obtain an average magnetostriction which can be used as an input to

the lumped parameter mechanical system model [14]. Both these works included a

one-way coupled constitutive law. Evans [33] coupled a lumped parameter vibratory

model and the radial diffusion equation using a fully-coupled discrete energy averaged

constitutive law. The nonlinear two way coupled model is solved numerically using

Newton-Raphson iterations. Figure 1.2 illustrates the difference between the one-way

and two-way coupled modeling approaches with the magnetic diffusion equation.

Higher dimensional finite element models are significantly more complex than

their one-dimensional counterparts due to implementation of nonlinear constitutive

laws and Maxwell’s equations in higher dimensions. Finite element formulations for

electro-magneto-mechanical systems usually employ a scalar or a vector magnetic

potential as the solution variable. The vector magnetic potential is kinematically

related to magnetic flux density through the curl operator while the scalar magnetic
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(a)

(b)

Figure 1.2: 1D transducer-level modeling approaches with magnetic field diffusion (a)
one-way coupled model (b) two-way coupled model.
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potential is kinematically related to magnetic field through the gradient operator.

The advantage of using a vector magnetic potential is that eddy currents can be

very conveniently modeled through the time derivative of the potential. However,

it requires inversion of the constitutive model. The scalar magnetic potential, on

the other hand does not require inversion of the constitutive law but necessitates

additional techniques to model eddy currents [83].

Early works on two dimensional finite element modeling of magnetostrictive de-

vices were magnetostatic in nature to avoid the complexities involved in modeling

eddy currents. Benbouzid [7] formulated a vector magnetic potential based 2D bidi-

rectionally coupled magnetostatic model where Terfenol-D constitutive behavior is

incorporated using surface splines. The coupled problem is solved through successive

mechanical and magnetic finite element computations. This is known as the weak

coupling strategy as opposed to the strong coupling strategy in which both physics

are solved simulaneously. Kannan and Dasgupta [50] formulated a scalar magnetic

potential based 2D magnetostatic model with bi-directionally coupled magnetome-

chanical relations, current induced magnetic fields and electromagnetic body forces.

A piecewise-linear solution process is used with constitutive laws incorporated in an

incremental manner. Material model coefficients are obtained from bi-cubic spline

fits to measurements. Zhou et al. [92] developed a dynamic finite element model of

a unimorph actuator with one-way magnetomechanical coupling. Applied magnetic

field is computed explicitly as a function of the current in the coil and axial coordi-

nate. Constitutive nonlinearities are incorporated through the Zheng-Liu model [90].

The one way coupled 3D model of Kim and Jung [55] describes force due to magne-

tostriction driving a coupled fluid-structural model for a sonar transducer. Magnetic
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field is computed a priori and magnetostriction is described by fitting sixth order

polynomials to the strain-field characterization curves. A different polynomial is used

for every different pre-stress.

All the models described above take as input externally applied field or compute

the magnetic field explicitly as a function of applied currents. The models described

next aim at modeling the full coupling between the electromagnetic and mechanical

boundary value problems. Ghosh et al. [37] described a magnetostatic finite element

model for composite laminates incorporating magnetostrictive materials modeled us-

ing a linear anhysteretic constitutive law. A comparison between a one-way coupled

and a two-way coupled implementation revealed significant differences emphasizing

the need for fully-coupled models. Aparicio and Sosa [65] described a 3D, fully-

coupled vector magnetic potential based finite element model including dynamic ef-

fects but provided a very simple implementation for a magnetostrictive material with

a single element. Slaughter [76] implemented a model for magnetostrictive transduc-

ers in the finite element software COMSOL by coupling the Structural Mechanics

and AC/DC modules using linear piezomagnetic relations for the magnetostrictive

material. Mudivarthi et al. [63] used a fully-coupled, magnetostatic formulation to

describe stress-induced flux density changes in Galfenol with no current-induced fields.

An updated version of the model includes current induced fields but is still magne-

tostatic in nature [40]. Galfenol constitutive behavior is incorporated through look

up tables generated a priori by running the Armstrong model [3] for a large number

of induction and stress values. Although the Armstrong model is capable of describ-

ing 3D Galfenol behavior, look up tables were generated for 1D induction and stress
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inputs. Evans and Dapino [35] presented a fully coupled dynamic model for 3D mag-

netostrictive transducers based on a vector magnetic potential based finite element

formulation. Displacement currents and electromagnetic body forces are neglected.

The model simultaneously describes the effects of eddy currents, structural dynam-

ics, and flux leakage on transducer performance. Due to the restriction of COMSOL

Multiphysics being unable to handle vectorized functions, linear constitutive behav-

ior is assumed. Solution is obtained using the strong coupling method (simultaneous

solution of multiple coupled physics).

1.6 Research Objectives and Dissertation Outline

The objectives of this research are to

1. develop a unified modeling framework for design and analysis of 3D magne-

tostrictive transducers driven over nonlinear regimes with dynamic inputs. The

framework must

• be sufficiently general such that it can be applied to a wide variety of

magnetostrictive alloys

• provide a structured platform to allow for incorporation of nonlinear cou-

pled constitutive laws

• describe effects of transducer geometry such as flux leakages and model

dynamic magnetization losses (eddy currents)

• yield relationships between transducer level input-output quantities such

as voltage, current, force, and deflection
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• be packaged together with a commercial software such that it can be used

as a magnetostrictive transducer design tool by engineers

2. display the applicability of the framework to specific Terfenol-D and Galfenol

transducers. This includes

• development of constitutive models which describe the magnetomechanical

behavior of Terfenol-D and Galfenol alloys and are in a format suitable for

integration within the unified framework

• formulation of a procedure to identify the constitutive model parameters

from experimental characterization of these materials

3. incorporate suitable techniques for efficiently solving large-scale nonlinear-coupled

system of equations obtained from the modeling framework.

Chapter 2 reviews various fundamental concepts on electromagnetism, structural

dynamics, magnetomechanial coupling, and methods of solving electro-magneto-mechanical

systems. The section on electromagnetism consists of a brief explanation of Maxwell’s

equations along with common approximations used to simplify the system. Magnetic

and electric potentials are introduced which reduce the number of equations to be

solved. Sources of magnetism in magnetic materials are discussed with special focus

on magnetization processes in ferromagnetic materials. The section on structural

dynamics revises the fundamental concepts behind stress and strain, and derives the

equations of motion for a loaded body. A brief section on magnetomechanical coupling

descries magnetomechanical coupling both at the system and constitutive level. The

last section deals with discussion of methods to solve the magnetic and mechanical

boundary value problems. Weak form equations are derived for both the mechanical
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and electromagnetic systems using the Galerkin’s method of weighted residuals. A

vector magnetic potential based finite element formulation using linear tetrahedral el-

ements is shown and the resulting equations for a system with no magnetomechanical

coupling is derived. This forms the basis of the work done in chapters 3-5. Chapter 3

represents the heart of the dissertation. It discusses the unified modeling framework

while chapters 4 and 5 describe specific techniques used for modeling Galfenol and

Terfenol-D transducers respectively using the unified model.

Unified approach to modeling magnetostrictive transducers

This chapter presents a generalized framework for modeling the dynamic perfor-

mance of magnetostrictive transducers where the magnetostrictive driver is driven

with large inputs such that the material behavior is nonlinear. The finite element

method is used based on the weak formulations derived from Maxwell’s equations

for electromagnetics and Navier’s equations for mechanical systems. Two different

strategies are proposed for incorporation of of magnetostrictive material constitutive

laws depending on the operating conditions. For quasistatic conditions, a piecewise

linear approach is adopted where the solution is obtained as a series of small in-

cremental steps. Within every step the magnetostrictive material is modeled using

the linear piezomagnetic equations with the piezomagnetic coefficients updated at

the end of each step through analytical or numerical differentiation of the constitu-

tive law. The coefficients are declared as interpolated data functions such that they

can be computed at a few selected locations and obtained at the remaining nodes

through interpolation, thereby increasing the computational efficiency of the model.

The piecewise-linear model can be used either for obtaining the quasistatic major
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loops of the transducer or for generating accurate bias points. A linear dynamic sim-

ulation with the piezomagnetic coefficients computed at the bias point can model the

dynamic performance of the transducer successfully for moderate inputs. To model

the dynamic response of transducers driven with large inputs, a nonlinear dynamic

solution strategy is implemented in which an implicit time integration scheme based

on the trapezoidal rule is combined with numerical inversion of the constitutive law.

Finally, the implementation of the framework on COMSOL 3.5a is presented.

Galfenol transducers

This chapter incorporates a nonlinear discrete energy-averaged constitutive model

for Galfenol into the general framework described in Chapter 3. First, a parameter op-

timization algorithm is proposed which takes as input the 1D characterization curves

for the Galfenol alloy used in the transducer and calculates the 3D constitutive model

parameters using a least squares optimization routine. The parameter optimization

algorithm can be integrated with the finite element model such that the only ex-

ternal inputs required are the constitutive parameters of the passive materials, the

transducer geometry, and the 1D characterization curves for Galfenol. Next, analyt-

ical differentiation of the constitutive model is carried out to evaluate the material

Jacobian (the matrix of piezomagnetic coefficients) which is used in the piecewise-

linear solution process. The constitutive law is numerically inverted to implement

the nonlinear dynamic solution procedure. The model is validated with respect to

experiments conducted on a Galfenol unimorph actuator.
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Terfenol-D transducers

This chapter deals with the application of the unified modeling framework to

Terfenol-D transducers. The chapter is split into three main sections. The first sec-

tion deals with the development of an efficient 3D energy-averaged constitutive law

capable of describing the full nonlinear magnetomechanical coupling in Terfenol-D.

The second section deals with the reduction of the 3D finite element framework of

chapter 3 to an axisymmetric model. This is useful because Terfenol-D is commercially

available in cylindrical rods resulting in Transducers which are usually axisymmetric

in nature. The third section deals with the validation of the model against mea-

surements conducted on a hydraulically amplified Terfenol-D mount actuator. The

example shows how the framework can be combined with additional physics such as

fluid-structure interaction and friction.

Chapter 6 summarizes the key contributions of this dissertation as well as possi-

ble future work which can be done using this dissertation as a platform. The first

appendix revises vector calculus identities and theorems used throughout the formu-

lation. The next three deal with the development and lumped parameter modeling of

the Terfenol-D engine mount actuator which is the subject for case study in Chapter 5.
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Chapter 2: BACKGROUND

Distributed parameter modeling of magnetostrictive transducers consists of three

main components - electromagnetism, structural dynamics, and solution of coupled

systems. This chapter provides an overview of these three components. The section

on electromagnetism describes the Maxwell’s equations along with relevant bound-

ary conditions. A brief description of magnetic materials reviews the different kinds

of magnetic materials with emphasis on magnetization processes in ferromagnetic

materials. The section on structural dynamics discusses the equations of motion

along with the relevant boundary conditions. Finally, methods for solving electro-

magneto-mechanical systems are introduced with special emphasis on the finite ele-

ment method. A vector magnetic potential based finite element formulation is pre-

sented, which is the basis for the framework in chapter 3.

2.1 Electromagnetism

Electromagnetism deals with the study of interdependence of electrical and mag-

netic quantities on each other. The magnetic variables are the magnetic flux density

(B) and its work conjugate magnetic field (H), while the electrical variables are elec-

tric flux density (D), its work conjugate - electric field (E), and current density (J).
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Relationships between these quantities are summarized by the Maxwell’s equations:

∇×H = J +
∂D

∂t
. (2.1)

∇× E = −∂B

∂t
, (2.2)

∇ ·D = ρe, (2.3)

∇ ·B = 0, (2.4)

where ρe is the volume density of free electric charges. Equation (2.1) is also known

as Ampère’s law (with Maxwell’s correction) and it describes how magnetic fields are

generated by electric currents or time varying electric flux densities. Equation (2.2) is

known as the Faraday’s law and it describes the generation of electric fields through a

time varying magnetic flux density. The generated electric fields give rise to currents

in an electrically conducting medium. These currents are known as eddy currents

and their direction is such that the field they generate through (2.1) opposes the

change in field which induced the currents. Equation (2.3) is known as the Gauss’

law for electricity. It states that the divergence of the electric flux density depends

on the electric charge density. This can also be stated as the flux of the electric

displacement field over a Gaussian surface is equal to the free charges enclosed by the

surface (ΦD,S = Qfree). Application of the divergence theorem yields (2.3). Similarly

Gauss’ law for magnetism (2.4) states that the divergence of the magnetic flux density

should equal the magnetic charge density. However, due to the non-existence of

magnetic monopoles the magnetic charge density is identically zero. This is because

magnetic charges are always present in couples which cancel the divergence of each

other resulting in a solenoidal (zero divergence) magnetic flux density. This difference
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between the divergences of the electrical and magnetic flux density creates asymmetry

between the magnetic and electrical variables.

Maxwell’s equations must be supplemented with constitutive laws. For linear

isotropic materials they can be written as

J = σE, B = µH, D = εE. (2.5)

Here σ is the electrical conductivity, µ is the magnetic permeability and ε is the dielec-

tric constant of the material. These parameters may become tensors for anisotropic

materials or even functions of different variables in case the material properties are

nonlinear.

2.1.1 Special cases

The complexity of Maxwell’s equations makes it extremely important to utilize

any appropriate assumption to simplify the analysis. These simplifications are mostly

on the basis of the time rate of change of variables involved in (2.1) and (2.2). This

section presents two simplifying cases - one in which all dynamics are considered to be

negligible and second in which only certain dynamics are neglected based on material

properties and the frequency band of operation.

Electrostatics and magnetostatics

This is the simplest situation where there is no (or negligible) time dependence

in both the electrical and magnetic quantities. The displacement current term drops

out from (2.1) giving

J = ∇×H, (2.6)
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which implies that the current density J follows the law

∇ · J = 0, (2.7)

since the divergence of curl is identically zero. This means that current lines are

solenoidal (they either close in on themselves or extend to infinity). Similarly, the

right hand side of (2.2) vanishes with the assumption of no magnetic flux density

variation giving,

∇× E = 0. (2.8)

The net outcome is that there is no interdependence between electric and magnetic

fields and they can be analyzed separately. An electrostatic analysis is usually done

to obtain the magnetic field distribution due to an applied current density.

Quasistationary magnetic fields

Depending on the time rate of variation of the inputs, and the properties of the

material within which the equations are being solved, the effect of some dynamic

terms can be considered to be negligible compared to others. Consider the case of

harmonic time variation of the variables. Substituting the constitutive relationships

for J and D in terms of E from (2.5) into (2.2) and noting the harmonic variation of

the electric field (E = E0e
iωt) one gets

∇×H = σE0e
iωt
[
1 + i

ωε

σ

]
. (2.9)

If ωε/σ << 1 then displacement currents can be neglected in comparison to conduc-

tion currents. Further, the frequency of operation should be such that Ohm’s law is

valid. For metals, this constraint is reached at a much lower frequencies than when

the inequality is satisfied [56]. Still, almost all materials used in electromechanical

29



devices (including magnetostrictive transducers) satisfy both these requirements for

frequency ranges in which they are operated (< 100 kHz). Thus the quasistationary

magnetic field approximation is an extremely useful tool and has been used widely in

formulations for electromechanical transducers. The modeling approach followed in

the chapter 3 is also based on this approximation.

2.1.2 Electrodynamics of moving media

Often electromechanical transducers consist of moving parts which carry consid-

erable current densities and are exposed to magnetic fields. In order to model electro-

magnetic systems with moving components , Maxwell’s equations must be formulated

in a moving coordinate system. For non-relativistic velocities (which is usually the

case), the Maxwell-Galiliean transformation is used. The corresponding fields in the

moving coordinate system are defined as

E′ = E + v ×B, (2.10)

H′ = H− v ×D, (2.11)

J′ = J− ρev, (2.12)

and B′ = B,D′ = D, ρ′e = ρe. The ∇ operator remains unchanged while the time

derivative is transformed to the convective time derivative defined as

∂

∂t′
=

(
∂

∂t
+ v · ∇

)
(2.13)

Under these transformations the Ampère’s and Faraday’s laws can be written as

∇×H′ = σ (E + v ×B) +
∂D

∂t
−∇× (v ×D) + ρev, (2.14)

∇× E′ = −∂B

∂t
+∇× (v ×B) , (2.15)

while the constitutive laws remain unaffected by the transformation.
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2.1.3 Electric and magnetic potentials

The study of relationships between current density and field distribution is based

on the solution of Maxwell’s equations. However, obtaining a solution to the Maxwell’s

equations in a form described earlier (2.1-2.4) is an extremely formidable task. The

idea behind using electric and magnetic potentials is to transform some of the vari-

ables such that some of the equations are identically satisfied leading to a reduction in

both the complexity and the number of equations to be solved. In general, whenever

the curl of a certain quantity vanishes, that quantity can be described by the gradient

of a scalar potential (since curl of gradient is always zero). Similarly when the diver-

gence of a vector field vanishes, the vector can be described as the curl of a vector

potential (since divergence of curl is always zero). For example, in electrostatics since

the curl of the electric field vanishes, it can be represented by the gradient of a scalar

potential as E = −∇U . Following similar logic two potentials are very commonly

used for the solution of Maxwell’s equations - the scalar magnetic potential and the

vector magnetic potential. Both are used under specific conditions and have their

own set of advantages and disadvantages.

The scalar magnetic potential The scalar magnetic potential (Φ) is defined

as

H = −∇Φ. (2.16)

Taking the curl of this equation leads to ∇×H = 0 which means that this method

is only valid only when there is no externally imposed surface current density or

displacement currents. Equation 2.16 can be substituted into the Gauss’ law of mag-

netism to obtain a single equation describing the magnetic state of the system. For
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materials with constant permeability this reduces to Laplace’s equation in terms of

the magnetic potential:

µ∇ · ∇Φ = 0. (2.17)

The main advantage of solving (2.17) instead of solving Ampère’s vectorial equations

is that the magnetic problem can be solved by one differential equation instead of a

system of three simultaneous differential equations for the three components of the

vector field. For materials with a nonlinear B-H relationship, the equation has the

form

∇ ·B(−∇Φ) = 0. (2.18)

The advantage of using the scalar magnetic potential compared to the vector magnetic

potential is that the solution of the equation requires information of B as a function

of (−∇Φ or H which is the form in which most constitutive models are formulated.

Thus model inversion is not required. Another advantage is the fewer degrees of

freedom required in this method (one dof per node for the scalar magnetic potential

compared to 3 dofs per node for the vector magnetic potential). The limitation of

using the conventional scalar magnetic potential approach is that it can be used only

for current-free regions.

To extend the scalar magnetic potential based approach to model magnetostatic

problems with externally imposed current densities, the magnetic field is broken down

to two components - a magnetization induced component modeled by the scalar mag-

netic potential and an external current induced component (modeled using a Biot-

Savart computation) [50]. To extend the model to describe eddy currents an vector

electric potential (T) can be introduced such that H = T−∇Ω and ∇×T = J [83].
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This approach however makes it challenging to specify boundary conditions and leads

to large percentage errors due to similar magnitudes of T and ∇Ω.

The vector magnetic potential The vector magnetic potential A is defined

as

B = ∇×A, (2.19)

such that (2.4) is identically satisfied. Substitution of (2.19) in to Faraday’s law yields

∇×
(

E +
∂A

∂t

)
= 0. (2.20)

Since the curl of the quantity
(
E + ∂A

∂t

)
is zero, it can be represented as the gradient

of a scalar potential (say U) as

−∇U = E +
∂A

∂t
. (2.21)

Substituting the constitutive relationship J = σE one gets

J = −σ∇U︸ ︷︷ ︸
Js

−σ∂A

∂t︸ ︷︷ ︸
Je

, (2.22)

where Js is the applied current density and Je is the eddy (or induced) current density.

The applied current density is considered to be given. For the quasistationary

magnetic field problem, Maxwell’s equations reduce to one equation:

∇×H(∇×A) = Js − σ
∂A

∂t
. (2.23)

This implies that the magnetic field must be calculated as a function of ∇ × A or

B. Since most constitutive models are formulated to calculate B as a function of H,

use of this equation requires constitutive model inversion. For a linear material with

constant permeability µ, 2.23 reduces to

∇×∇×A = µJs − σµ
∂A

∂t
. (2.24)
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The main advantage of using the vector magnetic potential is that it can capture

source currents as well as eddy currents arising from dynamic magnetization changes.

The drawbacks include constitutive law inversion and more degrees of freedom per

node.

The vector magnetic potential is extensively used to model electromechanical sys-

tems since they work in the quasi-stationary frequency band and are exposed to

electrical currents (both source and eddy). Magnetostrictive systems operate in a

similar frequency band and are exposed to similar conditions. Thus in this work, the

vector magnetic potential based formulation will be used.

2.1.4 Boundary conditions

A key component of modeling electromagnetic systems containing different ma-

terials is accurately describing the interface (boundary) conditions on the solution

variables. Boundary conditions are better explained through the integral form of

Maxwell’s equations. Consider for example, the integral form of the Gauss’ law of

magnetism given by
∮

B · ds = 0 applied over a closed cylindrical surface placed at

the interface of two media, depicted by the subscripts 1 and 2 (Figure 2.1). If the

thickness of the cylinder (∆h) approaches zero, then effectively no flux leaks through

the side walls. The integral can then be computed as

(n1 ·B1 + n2 ·B2) ∆s = 0. (2.25)

Since the ends of the cylinder now coincide with the interface of the two materials

one can relate the surface normals as n = n2 = −n1. This gives

n · (B2 −B1) = 0, (2.26)
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Figure 2.1: Boundary surface between media 1 and 2 with an elemental cylinder and
loop used to derive the boundary conditions on B and H.

which implies that the normal component of flux density must be continuous across

the interface of two media. Similarly to derive boundary conditions for the magnetic

field, Ampére’s law for quasistationary conditions is used in the integral form:∮
C

H · dl =

∫
S

J · ds. (2.27)

Physically this says that the line integral of H around a closed contour C is equal to

the total normal current flowing through the surface S bounded by C. Performing

the line integral and setting ∆h→ 0, one gets

n× (H2 −H1) = i, (2.28)

where i is the surface current density defined as i = lim∆h→0 (J∆h). If the boundary

is current free, the right hand side of (2.28) becomes zero implying that the tangen-

tial components of magnetic field across a boundary must be continuous. Thus the

boundary conditions of the magnetic variables across the internal boundaries are such

that they ensure continuity of normal flux density and tangential field. The continuity

of one automatically implies the discontinuity of the other since flux density and field
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are related by the material constitutive parameter µ which is different for different

materials. Thus the normal component of magnetic field and tangential components

of flux density is typically discontinuous across boundaries.

The boundary conditions for the electric flux density and electric field can be

derived using a similar procedure starting from the integral form of the Gauss’ law

for electricity and Faraday’s law. This yields

n× (E2 − E1) = 0, (2.29)

(D2 −D1) · n = re, (2.30)

where re is the surface density of charges defined as re = lim∆h→0 (ρe∆h). Of the four

boundary conditions only two are independent, one from (2.26) and (2.29) and the

other from (2.28) and (2.30).

Boundary condition in terms of A: As mentioned earlier, it is extremely

common to model electro-magneto-mechanical systems in the dynamic regime with

the vector magnetic potential based formulation. It is therefore beneficial to express

the boundary conditions in terms of A. A typical electromechanical system to be

solved consists of copper coils, iron laminates for flux return, and structural compo-

nents for load transmission surrounded by an air volume. Magnetically, the external

boundaries consist of the outer boundaries of the air envelope while all other bound-

aries are internal. It can be shown that the vector magnetic potential is single-valued

and continuous across internal boundaries. This is another advantage over the scalar

magnetic potential formulation where the magnetic potential must be discontinuous

across interfaces to maintain continuity of the normal component of flux density. The
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vector magnetic potential however, ensures the continuity of the normal component

of the magnetic flux density by definition.

At the external boundaries, A = 0 sets the normal component of magnetic field to

zero. This means that no flux escapes from the air envelope. Care must be taken to

make the air envelope sufficiently large so that the A = 0 boundary condition repre-

sents the true picture. This is the Dirichlet boundary condition and eliminates rigid

body modes magnetically. The Neumann boundary condition comes from specifying

the tangential component of the magnetic field given by H × n where n is the unit

normal of the boundary on which the condition is applied. Any unmodeled externally

applied magnetic field can be imposed through this boundary condition.

2.1.5 Magnetic materials

In Maxwell’s equations, the relationship between B and H is given by constitutive

laws. In order to understand the B-H relationship in magnetic materials, fundamental

causes for magnetization must be discussed at an atomic level. A magnetic field is

generated when there is a charged particle in motion. Conversely, a magnetic field

exerts force on a charged particle in motion thereby altering its path. All materials

contain negatively charged particles (electrons) in motion. An electron exhibits two

kinds of motion. First, it revolves around the nucleus causing a magnetic field per-

pendicular to the plane of revolution. Secondly, it spins about its own axis creating

a magnetic field along its axis. Consequently application of an external magnetic

field would alter the electron’s orbit and tend to rotate the spin of the electron to

align along the direction of applied field. The combined effect of these two motions
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is called a magnetic moment and the density of magnetic moments per unit volume

of the material is known as magnetization.

The magnetism produced by the spin motion is much more powerful than the

orbital motion. However, in most materials, electrons are paired with opposite spin

vectors such that they cancel the effect of each other. Ferromagnetic materials con-

tain unpaired electrons which cause large changes in the material’s magnetic state

when exposed to magnetic fields. Under no externally applied field, the alignment

of moments in a ferromagnetic material depends on the balance between the ex-

change energy due to interaction between neighboring moments and thermal energy.

Above a certain temperature known as the Curie temperature, the thermal energy

dominates the exchange energy and moments are randomly aligned throughout the

material. When the material is cooled below the Curie temperature, the exchange

energy dominates the thermal energy and gives rise to spontaneous ordering of mag-

netic moments. Neighboring magnetic moments align along the same direction at a

micro-scale to give regions of uniform magnetization called domains. Each domain

has a magnetization Ms caused by the aligned moments. However, in the absence

of any external magnetic field these domains are oriented in different directions such

that there is no net macro-scale magnetization.

Often ferromagnetic materials also exhibit magnetocrystalline anisotropy. This

implies that even without the application of any external field domains prefer to align

along specific orientations known as the easy magnetization axes. Mathematically

these orientations can be determined by minimizing the anisotropy energy (EA) which

is expressed in terms of m (the unit magnetization direction vector for a domain). The

exact form of EA is determined by performing a series expansion in terms of m and
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obtaining the relevant coefficients empirically. For example, cubic magnetocrystalline

anisotropy can be mathematically expressed as

EA = K4

(
m2

1m
2
2 +m2

2m
2
3 +m2

3m
2
1

)
, (2.31)

where K4 is the fourth order anisotropy constant for the material. Minimization

of this expression with respect to m yields the easy magnetization axes as 〈100〉

or the 〈111〉 crystal orientations depending on the sign of K4. Adjacent domains are

separated by domain walls which are transition regions within which moments realign

from one domain to the other. The width of domain walls is determined by a balance

between the exchange energy and anisotropy energy [47].

When a ferromagnetic material is exposed to external magnetic fields, it imparts

an additional energy to the domains known as the field energy (or Zeeman energy).

For an external magnetic field H acting on a domain aligned along m, the Zeeman

energy is defined as −µ0Msm ·H. The magnetization process in ferromagnetic ma-

terials is governed by a balance between the exchange energy, Zeeman energy, and

the magnetocrystalline anisotropy energy. There are three mechanisms by which bulk

magnetization changes occur in ferromagnetic materials:

• Domain rotation: This process occurs when the field energy is not sufficiently

large to overcome the anisotropy energy completely but it causes the magne-

tization of the domains to rotate towards the direction of application of field.

Usually this process is reversible and does not contribute to any hysteresis.

• Domain wall motion: This occurs when the exchange energy and field energy of

domains overcome the anisotropy energy and moments in the wall reorient from

their original orientation to the easy axis orientation closest to the direction
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of field application causing the domain wall to move. As a result the domains

aligned along the easy axes closest to the direction of application of field grow

in size relative to the other domains. This process is usually irreversible because

domain walls get pinned at material defects and impurities where they use up

additional energy to continue their motion.

• Forced magnetization: This is the final stage in the magnetization process and

occurs usually when the entire material has been converted to a single domain

material. Further application of magnetic fields improve the moment align-

ment within the single domain material thereby increasing its saturation mag-

netization Ms. This gives rise to a very slow increase in the bulk saturation

magnetization of the material at very high fields.

Another source of energy which affects the magnetization process especially for

magnetostrictive materials is the magnetoelastic coupling energy which accounts for

the work done by a magnetostrictive material in deforming against an external stress

field. Section 2.3.2 discusses the effects of stress on the magnetization process of

magnetostrictive materials.

2.2 Structural Dynamics

The study of structural dynamics relates the state of stress in a material to ap-

plied dynamic loads. Derivation of the equations of motion for a system necessitates

understanding of the concept of stress and strain in a body and how they relate with

each other. A material typically deforms when exposed to external loads and de-

velops internal forces to balance the external loading. Stress is a measure of these
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internal forces while strain is a measure of the amount of deformation of the body.

The relationship between stress and strain is an intrinsic property of the material.

2.2.1 Stress

Stress represents the average force per unit area on a surface within the body.

Consider, for example the body shown in Figure 2.2 for which the stress at point P

must be described. To calculate stress, the body is cut along the plane S passing

through the point P with plane normal n̂. The stress vector or the traction vector

(t(n̂)) is defined as

lim
∆S→0

∆f

∆S
=
df

dS
= t(n̂), (2.32)

where ∆f is the resultant internal force vector and the superscript (n̂) on t implies

that the computed stress vector is valid only for the specific cutting plane with normal

n̂. Thus for an infinite number of cutting planes possible through the point P , each

having a different n̂, there exists an infinite number of traction vectors for the same

external loading condition. To define the state of stress at P a rectangular coordinate

system (x1, x2, x3) is introduced with unit vectors (ê1, ê2, ê3). In addition to the

original cutting plane S which has a traction vector ∗tn̂ and area dS associated with

it, the body is cut with the three coordinate planes such that the part of the body

enclosed between the four planes is in the shape of a tetrahedron (Figure 2.3). The

asterisk on any vector denotes that it is an averaged quantity over the area on which

it acts. Similarly, the average traction vectors associated with the coordinate planes

are ∗ têi and the areas are dSi (i=1,2,3) with unit normals êi. In Einstein notation

the average traction vectors on the coordinate planes can be written as

∗t(êi) = ∗t
(êi)
j êj. (2.33)
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Figure 2.2: Body with cutting plane S and the corresponding force vector ∆f acting
on ∆S.

Figure 2.3: Traction vectors on the three coordinate planes at a point P .
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and the areas dSi are the projections of dS on the coordinate planes, given by

dSi = nidS (2.34)

Equilibrium requires that the vector sum of all forces on the tetrahedron to be zero.

This gives

∗tidS − ∗t
êj
i njdS + ρ∗bi∆V = 0, (2.35)

where ∗bi is an average body force. By letting the tetrahedron shrink to the point P ,

the body force term drops out because ∆V → 0 and the average (starred) quantities

are replaced by the actual values at the point P , giving

t
(n̂)
i = t

(êj)
i nj. (2.36)

Expressing t
(êj)
i as Tij (2.36) can be written in matrix notation ast

(n̂)
1

t
(n̂)
2

t
(n̂)
3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T13


︸ ︷︷ ︸

T

n1

n2

n3

 . (2.37)

The matrix T represents the stress tensor which contains nine components depicted

graphically in Figure 2.4. Further by balancing moments for a body containing no

concentrated body forces, it can be shown that the stress tensor is symmetric (i.e

Tij = Tji) implying that six independent components are required to describe the

state of stress at a point.

2.2.2 Strain

Strain is a measure of the amount of deformation of a body. It is a purely geometric

entity and can be derived using kinematic operators on a given displacement field.

Figure 2.5 shows a body in an initial undeformed (reference) condition and a final
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Figure 2.4: Cartesian stress components in their positive sense.

Figure 2.5: Deformation of a body from a reference condition to current condition.
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deformed (current) condition. The axes OX1X2X3 form the reference coordinate

frame with unit vectors Î1, Î2, Î3 while Ox1x2x3 forms the spatial coordinate frame.

Consider two points P and Q in the neighborhood of each other. In the reference

configuration the position of P is X while that of Q is X + dX. In a deformation

process described by a displacement field u(X), the point P moves to position p with

coordinate x and in the spatial coordinate frame where x = X + u(X) and the point

Q moves to position q whose coordinate x + dx can be written as

x + dx = X + dX + u(X + dX),

⇒ dx = X + dX + u(X + dX)− x,

⇒ dx = dX + u(X + dX)− u(X),

⇒ dx = (I +∇xu) dX, (2.38)

where the operator ∇x stands for ∂/∂X. The quantity (I +∇xu) is known as the

deformation gradient tensor and is denoted by F(X). A common measure of defor-

mation is obtained by taking the difference of the squared initial and final lengths

(dxTdx− dXTdX). Using the definition of F, this can be reduced as follows

dxTdx− dXTdX = dXT
(
FTF− I

)
dX. (2.39)

The Lagrangian finite strain tensor is defined as

E =
1

2

(
FTF− I

)
, (2.40)

which can be represented as a function of the displacement field as

E =
1

2

(
∂u

∂X

)T

+
1

2

∂u

∂X
+

1

2

(
∂u

∂X

)T(
∂u

∂X

)
. (2.41)

It is useful to describe the strain tensor as a function of displacement because most

numerical solution strategies calculate the displacement field. If the gradient of the
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displacement field is much smaller than unity such that second or higher order terms

can be neglected, then the last term in (2.41) drops out giving:

E ≈ 1

2

(
∂u

∂X

)T

+
1

2

∂u

∂X
= S, (2.42)

which is known as the infinitesimal strain tensor. This approximation is particularly

useful for analysis of magnetostrictive systems since magnetostrictive strains are of

the order of 0.1 %. Clearly the infinitesimal strain tensor S is symmetric (∵ ST = S.

This can also be seen when the strain displacement relationship is written in the

matrix form:

S =



∂u1

∂X1

1

2

(
∂u2

∂X1

+
∂u1

∂X2

)
1

2

(
∂u1

∂X3

+
∂u3

∂X1

)
1

2

(
∂u2

∂X1

+
∂u1

∂X2

)
∂u2

∂X2

1

2

(
∂u2

∂X3

+
∂u3

∂X2

)
1

2

(
∂u1

∂X3

+
∂u3

∂X1

)
1

2

(
∂u2

∂X3

+
∂u3

∂X2

)
∂u3

∂X3

 . (2.43)

Contracted notation: Although both stress and strain are second order tensors,

for mathematical convenience they can be represented as vectors with six independent

components:

T =
[
T11 T22 T33 T12 T23 T13

]T
, (2.44)

S =
[
S11 S22 S33 2S12 2S23 2S13

]T
. (2.45)

This representation of the stress and strain tensor as vectors with six components

is known as contracted notation. The factor of two for the shear strains comes as

result of maintaining equality of the strain energy density (T · S) using the two

notations. The matrix notation is convenient as stress-strain and strain-displacement

relationships can now be expressed as a matrix. For example, the strain-displacement

relationship can be written in a more compact manner as S = ∇Su where the operator
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∇S is defined as

∇S =


∂/∂X1 0 0

0 ∂/∂X2 0
0 0 ∂/∂X3

∂/∂X2 ∂/∂X1 0
0 ∂/∂X3 ∂/∂X2

∂/∂X3 0 ∂/∂X1

 . (2.46)

However, while performing coordinate transformations both stress and strain would

need to be represented in the tensor form and transformed according to the laws of

second order tensor transformation.

Stress-strain relations: The relationship between stress and strain in a material

can be nonlinear and path dependent depending on the amount and nature of loading.

However, for engineering purposes most materials are operated in the elastic regime

where they obey a linear stress-strain relationship described by the Hooke’s law,

T = cS. (2.47)

The stiffness tensor c is a fourth order tensor; however since the stress and strain ten-

sors are symmetric with only six independent components, the number of unknowns

in c is reduced to thirty six. When T and S are represented in the contracted notation

c can be represented as a six by six matrix. Additionally the stiffness matrix can be

shown to be symmetric through the following procedure. The strain energy density

at a point with stress T and strain S can be written as

U = TTS = STcTS. (2.48)

Since U is a scalar it should be equal to its transpose. Thus

UT = U = STT = STcS. (2.49)
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Equations (2.48) and (2.49) imply c = cT. For materials with cubic symmetry such

as Terfenol-D and Galfenol, there is no coupling between shear strains and normal

stresses. Additionally the shear stresses are dependent only on the corresponding

shear strains. This reduces the stiffness matrix to the form

c =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 . (2.50)

2.2.3 Equations of motion

The equations of motion can be derived by applying Newton’s laws of motion

which states that the time rate of change of linear momentum of a body is equal to

the total force acting on it. The linear momentum for an infinitesimal volume is given

by the product of mass density and the velocity field. External forces are in the form

of body forces or surface tractions. In the integral form this can be written as

d

dt

∫
V

ρvdV =

∫
S

t(n̂)dS +

∫
V

ρbdV. (2.51)

Applying the divergence theorem on the first term on the right hand side one gets∫
V

(
ρv̇ −∇ ·T(n̂) − ρb

)
dV = 0, (2.52)

As the equation holds for any arbitrary control volume V , the integrand must equal

zero, giving

ρv̇ −∇ ·T(n̂) − ρb = 0. (2.53)

This vector equation yields three scalar equations (one for each component of the

orientation vectors) which are known as the local equations of motion. In contracted
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notation it can be written as

∇T
ST + ρb = ρü. (2.54)

For solving these equations it is convenient to express them in terms of the displace-

ment field alone. This can be done by expressing the stress in terms of strain utilizing

(2.47) and the strain in terms of displacement using the strain displacement relation

S = ∇Su, giving

∇T
Sc∇Su + ρb = ρü. (2.55)

2.3 Magnetomechanical Coupling

Magnetomechanical coupling refers to the interdependence of the mechanical and

magnetic boundary value problems (BVPs) on each other. This coupling can take

place either at the system level through magnetic body forces or at the material level

through magnetomechanical coupling in the material.

2.3.1 Magnetomechanical coupling at the system level

When a system contains only passive materials, the magnetic BVP influences the

mechanical BVP through Lorentz forces while the mechanical BVP affects the mag-

netic BVP through geometrical changes in the system. System level magnetomechan-

ical coupling is conveniently expressed through the Maxwell’s stress tensor. Similar to

the way mechanical body forces are represented as the divergence of Cauchy’s stress

tensor, magnetic body forces can be obtained from divergence of Maxwell’s stress

tensor. Assuming homogeneous material properties and quasi-stationary conditions,

the total magnetic force acting on a body with volume V enclosed by a surface S can
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be written as
∫
V

fBdV where the magnetic force density is given by

fB = J×B,

= (∇×H)×B,

= µ (H · ∇) H− µ1

2
∇H2. (2.56)

The total magnetic body force can be written as

F =

∫
V

fBdV =

∫
V

µ

(
(H · ∇) H− µ1

2
∇H2

)
dV,

=

∮
S

µH (H · dS)− 1

2

∮
S

µH2dS,

=

∮
S

µ

[
H (H · n)− 1

2
H2n

]
dS. (2.57)

Alternatively, if the force density were to be written as the divergence of a tensor (say

TM), then the total magnetic force could be written as

F =

∫
V

∇ ·TM ,

=

∫
S

TM · ndS. (2.58)

Comparing (2.57) and (2.58) it can be seen that

TM = µ

1
2

(H2
1 −H2

2 −H2
3 ) H1H2 H1H3

H1H2
1
2

(H2
2 −H2

3 −H2
1 ) H2H3

H1H3 H2H3
1
2

(H2
3 −H2

1 −H2
2 )

 . (2.59)

This tensor TM is known as the Maxwell’s magnetic stress tensor since its divergence

yields the magnetic force density. In Einstein notation, it can be conveniently ex-

pressed as TMik = µ
{
HiHk − 1

2
δikH

2
}

. Similarly, for electrostatic forces a Maxwell’s

electrostatic stress tensor may be derived as TEik = ε
{
EiEk − 1

2
δikE

2
}

[56]. Ex-

pressions for Maxwell’s stress tensor have also been derived for the fully dynamic
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case of Maxwell’s equations. However, expressions obtained in this section are par-

ticularly relevant for electromechanical devices since they primarily operate in the

quasi-stationary frequency band.

2.3.2 Magnetomechanical coupling at the material level

In magnetostrictive transducers, components carrying current densities (coil) are

mechanically inactive, while components which are structurally active do not con-

tain significant current densities. Hence, magnetic body forces may be neglected.

The magnetic and mechanical BVPs interact with each other primarily through the

magnetomechanical coupling present in the magnetostrictive material.

The magnetomechanical coupling energy is defined as the work done by the ma-

terial when it undergoes magnetostrictive strain in the presence of externally applied

loads. Many key features of magnetostriction can be qualitatively understood from

the simplified schematic shown in Figure 2.6. Domains are represented as elliptical

shapes with the major axis aligned with the domain’s magnetization. Physically this

signifies that the lattice strain is linked to the direction of magnetization of the do-

main. Application of magnetic field aligns the domain magnetization in the direction

of applied field thereby causing an increase in length of the sample. Reversing the

direction of field aligns the domains in the opposite direction; however it still leads

to an increase in length of the sample. Similarly, application of tensile stress favors

alignment of domains along the direction of stress while compressive stress favors

alignment of domains perpendicular to the direction of stress application causing a

corresponding decrease in magnetization. For actuators, a commonly used strategy is

to apply a compressive pre-stress to align domains perpendicular to the axis such that
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Figure 2.6: Cartoon depiction of magnetostriction.

on application of field, maximum deformation is obtained. Similarly for sensors, a

bias field aligns the domains along the axis so that considerable magnetization change

can be obtained when the material is compressed. Mathematically, magnetostrictive

lattice strain or magneto-strain (Sm) is linked with the orientation of domains m

through the relation

Sm =



(3/2)λ100(m2
1 − 1/3)

(3/2)λ100(m2
2 − 1/3)

(3/2)λ100(m2
3 − 1/3)

3λ111m1m2

3λ111m2m3

3λ111m3m1


, (2.60)

where λ100 and λ111 are magnetostriction constants which denote the maximum mag-

netostriction of a material along the 〈100〉 and 〈111〉 directions starting from an

unbiased condition. Apart from magnetostrictive strains, magnetostrictive materials

also exhibit usual elastic strains which can be related to the applied stress through

(2.47). The total strain can then be written as the sum of the magneto-strain and
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the elastic strain as

S = Sm + c−1T. (2.61)

Thus in magnetostrictive materials, flux density (B) and strain (S) are nonlinear

functions of both stress (T) and magnetic field (H). These constitutive relationships

nonlinearly couple the mechanical boundary value problem to the magnetic boundary

value problem. The next section deals with numerical techniques for solving such

coupled BVPs.

2.4 Numerical Solution of Electro-magneto-mechanical sys-
tems

Analytical solutions have the advantages of being exact, yielding mathematical

relations which can be used directly for parametric studies and analysis, and being

computationally cheap. Unfortunately, analytical solution schemes for electromag-

netic systems are restricted to a very small class of problems which include some

one-dimensional systems and some highly symmetric two-dimensional systems. With

presence of nonlinear magnetomechanical coupling as is the case with magnetostric-

tive transducers, the possibility of obtaining analytical solutions is almost eliminated.

Numerical methods on the other hand provide a generic approach to approxi-

mating a solution over the solution domain, which satisfies the boundary and initial

conditions. Most numerical schemes for boundary value problems proceed by spatial

and temporal discretization of the problem. The following discussion briefly outlines

the capabilities of various numerical methods available for solution of BVPs.

Finite difference methods (FDM): The finite difference method approximates

both spatial and time derivatives with values of the function itself. With this
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method the solution is valid only at the discretization points (or nodes). The

spatial resolution of the solution can be improved by adding more nodes in the

solution domain.

Finite element method (FEM): The finite element method is different in that the

space is discretized by domains of finite volume and the solution is approximated

within each volume. Unlike the finite difference method where the solutions

are defined only at the nodes, in the finite element method the solution exists

everywhere in the geometry. This is because the solution is interpolated between

the nodes using polynomials of the desired degree. Finite element methods

are more efficient in discretization of space, especially for complex geometries;

however approximations in time are generally done by finite differencing.

Boundary element method (BEM) : Boundary element methods are modified

finite element methods that use the integral form of field equations. Solutions

are obtained in terms of equivalent sources which are defined on the boundary

of the geometry under consideration. The main advantage of this method is

that since only the surface of the geometry is considered, the dimensionality

of the problem is reduced by one. However, a detailed solution in the volume

is not obtained which might be crucial for magnetostrictive systems. Another

drawback of BEM is that nonlinear materials cannot be modeled. To model

nonlinear materials, the relevant domain must be solved using finite elements

and a combined FEM/BEM solution scheme is used. This often negates the

advantages of BEM. Although BEM reduces the dimensionality of the problem,

the system matrices are usually full as compared to FEM system matrices which
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are sparse. This may give rise to higher solution times even though the matrix

size is smaller.

Among these methods, the finite element method is more suitable for modeling

magnetostrictive transducers because of nonlinear material behavior, possibility of

complex geometries and the requirement of studying stresses and fields in interior

volumes.

The finite element method

In the finite element method the approximate solution is expressed as a linear

combination of some pre-selected basis vectors. Since the solution is approximate,

in general it will not satisfy the governing equations at every point in the solution

domain. The task is to determine the coefficients of the linear combination of the

basis vectors such that it minimizes the error between the approximate and exact

solutions. In most cases polynomial basis functions are used because of their ability

to approximate a wide variety of curves, and the ease of differentiation and integration.

Since exact solutions are almost always unavailable (which is the primary reason for

performing the finite element analysis), the error is quantified by substituting the

solution in the governing equation and computing the residual (R(x)) where x is the

solution variable.

Various strategies can be used for defining the error functional. In the collocation

method, the residual is forced to be zero at some pre-determined points on the solution

domain. The number of points depends on the number of unknown constants in the

approximate solution. For example, if the assumed solution is a first order polynomial

which has two unknown coefficients, then the residual can be forced to zero only at two
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points. The drawback of this method is that although the residual is forced to zero at

selected locations, the error may be very large at other locations. To overcome this,

instead of making the residual vanish at selected points, it is minimized in a more

average sense. In case of the least squares approximation, solution is obtained by

minimizing the least squares integral defined as
∫
V

[R(x)]2 dx. A more general process

is to minimize the integral
∫
V
W (x)R(x)dx, where W (x) is an arbitrary weighting

function. This process of determining the approximate solution is known as the

weighted residual method and the reformulated equation obtained on multiplying the

governing equation with the weighting function is known as the weak form equation.

The name ‘weak form’ is due to the fact that the solutions obtained from it do not

satisfy the governing equations at every point in the domain, but rather satisfy the

equations in a weak or average sense with respect to a particular class of testing

functions. Galerkin’s method is a special procedure for deriving the weak form, in

which the weighting function is expanded on the same basis as the assumed solution.

The next sections deal with application of the Galerkin’s method to obtain the weak

forms for (2.23) and (2.54).

Galerkin’s method for Maxwell’s quasistationary equation

The first step in the Galerkin’s method is to multiply the equation by a weighting

function ΨA and integrate over the solution domain (a volume V enclosed by a surface

∂V ): ∫
V

[
∇×H−

(
Js − σ

∂A

∂t

)]
·ΨAdV = 0 (2.62)

The first term can be broken up using the identity (A.10) to give∫
V

∇ ·
(
H×ΨA

)
dV +

∫
V

H ·
(
∇×ΨA

)
dV =

∫
V

(
Js − σ

∂A

∂t

)
·ΨAdV. (2.63)
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Application of the divergence theorem A.12 to the first term yields∫
V

∇ ·
(
H×ΨA

)
dV =

∫
∂V

(
H×ΨA

)
· ndS +

∫
V

H ·
(
∇×ΨA

)
dV. (2.64)

The second term can be manipulated using the scalar triple product formula (
(
H×ΨA

)
·

n = (n×H) ·ΨA = −(H× n) ·ΨA). Substituting these relationships in (2.64), one

gets∫
V

H ·
(
∇×ΨA

)
dV =

∫
∂V

(H× n) ·ΨAdS +

∫
V

(
Js − σ

∂A

∂t

)
·ΨAdV. (2.65)

This equation is known as the weak form representation of (2.23). The difference is

that while (2.23) demands the solution to hold at every point on the domain, (2.65)

requires that the solution hold in an average sense over the entire volume of the

domain. Since the weighting function is expanded on the same basis as the solution

(A), it can also be thought of as a virtual generalized displacement (ΨA = δA). With

this definition (2.65) can be written as∫
V

H · (∇× δA) dV =

∫
∂V

(H× n) · δAdS +

∫
V

(
Js − σ

∂A

∂t

)
· δAdV. (2.66)

It is evident that the equation expresses a balance of energy. Since ∇ × δA = δB,

which is the work conjugate of H. The term H · δB refers to the internal magnetic

energy of the system, σȦ · δA models the energy loss due to eddy currents, the terms

Js · δA and (H×n) · δA describes the energy added to the system by source currents

and applied tangential fields at the boundary of the domain.

Galerkin’s method for structural dynamics

The weak form equations corresponding to (2.54) can be derived using the Galerkin’s

method of weighted residuals similar to the Maxwell’s quasitationary equations. How-

ever, to avoid complexity of notation due to the presence of second order tensors, it
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is convenient to express the equation in Einstein notation,∫
V

Tij,jΨ
u
i dV =

∫
V

(ρüi + cu̇i − fBi
) Ψu

i dV, (2.67)

where the term cu̇i has been added on the right hand side to model structural damp-

ing. Integrating the first term by parts and applying the divergence theorem, one

gets ∫
V

TijΨ
u
i,jdV +

∫
V

(ρüi + cu̇i) Ψu
i dV =

∫
∂V

TijΨ
u
i njdS +

∫
V

fBi
Ψu
i dV. (2.68)

Using the symmetry of the stress tensor, the integrand in the first term can be written

as

TijΨ
u
i,j = Tij

[
1

2

(
Ψu
i,j + Ψu

j,i

)]
. (2.69)

Once again, Ψu can be thought of as the virtual generalized displacements (δu) and

the weak form equation can be written in matrix notation as∫
V

T · ∇SδudV +

∫
V

(ρü + cu̇) · δudV =

∫
∂V

= Tn · δudS +

∫
V

fB · δudV. (2.70)

Similar to the electromagnetic case, this equation represents a balance of internal

and external virtual work where the term T · ∇sδu = T · δS is the internal virtual

work stored as strain energy density, (ρü + cu̇) · δu is the work done by inertia and

damping forces, and the last two terms represent the virtual work due to external

body forces and traction. These weak form equations form the basis of the finite

element formulation discussed in the next section.

Finite element formulation for electro-magneto-mechanical systems

In finite elements the solution domain is discretized into numerous smaller volumes

(or finite elements) and the weak form equations are integrated over each element.
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Within every element the vector potential (Ae) and displacements (ue) are interpo-

lated from the nodal values qAe and que using shape functions NA and Nu respectively,

Ae = NAqAe , ue = Nuque . (2.71)

Since the testing functions are expanded on the same basis in the Galerkin method,

the same shape functions are used for the virtual quantities,

δAe = NAδqAe , δue = Nuδque . (2.72)

The shape functions are defined in terms of local or natural coordinates ξ to generalize

the integration process for all elements. The size of the shape function matrices

depends on the number of nodes per element and the number of degrees of freedom

per node associated with the corresponding solution variable. For example, if a 4-

noded tetrahedral element with linear interpolation functions is chosen, then the

matrix NA will have dimensions of three by twelve since there are three unknown

components of the vector potential at each node giving rise to twelve unknowns for

the element. Similarly, Nu will also have the same size since there are three unknown

components of displacement at each node. Thus if the same element is used for both

the vector potential and displacements then the shape function matrices will be the

same (NA = Nu = N). The shape function matrix comprises a separate function

(Ni) associated with each node which satisfy the properties

4∑
i=1

Ni = 1, ξiNj = δij, (2.73)
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where δij is the kronecker delta. In terms of the natural coordinates the shape func-

tions are given by

N1 = ξ1, (2.74)

N2 = ξ2, (2.75)

N3 = ξ3, (2.76)

N4 = 1− ξ1 − ξ2 − ξ3, (2.77)

and the shape function matrix has the form

N(ξ) =

 N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4

 , (2.78)

To perform the integrations in (2.65) and (2.68) the magnetic flux density, magnetic

field, stress, and strain within the element need to be obtained in terms of the nodal

degrees of freedom qAe and que . Flux density and strain are kinematically related to

the solution vectors as

Be = ∇×Ae = ∇× (NAqAe ) := Ceq
A
e (2.79)

Se = ∇ue = ∇(Nuque ) := Geq
u
e . (2.80)

The matrices Ce and Ge are the discrete curl and gradient operators which con-

tain derivatives of the local coordinates ξi with respect to the global coordinates xi.

Substituting these relations in the weak form expressions, one gets

NA∑
e=1

(∫
∆

He ·Ceδq
A
e Jed∆+

∫
∆

σeN
A∂qAe
∂t
·NAδqAe Jed∆

)
=

NA
S∑

b=1

∫
∆

HT,b ·NAδqAb Jb,Sd∆S +
NA∑
e=1

∫
∆

Js,e ·NAδqAe Jed∆,

(2.81)
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Nu∑
e=1

(∫
∆

Te ·Geδq
u
e Jed∆ +

∫
∆

ρeN
u∂

2que
∂t2
·Nuδque Jed∆+

∫
∆

ceN
u∂que
∂t
·Nuδque Jed∆

)
=

Nu
S∑

b=1

∫
∆S

tb ·Nuδqub Jb,Sd∆S,

(2.82)

where NA and Nu are the number of elements in the magnetic and mechanical do-

mains respectively. The subscript b refers to the element number on the boundary.

The number of elements on the boundary on which a magnetic field is applied is NA
S

and the number of boundary elements to which a traction is applied is Nu
S . The

integral
∫

∆
Je d∆ refers to the integral over the element in natural coordinates and is

the volume of the element,∫
∆

Jed∆ :=

∫ 1

−1

∫ 1

−1

∫ 1

−1

det

(
∂x

∂ξ

)
dξ1dξ2dξ3 = Ve, (2.83)

and the integral
∫

∆S
Jb,S d∆S gives the surface area of the element face on the bound-

ary, ∫
∆S

Jb,S d∆S :=

∫ 1

−1

∫ 1

−1

det

[
∂xi
∂ξi

∂xi
∂ξj

∂xj
∂ξi

∂xj
∂ξj

]
dξidξj = Ab. (2.84)

The field and stresses in the element must be supplied by constitutive laws. Here,

linear decoupled constitutive laws will be covered to illustrate the basic steps of

the finite element method. Incorporation of nonlinear coupled constitutive laws for

magnetostrictive materials in the finite element framework is discussed in detail in

chapter 3. Considering the material for the element to have constant isotropic per-

meability µe and a constant stiffness tensor ce, the decoupled constitutive laws can

be written as

He = µ−1
e Be = µ−1

e Ceq
A
e , Te = ceSe = ceGeq

u
e . (2.85)

These relations can now be substituted into the finite element approximation for the

virtual work given by (2.82) and (2.81). This yields matrix equations for increments
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of the vector potential and displacement nodal values, since they can be pulled from

the integral. To illustrate, the following matrices are defined,

kue =

∫
∆

GT
e ceGeJed∆, (2.86)

kAe =

∫
∆

CT
e µ
−1
e CeJed∆, (2.87)

dAe =

∫
∆

(
NA
)T
σeN

AJed∆, (2.88)

due =

∫
∆

(Nu)T ceN
uJed∆, (2.89)

me =

∫
∆

(Nu)T ρeN
uJed∆, (2.90)

and the following vectors are defined,

fub =

∫
∆S

(Nu)T tbJb,Sd∆S, (2.91)

fAb =

∫
∆S

(
NA
)T

HTJb,Sd∆S, (2.92)

fJe = −
∫

∆

(
NA
)T

Js,eJed∆. (2.93)

With these definitions, the finite element approximations for the magnetic and me-

chanical virtual work balance are

NA∑
e=1

(
dAe q̇Ae + kAe qAe

)
· δqAe =

NA∑
e=1

fJe · δqAe +

NA
S∑

b=1

fAb · δqAb , (2.94)

Nu∑
e=1

(meq̈
u
e + due q̇

u
e + kueq

u
e ) · δque =

Nu
S∑

b=1

fub · δqub +

Nu
p∑

p=1

Pp · δqup . (2.95)

On globally assembling these matrices (see chapter 3 of [18]), one gets the finite

element model equations as

(
DAQ̇A + KAQA − FA

)
· δQA, (2.96)(

MuQ̈A + DuQ̇u + KuQu − Fu
)
· δQu. (2.97)
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Since the virtual generalized displacements δQA and δQu are arbitrary, the equation

holds only if the coefficients of the virtual quantities are identically zero. This gives

the following two matrix equations for the finite element model.

DAQ̇A + KAQA = FA, (2.98)

MuQ̈u + DuQ̇u + KuQu = Fu. (2.99)

Note that the two equations are decoupled because the constitutive laws in the

formulation are decoupled. Use of magnetomechanically coupled constitutive laws

leads to coupling between the two equations which is mainly reflected in off-diagonal

entries in the combined stiffness matrix of the system. Nonlinearity in constitutive

laws results in a state dependent stiffness matrix. Chapter 3 deals with solution

strategies for such coupled systems.

63



Chapter 3: UNIFIED APPROACH TO MODELING

MAGNETOSTRICTIVE TRANSDUCERS

This chapter aims at developing a comprehensive finite element modeling frame-

work for magnetostrictive transducers by describing the coupling between the elec-

trical, magnetic, and mechanical domains. The electrical and magnetic boundary

value problems are coupled through Maxwell’s equations while the mechanical and

magnetic boundary value problems are coupled through the magnetostrictive material

constitutive laws. This chapter presents a unified approach to model magnetostric-

tive transducers by incorporating nonlinear coupled constitutive laws in the finite

element model described in section 2.4. For quasistatic conditions, an efficient piece-

wise linear solution strategy is devised in which the solution is obtained as a sequence

of incremental steps with the magnetostrictive material being modeled by the linear

piezomagnetic equations within each step. The piezomagnetic coefficients are up-

dated after every step using nonlinear constitutive laws. The piecewise linear model

can be used to determine quasistatic major loops or accurate bias points. A linear

dynamic solution with piezomagnetic coefficients computed at the bias point can be

used to describe the system dynamics for moderate inputs. Finally, a nonlinear dy-

namic solution algorithm is implemented which can yield the transducer dynamics

for large inputs. The finite element model equations are coded into the commercial
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finite element package COMSOL which is used for geometric modeling, meshing, and

global assembly of matrices. The piecewise linear and nonlinear dynamic solvers are

coded up as MATLAB functions.

3.1 Finite Element Framework

The finite element framework used in this work is based on (2.81) and (2.82)

described in Chapter 2. In magnetostrictive materials stress and field are a function

of both flux density and strain. Thus the governing equations for the finite element

model can be written as

NA∑
e=1

(∫
∆

He (Be,Se) ·Ceδq
A
e Jed∆+

∫
∆

σeN
A∂qAe
∂t
·NAδqAe Jed∆

)
=

NA
S∑

b=1

∫
∆

HT,b ·NAδqAb Jb,Sd∆S +
NA∑
e=1

∫
∆

Js,e ·NAδqAe Jed∆,

(3.1)

Nu∑
e=1

(∫
∆

Te (Be,Se) ·Geδq
u
e Jed∆ +

∫
∆

ρeN
u∂

2que
∂t2
·Nuδque Jed∆+

∫
∆

ceN
u∂que
∂t
·Nuδque Jed∆

)
=

Nu
S∑

b=1

∫
∆S

tb ·Nuδqub Jb,Sd∆S.

(3.2)

The next section describes two different methods of incorporating nonlinear consti-

tutive laws in these equations and formulating equivalent matrix equations for the

system.

3.2 Incorporation of Nonlinear Coupled Constitutive Laws

Incorporation of nonlinear constitutive behavior poses a significant challenge in

the formulation of coupled finite element models for magnetostrictive systems. The

most common method to describe magnetostrictive material behavior has been by ob-

taining polynomial fits to data. For example, Benbouzid et al. [8] used surface splines
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to fit experimental data while Kannan and Dasgupta [50] used constitutive relations

in an incremental form with coefficients obtained from bi-cubic spline fits to measure-

ments. Kim et al. [55] used 6th order polynomials to fit the strain-field behavior with a

different set of coefficients for each preload condition. The use of spline functions has

the advantages of easy differentiability and implementation for 1D cases. However,

the procedure becomes rather complex if complete 3D material behavior is required.

This would require 3D measurements to be performed, and bulky splines with 9 com-

ponents (3 for field and 6 for stress) to be fitted to those measurements. Graham et

al. [40] implemented Galfenol constitutive behavior through look-up tables generated

using the Armstrong model a priori for a large number of induction and stress values.

Although the Armstrong model is three dimensional, look-up tables were generated

for 1D induction and stress inputs. As is the case with splines, extension to a full

3D version will add significant complexity because it will require generation of bulky

tables with 9 inputs and 9 outputs. For these reasons, using an efficient constitutive

law coded up as functions is beneficial for 3D boundary value problems.

Most available constitutive laws take magnetic field (H) and stress (T) as input

and compute flux density B and strain (S) as output.

B = B (H,T) , S = S (H,T) . (3.3)

Depending on the requirement different strategies can be applied to incorporate

the constitutive law. For modeling quasistatic operation a piecewise-linear solution

method with no convergence checks can be used (section 3.2.1).
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3.2.1 Piecewise-linear implementation

A piecewise-linear implementation of the constitutive law is a useful tool to model

transducer responses under quasistatic conditions. Neglecting the dynamic terms,

the virtual work balance equations (2.81) and (2.82) can be written in an incremental

form as

NA∑
e=1

(∫
∆

∆He ·Ceδ∆qAe Jed∆+

)
=

NA
S∑

b=1

∫
∆

∆HT,b ·NAδ∆qAb Jb,Sd∆S+

NA∑
e=1

∫
∆

∆Js,e ·NAδ∆qAe Jed∆,

(3.4)

Nu∑
e=1

(∫
∆

∆Te ·Geδ∆que Jed∆

)
=

Nu
S∑

b=1

∫
∆S

∆tb ·Nuδ∆qub Jb,Sd∆S, (3.5)

where ∆H and ∆T must be computed as a function of ∆B and ∆S. For some field

H0 and stress T0, the constitutive model computes B and S along with the material

Jacobian J given by

J =

[
µ = ∂B

∂H
(H0,T0) d = ∂B

∂T
(H0,T0)

dT = ∂S
∂H

(H0,T0) s = ∂S
∂T

(H0,T0)

]
. (3.6)

For small deviations about H0 and T0, the constitutive law can be formulated in

incremental form through inversion of the material Jacobian matrix,[
∆H
∆T

]
=

[
µ−1 −a
−aT c

] [
∆B
∆S

]
= J −1

[
∆B
∆S

]
. (3.7)

The stress and field increments can be related to the nodal degrees of freedoms by

using (2.79) and (2.80) in the incremental form giving

∆He = µ−1
e Ce∆qAe − aeGe∆que , (3.8)

∆Te = −aTe Ce∆qAe + ceGe∆que . (3.9)
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Substituting (3.8) and (3.9) into (3.4) and (3.5), globally assembling the resulting

system, and equating the coefficients of the virtual generalized displacements yields

the following system of equations,[
KA KuA(

KuA
)T

Ku

](
∆QA

∆Qu

)
=

(
∆RA

∆Ru

)
, (3.10)

where the global stiffness matrix and load vector components are given by

Ku =
Nu∑
e=1

∫
∆

GT
e ceGeJed∆, (3.11)

KA =
NA∑
e=1

∫
∆

CT
e µ
−1
e CeJed∆, (3.12)

KuA = −
NA∑
e=1

∫
∆

CT
e aeGeJed∆, (3.13)

∆Ru =

Nu
S∑

b=1

∫
∆S

(Nu)T ∆tbJb,Sd∆S, (3.14)

∆RA =

NA
S∑

b=1

∫
∆S

(
NA
)T

∆HTJb,Sd∆S +
NA∑
e=1

∫
∆

(
NA
)T

∆Js,eJed∆. (3.15)

Since the computed piezomagnetic coefficients (µ−1, c, and a) are dependent on

stress and field, which have a spatial variation, the coefficients are also spatially

variant. To preserve this inhomogeneity, the coefficients are declared as interpolated

data functions of spatial coordinates. Each coefficient is a separate function and

when called, COMSOL searches in the data file for their values corresponding to that

location or interpolates between nearby points if that location is not present in the

file.

Ideally, the coefficients must be evaluated at all the integration points present

in the magnetostrictive subdomain during the assembly process. However, in a 3D

model several thousand integration points are present. Evaluation, inversion and stor-

age of the Jacobian at every integration point is both computationally and memory
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intensive. Assuming that the spatial variation in field and stress is not steep, the co-

efficients are calculated only at selected locations and approximated at the remaining

points through interpolation.

Figure 3.1 shows a flowchart of the piecewise-linear solution procedure. The model

starts from zero initial conditions and updates the piezomagnetic coefficients by com-

puting the material Jacobian at zero field and stress. The solver then assembles the

external load vector and the system matrix and computes the incremental solution

vector (∆U). The next step is to obtain the stress and field increments from ∆U. To

do this first induction and strain increments are found using the kinematic relation-

ships with the vector magnetic potential and mechanical displacements. Next ∆T

and ∆H are obtained from ∆B and ∆S using the inverted constitutive law (3.7). The

total field and stress vectors are updated with the corresponding increments. This

process is repeated till the inputs have reached their final values. The computation

is fast as it does not involve iteration loops or convergence checks. Consequently, the

solution has a tendency to drift since within every interval a nonlinear response is

approximated by linear behavior. The larger the size of each interval the larger is the

drift. Thus, depending on the desired accuracy, a sufficiently small step size must

be utilized. The piecewise-linear model is useful for two purposes. First, to obtain

a measure of quasistatic system performance and secondly to generate accurate bias

points which preserve the spatial inhomogeneity in the distribution of field and stress

in Galfenol, and hence, in the material coefficients.

An efficient way to obtain the dynamic response of a transducer when excited

with moderate inputs about a bias point (H̄, T̄) is by linearizing the system about

the bias point. This can be done by using a constant system stiffness matrix factored
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Figure 3.1: Flowchart of the piecewise-linear solution process.
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using the material coefficients computed at the bias point and adding the dynamic

terms from (2.81) and (2.82) giving[
0 0
0 Mu

](
∆Q̈A

∆Q̈u

)
+

[
DA 0
0 Du

](
∆Q̇A

∆Q̇u

)
+

[
KA −KuA

−
(
KuA

)T
Ku

]
H̄,T̄

(
∆QA

∆Qu

)
=

(
∆RA

∆Ru

)
,

(3.16)

where

DA =
NA∑
e=1

∫
∆

(
NA
)T
σeN

AJed∆, (3.17)

Du =
Nu∑
e=1

∫
∆

(Nu)T ceN
uJed∆, (3.18)

Mu =
Nu∑
e=1

∫
∆

(Nu)T ρeN
uJed∆. (3.19)

3.2.2 Nonlinear dynamic implementation

A nonlinear dynamic solution is necessary to obtain the response of the transducer

to large scale dynamic inputs. Solution of nonlinear dynamic systems is a particularly

challenging task as even unconditionally stable time integration approaches for linear

systems may become unstable. The governing equations for the finite element system

are formulated in terms of the total (not incremental) quantities.

MÜ + DU̇ = R(t)− F(U, t), (3.20)

where the mass matrix M, damping matrix D, and state vector U are of the form

M =

[
0 0
0 Mu

]
, D =

[
DA 0
0 Du

]
, U =

(
QA

Qu

)
. (3.21)

The vector of externally applied forces R(t) and the internal nodal force vector F(U, t)

are of the form

R =

(
RA

Ru

)
, F =

(
FA

Fu

)
. (3.22)
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where RA includes contributions from coil source current density and externally im-

posed tangential fields, and Ru includes contributions from traction on certain bound-

aries,

Ru =

Nu
S∑

b=1

∫
∆S

(Nu)T tbJb,Sd∆S, (3.23)

RA =

NA
S∑

b=1

∫
∆S

(
NA
)T

HTJb,Sd∆S +
NA∑
e=1

∫
∆

(
NA
)T

Js,eJed∆. (3.24)

Similarly FA and Fu include contributions from the element fields and stresses,

FA =
NA∑
e=1

∫
∆

CT
e He(Be,Se)Jed∆, (3.25)

Fu =
Nu∑
e=1

∫
∆

GT
e Te(Be,Se)Jed∆. (3.26)

The tangent stiffness matrix is obtained by differentiating F with respect to U,

K =

[
∂FA

∂QA
∂FA

∂Qu

∂Fu

∂QA
∂Fu

∂Qu

]
, (3.27)

where

∂FA

∂QA
=

NA∑
e=1

∫
∆

CT
e

∂He

∂qAe
Jed∆

=
NA∑
e=1

∫
∆

CT
e

∂He

∂Be

∂Be

∂qAe
Jed∆

=
NA∑
e=1

∫
∆

CT
e

∂He

∂Be

CeJed∆. (3.28)

Similarly the other components can be obtained as

∂FA

∂Qu
=

Nu∑
e=1

∫
∆

CT
e

∂He

∂Se
GeJed∆, (3.29)

∂Fu

∂QA
=

Nu∑
e=1

∫
∆

GT
e

∂Te

∂Be

CeJed∆, (3.30)

∂Fu

∂Qu
=

Nu∑
e=1

∫
∆

GT
e

∂Te

∂Be

GeJed∆. (3.31)
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Thus, determination of the internal nodal force vector requires constitutive model

inversion while determination of the tangent stiffness matrix requires computation

of the material Jacobian inverse. The inversion process can be carried out using a

Newton-Raphson or a Quasi-Newton algorithm. Both approaches can approximate

the Jacobian inverse as a part of the inversion process.

Bathe [6] suggested various time-integration algorithms for nonlinear structural

problems of similar form. Explicit methods are ruled out since the mass matrix is

singular. An implicit scheme based on the trapezoidal rule is implemented, combined

with equilibrium iterations. At the kth iteration the system equations can be written

as

Mt+∆tÜ(k) + Dt+∆tU̇(k) + t+∆tK(k−1)∆U(k) = t+∆tR− t+∆tF(k−1), (3.32)

t+∆tU(k) = t+∆tU(k−1) + ∆U(k). (3.33)

According to the trapezoidal rule of time integration, the following assumptions are

used:

t+∆tU = tU +
∆t

2

(
tU̇ + t+∆tU̇

)
, (3.34)

t+∆tU̇ = tU̇ +
∆t

2

(
tÜ + t+∆tÜ

)
. (3.35)

The vectors Ü(k) and U̇(k) can be written using (3.33) to (3.35) as

t+∆tÜ(k) = 4
∆t2

(
t+∆tU(k−1) − tU + ∆U(k)

)
− 4

∆t
tU̇− tÜ, (3.36)

t+∆tU̇(k) = 2
∆t

(
t+∆tU(k−1) − tU + ∆U(k)

)
− tU̇. (3.37)
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Substitution in (3.32) yields the equation of motion for the system,[
t+∆tK(k−1) +

4M

∆t2
+

2D

∆t

]
∆U(k) = t+∆tR−M

[
4

∆t2
(
t+∆tU(k−1) − tU

)
− 4

∆t
tU̇− tÜ

]
−D

[
2

∆t

(
t+∆tU(k−1) − tU

)
− tU̇

]
− t+∆tF(k−1).

(3.38)

The starting values for the internal force and state vector are considered to be same

as the corresponding final values of the previous time step,

t+∆tF(0) = tF, t+∆tU(0) = tU. (3.39)

The convergence criteria used in this work are based on energy and norm of the

out-of-balance load vector [6]. Mathematically, these criteria can be written as

‖t+∆tR− t+∆tF(k−1) −M t+∆tÜ(k−1) −D t+∆tU̇(k−1)‖
RNORM

≤ RTOL, (3.40)

∆U(k) ·
(
t+∆tR− t+∆tF(k−1) −M t+∆tÜ(k−1) −D t+∆tU̇(k−1)

)
∆U(1) ·

(
t+∆tR− tF−M tÜ−D tU̇

) ≤ ETOL. (3.41)

The mass and damping matrix are state-independent and hence are assembled only

once for the entire simulation. The internal nodal force vector F and the tangential

stiffness matrix K are assembled in every iteration as they are state-dependent (Fig-

ure 3.2. Thus, efficient computation of F and K is vital to the performance of the

model.

3.3 Implementation on COMSOL and MATLAB

The modeling framework described in sections 2.4 and 3.2 is implemented on

COMSOL 3.5a utilizing its ability to interact with MATLAB functions. The basic

template for the model is set-up by using two separate weak-form application modes,

one for the mechanical and one for the magnetic degrees of freedom. The variables for
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Figure 3.2: Outline of a single time step of the nonlinear dynamic solution algorithm.
The flowchart shows how quantities at time t+∆t are obtained with knowledge about
all variables at time t.

the mechanical mode are uX, uY, uZ while for the magnetic mode are AX,AY,AZ.

This separation of the mechanical and magnetic physics allows for reduction of the

total degrees of freedom in the model. For example, a component which does not

take part in the structural dynamics of the transducer (e.g a coil, air, flux return) is

marked ’inactive’ in the mechanical application mode. This means that the mechan-

ical degrees of freedom are not solved for in these components.

The next step is to add global expressions in the model. These are essentially

kinematic relationships ((2.79) and (2.80)) which are valid irrespective of the mate-

rial (Figure 3.3). The weak form expressions are added in the subdomain settings.

In the domains which are structurally active, the weak terms and time dependent
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Figure 3.3: Screenshot of the global expressions relating flux density and strain to
the vector magnetic potential and displacements.

expressions are entered as shown in Figure 3.4. Similarly, the weak form expressions

for the magnetically active domains are entered within the subdomain settings of the

magnetic application mode as shown in Figure 3.5. Boundary conditions are entered

within the boundary settings dialog box of each application mode. The set-up of the

model up till here is common for both the piecewise-linear and the nonlinear imple-

mentation. However, the next steps are specific to the solution process being used.
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(a) (b)

Figure 3.4: Screenshots of the weak and time-dependent weak terms (dweak) for the
mechanical subdomain.

Piecewise-linear solution

For the piecewise linear solution, the constitutive laws are entered through sub-

domain expressions. Consider a magnetostrictive material whose piezomagnetic coef-

ficient matrices are of the form

µ−1 =

 µi11 µi12 µi13

µi12 µi22 µi23

µi13 µi23 µi33

 , a =

 a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

 ,

c =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 . (3.42)

The subdomain expressions required to model this material is shown in Table 3.1.

The table also lists the expression used to model other passive materials. The consti-

tutive laws have been grouped depending on the types of energy storage the material

participates in. For example, air does not conduct electricity or take part in structural

dynamics. It stores energy only in the magnetic form. The drive coil stores energy
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(a) (b)

Figure 3.5: Screenshots of the weak and time-dependent weak terms (dweak) for the
magnetic subdomain.

in magnetic form, as well as conducts electricity. However, usually it is structurally

inactive. Similarly there could be structural metallic elements which store energy in

all three forms. The magnetostrictive material always participates in all the energy

domains. In the column for the magnetostrictive material, the parameters muG11i,

muG12i etc. are the piezomagnetic coefficients which are declared as functions of

interpolated data. These functions, when called, read/interpolate the required value

from a data file corresponding to the geometric location of the evaluation point. The

data file needs to be updated after every step by a MATLAB function which com-

putes the material Jacobian matrix at numerous points distributed throughout the

magnetostrictive material. Once all these equations are entered, the model can be

exported to an ‘m’ file and executed from the MATLAB command prompt. This gives

the user additional freedom of storing the variables and scripting the solution process.

The piecewise-linear solver must be coded to execute the steps outlined in Figure 3.1.

The ‘assemble’ command with the appropriate arguments can be used to assemble the

tangent stiffness matrix and the differential load vector at every step. The ’posteval’
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command evaluates the stress and field increments using the subdomain expressions

entered in the finite element model.

Nonlinear dynamic solution

The subdomain settings for the nonlinear model is entered in a manner similar

to the piecewise-linear model except the format for entering the constitutive model

for the magnetostrictive material. Rather than entering the constitutive law as ex-

pressions with coefficients declared as data functions, each component of the stress

and field vectors is declared as a separate function coded up in MATLAB. Each of

these functions take as input the three components of flux density and 6 components

of strain. Along with the functions themselves, the derivative of every function with

respect to each input parameter of that function is also required. These derivatives

must be entered as separate functions in the derivatives dialog box as shown in Fig-

ure 3.6. The ‘mmodel deriv’ function must be coded up such that it returns a specific

derivative depending on the last parameter. For example when the last parameter

is 1, the function must return ∂HX/∂BX, when it is 2, the function must return

∂HX/∂BY and so on. Just like the piecewise-linear model, the model is exported to

MATLAB after entering all the expressions. The nonlinear dynamic system solver is

coded as a MATLAB function by following the steps outlined in section 3.2.2. The

‘assemble’ command can be used to assemble the mass and damping matrix at the be-

ginning of the simulation, the stiffness matrix at the beginning of every step, and the

out-of-balance load vector at every iteration. While assembling the stiffness matrix

and the load vector, COMSOL repeatedly calls the material model functions (includ-

ing the derivative functions). For computational efficiency, these functions should be
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Figure 3.6: Screenshot showing the function definition for HX and declaration of the
derivative functions.

coded such that for a particular set of input strain and induction values the model

is inverted only once, and the corresponding stress, fields and derivatives are stored

in a global data structure. Every time COMSOL calls any of the material model

functions with the same induction and strain components, the required components

can be returned from the stored data structure without any further computations.
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Chapter 4: GALFENOL TRANSDUCERS

Magnetostrictive iron-gallium alloys (Galfenol) possess structural-grade mechani-

cal properties in addition to exhibiting moderate magnetostriction. These properties

make Galfenol uniquely well-suited for integration within three-dimensional (3D) ac-

tive structures. Galfenol can be used in sensors or actuators capable of withstanding

tension, compression, and shock loads. This chapter deals with coupling a nonlinear

energy-averaged constitutive law for Galfenol with the finite element framework de-

scribed in Chapter 3 to describe the full nonlinear coupling between the electrical,

magnetic, and mechanical domains in Galfenol systems.

A parameter optimization algorithm is proposed to determine the parameters of

the discrete energy averaged model incorporated into the 3D dynamic finite element

framework. The algorithm uses the 1D magnetomechanical actuation and sensing

curves for the Galfenol alloy as input and computes the model parameters by min-

imizing an error functional defined between the modeled curves and measurements.

Initial guesses on the parameters are obtained by using analytical relationships which

relate specific model parameters to certain features in the experimental data. Pa-

rameters are optimized for unannealed single crystal 〈100〉 Fe81.6Ga18.4 and textured

polycrystalline 〈100〉 Fe81.5Ga18.5 alloys with and without stress annealing. A case
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study on a Galfenol unimorph actuator reveals the ability of the model to describe

the quasistatic and dynamic response of the actuator.

4.1 Parameter estimation of a discrete energy-averaged model
from 1D measurements

Implementation of nonlinear coupled constitutive behavior poses a significant chal-

lenge in distributed parameter modeling frameworks. Earlier works modeled magne-

tostrictive behavior using polynomial fits to measurements. For example, Benbouzid

et al. [8] fit surface splines to experimental data while Kannan and Dasgupta [50] used

constitutive relations in an incremental form with coefficients obtained from bi-cubic

spline fits to measurements. Kim et al. [55] used 6th order polynomials to fit the

strain-field behavior of Terfenol-D with a different set of polynomial coefficients for

each preload condition. The use of spline functions to fit measurements has the advan-

tages of easy differentiability and implementation. However, the procedure becomes

rather complex if complete 3D material behavior is required. This would require 3D

measurements to be performed, and bulky splines with 9 components (3 for field and

6 for stress) to be fitted to those measurements. Graham et al. [40] implemented

Galfenol constitutive behavior through look up tables generated a priori using the

Armstrong model [3] for a large number of induction and stress values. Although the

Armstrong model is capable of describing 3D Galfenol behavior, look up tables were

generated for 1D induction and stress inputs. As is the case with splines, extension

to a full 3D version will add significant complexity because it will require generation

of bulky tables with nine inputs and nine outputs.

To overcome the complexities associated with 3D measurements and subsequent

multivariate interpolation, significant emphasis is placed on incorporating efficient
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theoretical constitutive laws within distributed parameter models. A physically mo-

tivated constitutive law takes advantage of symmetries in the material and is capable

of predicting 3D material behavior with reduced order information.

The response of Galfenol varies significantly depending on its composition [23] and

material processing techniques [73]. Changes in composition or processing methods

can be made as required by an application. For example, increasing Gallium concen-

tration from 18.4% to 20.9% reduces the saturation magnetostriction but increases the

stress range over which the material shows a stress dependent susceptibility change

making it more suitable for force sensing applications [59]. Through a process called

stress-annealing [73, 84] a tetragonal anisotropy can be introduced in Galfenol where

the two 〈100〉 easy directions parallel to the direction of magnetic field application

have a higher anisotropy energy than the remaining four orientations perpendicular

to the sample axis. This enables the alloy to exhibit maximum saturation mag-

netostriction without any compressive preload. An algorithm which optimizes the

constitutive model parameters to describe these variations in Galfenol behavior will

greatly improve the applicability of the constitutive law in transducer design.

This work aims at developing a formal procedure to estimate the parameters of

the anhysteretic discrete energy averaged model for Galfenol which is incorporated

into a finite element framework for transducer level modeling [17]. The parameter

optimization algorithm takes as input selected 1D magnetomechanical measurements

and calculates the constitutive model parameters such that the only inputs required by

the finite element model are the system level parameters (permeability, conductivity,

Young’s modulus etc. of passive materials) and the 1D magnetostrictive material

characterization curves (Figure 4.1). Section 4.1.1 discusses the Galfenol constitutive
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Figure 4.1: A schematic representation for the solution of a 3D finite element model
showing how a parameter optimization algorithm can eliminate the need for complex
3D measurements and subsequent interpolation.

model and the parameters which need to be optimized. Section 4.1.2 highlights the

main steps that are undertaken in the optimization process including techniques to

make initial guesses on each parameter. In section 4.1.3, the performance of the

optimization algorithm is analyzed for single crystal and textured polycrystalline

Galfenol alloys.

4.1.1 Discrete energy-averaged constitutive model

Models based on energy weighted averaging employ statistical mechanics to cal-

culate the bulk magnetization and strain of the material. In continuous form (eg.

Armstrong’s model [3]), this approach involves calculation of macroscopic material

response as an expected value of a large number of possible energy states (or do-

main orientations) with an energy based probability density function. Due to the
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large computational effort involved in evaluating the expected values by solving two

dimensional integrals numerically, a discrete version of the model was developed [2].

The choice of possible domain orientations was restricted to the easy magnetization

axes with volume fraction of domains in each state calculated using a discretized

version of the probability density function. The increase in computational speed,

however, came at the cost of reduced accuracy. To preserve accuracy without sacri-

ficing efficiency, Evans and Dapino [32] developed a constitutive model for Galfenol

by choosing orientations which minimize an energy functional locally defined in the

vicinity of each easy axis.

The anisotropy energy Gk
A is formulated about the kth easy axis ck as

Gk
A =

1

2
Kk‖mk − ck‖2, (4.1)

where the constants Kk control the anisotropy energy landscape in the vicinity of the

easy axes. The anisotropy energy along each easy axis is, however, identically zero.

For materials with cubic anisotropy (such as unannealed Galfenol), the anisotropy

energy along each easy axis is the same and the model can be applied in its present

form. However, it has been shown that stress annealing induces tetragonal anisotropy

in Galfenol [73] where the four 〈100〉 directions perpendicular to the annealing direc-

tion have a lower energy than the other two. To make the model capable of describing

these effects, the anisotropy energy is modified as

Gk
A =

1

2
K‖mk − ck‖2 +Kk

0 , (4.2)

where K controls the energy landscape in the vicinity of the easy axes and Kk
0 specifies

the base anisotropy energy along the kth easy axis. Six parameters are required to

describe the anisotropy energy (K,K1
0 , ..., K

5
0), where Kk

0 is defined as the anisotropy
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energy relative to the sixth easy axis. Thus, the total number of parameters is same

as the earlier description of anisotropy energy [32]. Further, the m-dependent portion

of the anisotropy energy remains unchanged, which means the minimization results

remain unaffected.

With this definition, the total free energy of a domain close to the kth easy axis

ck is formulated as the sum of the local anisotropy energy Gk
A, magnetomechanical

coupling energy Gk
C and the Zeeman energy Gk

Z ;

Gk =
1

2
K‖mk − ck‖2 +Kk

0︸ ︷︷ ︸
Gk

A

−Skm ·T︸ ︷︷ ︸
Gk

C

−µ0Msm
k ·H︸ ︷︷ ︸

Gk
Z

, (4.3)

which must be minimized with respect to the orientation vector mk in the vicinity

of ck. The minimization problem is constrained (‖mk‖ = 1) and is formulated as

an inhomogeneous eigenvalue problem through the use of Lagrange multipliers. The

total energy is written as

Gk =
1

2
mk ·Kmk −mk ·Bk +

1

2
K +Kk

0 , (4.4)

where the magnetic stiffness matrix K and force vector Bk are

K =

 K − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 K − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 K − 3λ100T3

 , (4.5)

Bk =
[
ck1K + µ0MsH1 ck2K + µ0MsH2 ck3K + µ0MsH2

]T
. (4.6)

The Lagrange function is constructed as the sum of the energy functional and unity

norm constraint on the orientation vectors linearized about the easy axis orientations

(mk ·mk = 1 ≈ ck ·mk = 1):

L =
1

2
mk ·Kmk −mk ·Bk + λk

(
ck ·mk − 1

)
, (4.7)
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where λk is the Lagrange multiplier corresponding to the kth easy axis. Differentiating

the Lagrange function with respect to mk and equating to zero one gets

mk = K−1
[
Bk − λkck

]
. (4.8)

Substitution of mk from (4.8) into the constraint yields the following expression for

the Lagrange multiplier:

λk = −1− ck · (K)−1 Bk

ck · (K)−1 ck
, (4.9)

which on substitution into (4.8) gives the following analytical expression for the ori-

entation which minimizes the energy around the kth easy axis, of the form

mk = (K)−1

[
Bk +

1− ck · (K)−1 Bk

ck · (K)−1 ck
ck

]
. (4.10)

A limitation of the constitutive law in its current form is that the unity norm con-

straint on mk is not strictly enforced. As a result at very high fields well in the

saturation regime, the norm of mk can become much greater than unity thus yield-

ing unphysical magnetization and strain calculations (Figure 4.2). This issue can

be addressed by strictly enforcing the unity norm constraint rather than using the

approximation mk · mk = 1 ≈ ck · mk = 1. However, that leads to a sixth order

equation for the Lagrange multiplier requiring numerical techniques for solution thus

compromising the efficiency of the model [32]. In order to maintain the stability of the

model without sacrificing its efficiency, mk is normalized and denoted by the symbol

m̂k in all future calculations where

m̂k =
mk

‖mk‖
. (4.11)

Figure 4.2 shows that the output of the model with and without the normalization

is almost the same till the former becomes unstable. Thus normalizing the minima
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Figure 4.2: Comparison of model outputs with and without normalizing mk. Simu-
lations run at constant prestresses of 20, 50 and 80 MPa.

eliminates the instability and preserves the accuracy of the constitutive model with

almost the same number of computations. The anhysteretic volume fractions are

calculated explicitly using Boltzmann-type averaging,

ξkan =
exp

(
−Gk/Ω

)∑r
j=1 exp (−Gj/Ω)

, (4.12)

where Ω is an averaging factor. Macroscopic anhysteretic material behavior is ob-

tained by summing the individual contributions of each domain weighted by its cor-

responding volume fraction. The bulk magnetization M and strain S are obtained by

averaging the properties along the six minima weighted by their respective volume

fractions:

M = Ms

r∑
k=1

ξkanm̂
k, (4.13)

S = sT +
r∑

k=1

ξkanS
k
m. (4.14)
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The model parameters are the six anisotropy constants, smoothing factor (Ω), mag-

netostriction constants (λ100, λ111), and the saturation magnetization (Ms). The base

anisotropy constants are split into two groups: K0‖ and K0⊥ . K0‖ is the anisotropy en-

ergy for the two orientations parallel to the axis of the rod while K0⊥ is the anisotropy

constant for the four orientations perpendicular to the axis of the rod. Since we are

interested only in the relative anisotropy energies, any one of them can be chosen to

be zero. In this paper, K0⊥ is chosen to be zero, thus reducing the total number of

unknown parameters to six. For unannealed Galfenol, K0‖ is expected to be almost

equal to K0⊥ which is chosen to be zero, while for annealed Galfenol K0‖ is expected

to be significantly larger than K0⊥ due to the induced tetragonal anisotropy.

4.1.2 Parameter optimization procedure

The parameter optimization process consists of two steps. First, anhysteretic

curves are obtained from hysteretic measurements through a simple averaging proce-

dure. This is necessary because we are interested in optimizing the anhysteretic model

parameters only. Next, a least squares optimization routine is used to minimize the

error between the family of modeled curves and the anhysteretic curves obtained from

measurements.

Extracting the anhysteretic curves from measurements

The de-hysterized curves are obtained by computing an average value from the

upper and lower branches of the hysteresis loops (similar to Benbouzid et al. [8]).

As pointed out by Benbouzid et al. [8], this procedure yields an approximate anhys-

teretic value and may not coincide with experimental anhysteretic curves obtained by

superimposing a decaying AC component of the input (field or stress) about a mean
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value. Since Galfenol exhibits extremely low hysteresis, the error due to this approx-

imation should be negligible. The anhysteretic curves are obtained by sweeping the

input (field or stress) over the entire applied range at discrete steps and finding an

average value of the response over a range of inputs. For example, the anhysteretic

magnetostriction at a field H0 is computed as

San(H0) = AV G(S(H) : H0 − δH < H < H0 + δH), (4.15)

where δH is a small number compared to the maximum applied field. The value

of δH must be chosen carefully. A large value introduces error due to averaging

over a wider range of fields while a very small δH might result in non-existence of

a data point within that range. By calculating the anhysteretic curves using this

method, the data can be sampled at a much lower rate than which it was collected.

This is useful because the material model function is executed as many times as

the number of points on the extracted anhysteretic curve. Fewer number of data

points imply that the material model would be executed fewer times, speeding up the

overall optimization procedure. Figure 4.3 shows measurements and the extracted

anhysteretic curves for a single crystal 〈100〉 Fe81.5Ga18.5 sample grown with FSZM.

Estimating the model parameters

Parameter optimization is done using the MATLAB function fmincon. This func-

tion needs an initial guess and bounds for each parameter. Further it requires a scalar

error definition which it minimizes. The aim of the optimization process is to find the

model parameters which describe the entire family of curves (consisting of different

data sets: magnetization and strain vs field for actuation and vs stress for sensing).
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Figure 4.3: Extracted anhysteretic curves from measurements on single crystal 〈100〉
Fe81.5Ga18.5 grown with FSZM at constant stress values of 0.32, 8.00, 13.4, 23.1,
32.3 MPa (compression) and constant field values of 1.85, 3.24, 5.65, 8.88 kA/m
(Measurements collected by Phillip Evans [33]).
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Thus the error functional must describe an average error for an entire family of curves.

This is done in the following manner.

1. For every curve, the modeling error is quantified using a normalized RMS error

definition. The error for the ith curve in a data set is given as

errori =
1

range(Xi)

√∑Ni

j=1(Yij −Xij)2

Ni

, (4.16)

where Yij andXij are the jth component of the ith model vector and the extracted

anhysteretic data vector respectively each containing Ni points, and range(Xi)

is the difference between the upper and lower bound for that curve.

2. A mean error for the entire family is obtained by averaging the normalized RMS

errors for each curve in the family.

Initial guess and bounds on each parameter

The efficiency of the optimization algorithm can be greatly enhanced by providing

a good initial guess on the parameters. Ms and λ100 can be directly obtained from the

saturation magnetization and magnetostriction respectively. The anisotropy constant

K is estimated by calculating the slope of the extracted anhysteretic magnetization-

field curve for a particular stress T at zero field and equating it to the expression for

low field stress dependent susceptibility χ(T ) described by Evans et al. [34], giving

K =
µ0M

2
s

χ(T )
+ 3λ100T. (4.17)

The anisotropy constant K0‖ can be estimated by equating the energies of the orien-

tations perpendicular and parallel to the direction of application of field in the burst
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region. These energies are given by

E⊥ =
(µ0MsH)2

6λ100T − 2K
, (4.18)

E‖ = −3

2
λ100T − µ0MsH +K0‖ . (4.19)

The logic behind this is that the burst region occurs when the energies of two ori-

entations become roughly equal and domains start flipping from one orientation to

the other. An average burst field (Hburst) is obtained by selecting the magnetic field

corresponding to which the gradient of the magnetization-field curve is maximum.

Equating 4.18 and 4.19 using this burst field gives

K0‖ =
(µ0MsHburst)

2

6λ100T − 2K
+

3

2
λ100T + µ0MsHburst. (4.20)

The remaining parameters Ω and λ111 cannot be estimated directly from measure-

ments. Parameter Ω is given an arbitrary starting value of 2 kJ/m3 while λ111 has no

effect on the 1D response along the [100] directions with uniaxial stress application.

Determination of λ111 requires additional experiments with stresses applied along two

different 〈100〉 directions. The bounds for all parameters are selected to be 50% above

and below the initial guess except the smoothing factor Ω, for which a wide range

from 0.5 - 30 kJ/m3 is selected.

4.1.3 Results

The performance of the parameter optimization algorithm is tested with different

levels of input information. First, the algorithm is run using the full family of measure-

ments. This gives a measure of the best case performance of the algorithm. Figure 4.4

shows the model performance with optimized parameters, for a single crystal 〈100〉

Fe81.5Ga18.5 sample. The location of the burst region is accurately predicted in all the
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curves. The model is also capable of describing the lower saturation magnetostriction

at low bias stresses. To demonstrate the performance of the model in describing the
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Figure 4.4: Comparison of anhysteretic model to the extracted anhysteretic curves
from measurements on a Fe81.5Ga18.5 sample. Actuation measurements are at constant
compressive stresses of 0.32, 8, 13.4, 23.1, and 32.3 MPa while sensing measurements
are at constant bias fields of 1.85, 3.24, 5.65, and 8.88 kA/m.

behavior of samples subjected to stress annealing, the parameters are optimized us-

ing the measurements collected at the Naval Surface Warfare Center for unannealed
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and annealed 〈100〉 textured polycrystalline Fe81.6Ga18.4 by James Restorff [72]. Fig-

ures 4.5 and 4.6 shows that with optimized parameters, the model can describe the

magnetomechanical response of both unannealed and annealed Galfenol. Table 4.1

lists down the optimized parameters obtained for all three cases. As expected, K0‖ is

substantially larger for the annealed sample as compared to the unannealed samples.

Also the smoothing factor for the textured polycrystalline samples is much larger

than the single crystal simple.
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Figure 4.5: Anhysteretic model fit to the extracted anhysteretic curves with optimized
parameters for unannealed 〈100〉 textured polycrystalline Fe81.6Ga18.4. Measurements
are at constant compressive pre-stresses of 1.38 , 13.8, 27.6, 41.4, 55.2, 69.0, 82.7, and
96.5 MPa.

From the point of view of the transducer designer, the utility of the parame-

ter optimization algorithm will be greatly enhanced if the model parameters can be
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Figure 4.6: Anhysteretic model fit to the extracted anhysteretic curves with optimized
parameters for annealed 〈100〉 textured polycrystalline Fe81.6Ga18.4. Measurements
are at constant compressive pre-stresses of 1.38 , 13.8, 27.6, 41.4, 55.2, 69.0, 82.7, and
96.5 MPa.

predicted accurately with reduced number of experiments. Usually actuation mea-

surements are simpler to perform than sensing measurements because it is easier to

maintain a constant stress on the sample than constant field. Table 4.2 shows that

when the model parameters are optimized using only the actuation measurements for

the single crystal sample, the mean modeling error for all the curves (actuation and

sensing) increases by only 0.1%. Thus, sensing behavior can be accurately quantified

using actuation measurements.

The experimentation process can be further simplified if actuation measurements

at only one prestress could be used to estimate the model parameters. The prestress

applied on the sample could be anywhere between the lower and upper limit of the

working stress range. Table 4.2 shows that it is beneficial to have a moderate to
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Table 4.1: Optimized model parameters for the different data sets.

Parameters Single crystal
Textured

polycrystalline
Textured

polycrystalline

Fe81.5Ga18.5
Fe81.5Ga18.5

(unannealed)
Fe81.5Ga18.5

(annealed)
K × 104 (J/m3) 3.4842 3.7178 5.255
K0‖ × 104 (J/m3) 0.0498 0.0224 1.247

µ0Ms (T) 1.5394 1.5836 1.6006
λ100 × 103 1.6631 1.6844 1.6733
λ111 × 103 - - -
a× 103 (J) 10.147 15.146 21.296
Es (GPa) 7.531 - -

large prestress on the sample while collecting measurements. When parameters are

optimized using the lowest prestress measurement, large errors are obtained for the

single crystal and unannealed polycrystalline sample. This happens because low

prestresses do not align the magnetic domains perpendicular to the axis of the sample

and the resulting saturation magnetostriction is lower than 3/2λ100. Since the initial

guess for parameter λ100 is estimated directly from the saturation magnetostriction,

the performance of the optimization algorithm deteriorates. In the annealed sample,

the domains are oriented perpendicular to the sample axis because of the tetragonal

anisotropy. This causes maximum saturation magnetostriction even with no external

prestress applied and the performance of the parameter optimization algorithm does

not deteriorate. Application of moderate to high prestress yields maximum saturation

magnetostriction for all samples and mean errors less than 4% are obtained in all cases.
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Table 4.2: Mean normalized modeling error % with model parameters found using
different levels of experimental information.

Parameters Single crystal
Textured

polycrystalline
Textured

polycrystalline
Fe81.5Ga18.5 Fe81.6Ga18.4 Fe81.6Ga18.4

(unannealed) (annealed)

Full Set 2.1 1.3 1.3
Only actuation curves 2.2 - -
Actuation curves at a
single prestress
- Lowest prestress 6.4 9.5 1.9
- Intermediate prestress 3.0 1.7 1.4
- Highest prestress 3.4 1.9 1.7

4.2 Galfenol Constitutive Law Incorporation

In this section the Galfenol constitutive law described in Section 4.1.1 will be

implemented in the unified finite element framework described in chapter 3 following

the techniques described in Sections 3.2.1 and 3.2.2. The first step is to evaluate the

material Jacobian matrix.

Evaluating the material Jacobian

Evaluation of the material Jacobian requires computation of the derivatives ∂B/∂H,

∂B/∂T, ∂S/∂H, and ∂S/∂T. The tensors S and T are written in contracted no-

tation. The derivatives are obtained with respect to Hi (i=1,2,3) and Ti (i=1,2...6).

Magnetic induction is algebraically related to magnetic field and magnetization,

B = µ0 (H + M) . (4.21)
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The derivatives of B with respect to Ti and Hi are

∂B

∂Ti
= µ0

(
∂M

∂Ti

)
, (4.22)

∂B

∂Hi

= µ0

(
∂H

∂Hi

+
∂M

∂Hi

)
. (4.23)

The derivatives of M and S with respect to Hi and Ti can be obtained by differenti-

ating (4.13) and (4.14),

∂M

∂Hi

=
r∑

k=1

Ms

(
∂m̂k

∂Hi

ξkan + m̂k ∂ξ
k
an

∂Hi

)
, (4.24)

∂M

∂Ti
=

r∑
k=1

Ms

(
∂m̂k

∂Ti
ξkan + m̂k ∂ξ

k
an

∂Ti

)
, (4.25)

∂S

∂Hi

=
r∑

k=1

(
∂Sm

k

∂Hi

ξkan + Sm
k ∂ξ

k
an

∂Hi

)
, (4.26)

∂S

∂Ti
= s

∂T

∂Ti
+

r∑
k=1

(
∂Sm

k

∂Ti
ξkan + Sm

k ∂ξ
k
an

∂Ti

)
. (4.27)

Thus, the partial derivatives of m̂k, Skm and ξkan with respect to Hi and Ti must be

obtained. The derivatives of Sm
k can be written as

∂Sm
k

∂Hi

=



3λ100m̂
k
1
∂m̂k

1

∂Hi

3λ100m̂
k
2
∂m̂k

2

∂Hi

3λ100m̂
k
3
∂m̂k

3

∂Hi

3λ111

(
m̂k

1
∂m̂k

2

∂Hi
+ m̂k

2
∂m̂k

1

∂Hi

)
3λ111

(
m̂k

2
∂m̂k

3

∂Hi
+ m̂k

3
∂m̂k

2

∂Hi

)
3λ111

(
m̂k

3
∂m̂k

1

∂Hi
+ m̂k

1
∂mk

3

∂Hi

)


, (4.28)

∂Sm
k

∂Ti
=



3λ100m̂
k
1
∂m̂k

1

∂Ti

3λ100m̂
k
2
∂m̂k

2

∂Ti

3λ100m̂
k
3
∂m̂k

3

∂Ti

3λ111

(
mk

1
∂m̂k

2

∂Ti
+ m̂k

2
∂m̂k

1

∂Ti

)
3λ111

(
m̂k

2
∂m̂k

3

∂Ti
+ m̂k

3
∂m̂k

2

∂Ti

)
3λ111

(
m̂k

3
∂m̂k

1

∂Ti
+ m̂k

1
∂m̂k

3

∂Ti

)


. (4.29)
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The derivatives of ξkan with respect to Hi and Ti can be found by differentiating (4.12),

∂ξkan
∂Hi

=
ξkan
Ω

[
r∑
j=1

ξjan

(
∂Gj

∂Hi

)
−
(
∂Gk

∂Hi

)]
, (4.30)

∂ξkan
∂Ti

=
ξkan
Ω

[
r∑
j=1

ξjan

(
∂Gj

∂Ti

)
−
(
∂Gk

∂Ti

)]
. (4.31)

The derivatives of Gk with respect to Hi and Ti are

∂Gk

∂Hi

= m̂k ·K
(
∂m̂k

∂Hi

)
− ∂m̂k

∂Hi

·Bk − m̂k ·
(
∂Bk

∂Hi

)
, (4.32)

∂Gk

∂Ti
= m̂k ·K

(
∂m̂k

∂Ti

)
+

1

2
m̂k ·

(
∂K

∂Ti

)
m̂k − ∂m̂k

∂Ti
·Bk. (4.33)

The derivatives of the normalized kth equilibrium orientation with respect to Hi and

Ti are

∂m̂k

∂Hi

=
1

‖mk‖
∂mk

∂Hi

− mk

‖mk‖3

(
mk · ∂mk

∂Hi

)
, (4.34)

∂m̂k

∂Ti
=

1

‖mk‖
∂mk

∂Ti
− mk

‖mk‖3

(
mk · ∂mk

∂Ti

)
, (4.35)

where

∂mk

∂Hi

= (K)−1

[
∂Bk

∂Hi

−

(
ck · (K)−1 ∂Bk

∂Hi

ck · (K)−1 ck

)
ck

]
, (4.36)

∂mk

∂Ti
= (K)−1

−(∂K

∂Ti

)
mk +

ck ·
(

(K)−1 ∂K
∂Ti

mk
)

ck · (K)−1 ck
ck

 , (4.37)

∂Bk

∂H1

=


µ0Ms

0
0

 ,
∂Bk

∂H2

=


0

µ0Ms

0

 ,
∂Bk

∂H3

=


0
0

µ0Ms

 , (4.38)
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and

∂K

∂T1

=

 −3λ100 0 0
0 0 0
0 0 0

 , ∂K

∂T4

=

 0 −3λ111 0
−3λ111 0 0

0 0 0

 ,
∂K

∂T2

=

 0 0 0
0 −3λ100 0
0 0 0

 , ∂K

∂T5

=

 0 0 0
0 0 −3λ111

0 −3λ111 0

 ,
∂K

∂T3

=

 0 0 0
0 0 0
0 0 −3λ100

 , ∂K

∂T6

=

 0 0 −3λ111

0 0 0
−3λ111 0 0

 . (4.39)

Thus the derivatives of m̂k, Sm
k and ξkan with respect to Hi and Ti are known.

Plugging these back into (4.24) - (4.27) the derivatives of M and S with respect to

Hi and Ti are obtained. The derivatives of B with respect to Hi and Ti are computed

by plugging (4.24) and (4.25) into (4.22) and (4.23) giving all the derivatives required

to compute the Jacobian.

4.3 Case Study: Galfenol Unimorph Actuator

The finite element model is validated using the Galfenol unimorph actuator shown

in Figure 4.7(a). The actuator consists of a composite beam having a Galfenol layer

bonded to a brass substrate, a drive coil, and steel flux return components. The

system is excited by applying a voltage input to the coil; the vertical tip deflection

of the beam is measured with a laser displacement sensor. Figure 4.7(b) shows the

mesh geometry used for finite element calculations. The lower surface of the stainless

steel piece to which the beam is clamped is mechanically fixed (u = 0) to remove

rigid body modes. The actuator is surrounded by a sufficiently large air volume such

that the magnetic potential is negligible at its outer boundaries, A = 0.
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(a) (b)

Figure 4.7: Galfenol unimorph actuator used for model validation, (a) actuator
configuration, and (b) finite element mesh.

4.3.1 Piecewise-linear quasistatic solution

Quasistatic measurements are collected by cycling the voltage at 0.1 Hz. In the

model, input is applied in the form of small increments to the coil source current

density and solution is obtained using the piecewise-linear approach outlined in Fig-

ure 3.1. Beam tip deflection is obtained by integrating the vertical displacement

component over the free end of the Galfenol layer. The simulation accurately de-

scribes the nonlinearity in the beam deflection response (see Figure 4.8). The voltage

current curve is a straight line whose slope is the dc resistance of the coil.

4.3.2 Linear dynamic simulation about bias point

Harmonic response of the beam is obtained by applying a bias voltage of 7 V

and sinusoidal voltage inputs at different frequencies. The amplitude of the sinu-

soidal voltage signal is increased with increasing frequency to keep the current levels

comparable so as to obtain good measurable displacement response at the beam tip.
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Figure 4.8: Quasistatic model results, (a) voltage-deflection, (b) voltage-current.

Figures 4.9-4.13 show the time-domain current and displacement response of the sys-

tem to sinusoidal voltage inputs ranging from 10 to 500 Hz. The model quantifies

the transient dynamic behavior of the beam for all the frequencies using a single set

of parameters. At the lower frequencies the model slightly over-predicts the response

because of its linear nature. As the frequency increases, the inertia and damping

forces dominate the force arising from the nonlinear internal stiffness, thus rendering
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Figure 4.9: Experimental and model results at 10 Hz, (a) tip displacement, (b) cur-
rent.
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Figure 4.10: Experimental and model results at 50 Hz, (a) tip displacement, (b)
current.
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Figure 4.11: Experimental and model results at 100 Hz, (a) tip displacement, (b)
current.
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Figure 4.12: Experimental and model results at 200 Hz, (a) tip displacement, (b)
current.
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Figure 4.13: Experimental and model results at 500 Hz, (a) tip displacement, (b)
current.

the response more smooth. This leads to better correlation between the amplitudes

of the modeled and experimental curves. However, because the model does not con-

sider hysteresis in Galfenol, there is a phase difference between the experimental and

modeled curves which is negligible till 100 Hz but becomes more noticeable at the

higher frequencies. At 200 Hz the measured displacement response is distorted, pos-

sibly because some nonlinearities in the material are excited at that frequency due

to a particular distribution of stress and field. Since the dynamic model is linear in

nature, this effect is not described. The measured current response is undistorted

and is accurately described. At 500 Hz the transient tip deflection response exhibits

beating behavior, as the excitation frequency is close to the first natural frequency of

the actuator (513 Hz). When the harmonic excitation is switched on, the fundamental

mode is also excited which interacts with components at the drive frequency giving

rise to beats. The current takes a few cycles to reach steady state and the response

looks typical of a damped second order system.
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4.3.3 Nonlinear dynamic simulation

The same Galfenol unimorph actuator (Figure 4.7) is used to validate the nonlinear

dynamic solution procedure. Harmonic excitations ranging from 10 Hz to 200 Hz are

applied to the system in the form V (t) = −Vbias + V0(1 − cos(ωdrt)), where ωdr is

the excitation frequency. The finite element model is run only for the time duration

of the first few cycles. In order to obtain appreciable displacement response from

the beam at higher frequencies, a negative bias voltage (Vbias) is applied first before

applying the harmonic signal. This ensures that the effective bias point of the cyclic

signal is in the burst region. In the model the bias point is obtained in similar fashion

by applying the bias voltage smoothed using a hyperbolic tangent function for ease

of convergence. Figures 4.14 - 4.17 show the transient response of the transducer

for harmonic inputs at 10, 50, 100, and 200 Hz. The modeled responses show good

correlation with the experiments particularly for the tip deflection response. An

interesting outcome of nonlinear Galfenol behavior can be seen where the quadratic

nonlinearity of the magnetostrictive strain at zero field causes frequency doubling in

the tip deflection response.

4.4 Concluding Remarks

Nonlinear Galfenol constitutive behavior was successfully incorporated in the

unified finite element modeling framework described earlier and validated using a

Galfenol unimorph actuator. The piecewise-linear procedure is useful for obtaining

quasistatic system response and accurate bias point determination. A linear dynamic

simulation with the Galfenol material coefficients computed at the bias point pro-

vides an accurate description of system dynamics for moderate inputs. An implicit
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Figure 4.14: Actuator response to harmonic excitation at 10 Hz.
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Figure 4.15: Actuator response to harmonic excitation at 50 Hz.
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Figure 4.16: Actuator response to harmonic excitation at 100 Hz.
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Figure 4.17: Actuator response to harmonic excitation at 200 Hz.

time-integration algorithm based on the trapezoidal rule yields the dynamic system

response for large-scale inputs. The constitutive law is inverted numerically using

Quasi-Newton iterations. Efficiency is maintained by coding up the material model

so that executing the inversion routine once calculates the 6 components of stress, 3

components of field and 81 components of the Jacobian inverse. Results showed that

the modeled responses compare well with experiments at moderate frequencies. As

the excitation frequency is increased there is an error in the phase description due to

the assumed anhysteretic behavior of Galfenol.
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Chapter 5: TERFENOL-D TRANSDUCERS

Magnetostrictive Terfenol-D (Tb0.7Dy0.3Fe2) is attractive for practical actuators

due to its large magnetostriction (1600 ppm) and moderate saturation fields (200 kA/m).

This chapter aims at applying the unified framework developed in Chapter 3 to

model Terfenol-D transducers. First, a fully coupled 3D energy averaged model is

derived, which describes the magnetomechanical behavior of Terfenol-D. Due to the

poor machinability of Terfenol-D, they are mostly available in 1D geometries like

cylindrical rods. Thus most Terfenol-D transducers are axisymmetric in nature with

the permanent magnet and flux return components concentric with the Terfenol-D

driver. To take advantage of this, the 3D finite element model is reduced to a 2D

axisymmetric form. It is then used to conduct a parametric study on a hydraulically

amplified Terfenol-D actuator designed for use in active engine mounts.

5.1 Fully Coupled Discrete Energy Averaged Model for Terfenol-
D

Modeling the constitutive behavior of Terfenol-D has traditionally been a difficult

problem. The presence of a large magnetostriction anisotropy, low magnetocrystalline

anisotropy, and a twinned dendritic structure gives rise to complex domain level pro-

cesses which are not completely understood [42]. The aim of this work is to describe

111



the actuation and sensing response of Terfenol-D over a wide range of magnetic field

and stress values using an efficient energy-averaged constitutive model which can be

used for design and control of Terfenol-D transducers.

The Jiles-Atherton model [49] was originally formulated for isotropic ferromagnetic

hysteresis. The total magnetization of a ferromagnetic material with Weiss-type mo-

ment interactions is obtained as the sum of an irreversible component due to domain

wall motion and a reversible component due to domain wall bowing. With careful

understanding of the difference between local and global anhysteretic responses [29],

the model is straightforward to implement and computationally efficient, as it involves

only five parameters which can be directly correlated to measurements. For this rea-

son, the Jiles-Atherton model has been used to describe the behavior of Terfenol-D

actuators in which the magnetostriction is modeled as a quadratic function of mag-

netization [11, 41, 14].

The Preisach model [66] generates smooth ferromagnetic hysteresis curves through

contributions from a large number of elementary bistable hysterons. Because giant

magnetostrictive materials such as Terfenol-D show significant deviation in behavior

from elementary Preisach hysterons, Reimers and Della Torre [70, 71] developed a

special hysteron with a bimodally distributed susceptibility function to model the 1D

actuation response of Terfenol-D.

Carman et al. [12] formulated a model for Terfenol-D using Gibbs free energy

expanded in a Taylor series. The exact form of the series, that is the degree of trun-

cation, and the value of the coefficients were dictated by experimental measurements.

The model describes Terfenol-D actuation for low to moderate applied fields over a

specific range of applied pre-stress. Zheng et al. [91] included higher order terms in
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the Taylor series expansion of Gibbs energy and used a Langevin function to describe

the magnetization curve. The model, although anhysteretic, accurately describes the

nonlinear nature of Terfenol-D’s magnetostriction for a wide range of pre-stresses.

The ∆E effect is also modeled but validated only qualitatively.

Armstrong et al. [3] formulated a model for Terfenol-D in which bulk magnetiza-

tion and strain are obtained as an expected value of a large number of possible energy

states (or moment orientations) with an energy based probability density function.

To increase the model efficiency, Armstrong et al. [2] restricted the choice of moment

orientations to the easy magnetization axes (eight 〈111〉 directions for Terfenol-D) and

used a discrete version of the probability density function. The increase in compu-

tational speed, however, came at the cost of reduced accuracy. To preserve accuracy

without sacrificing efficiency, Evans and Dapino [32] developed a constitutive model

for Galfenol by choosing orientations which minimize an energy functional locally de-

fined about each easy axis direction. This energy averaged model has major shortcom-

ings when applied to Terfenol-D as detailed in Section 5.1.1. Section 5.1.2 presents an

anhysteretic model formulation that addresses each of those challenges; anhysteretic

model results are compared with experimental measurements in Section 5.1.3. The

proposed anhysteretic version of the model is fully 3D and appropriate for use in

finite element modeling frameworks. An extension to model magnetomechanical hys-

teresis is done in section 5.1.4 by using an evolution equation for the domain volume

fractions similar to Evans et al. [32] The hysteretic model can be used for control ap-

plications where quantification of additional delay due to material hysteresis is critical

for ensuring stability. Section 5.1.5 provides a quantitative description of the model

performance.
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5.1.1 Problem description

Terfenol-D has eight minima along the 〈111〉 directions. When energy averaged

models such as the Armstrong model [2] or the Discrete Energy Averaged Model

(DEAM) [32] are compared with measurements, two major discrepancies are ob-

served. First, these models introduce an extra kink in the magnetization and mag-

netostriction and secondly, the experimentally observed slow approach to saturation

is absent (Figure 5.1). Using a sufficiently high smoothing factor (as done by Arm-

strong [2]) removes the unphysical kink and somewhat smooths out the saturation

behavior. However, it results in large inaccuracies in the low to moderate field re-

gions. Moreover, the kinking reappears at high pre-stress values (Figure 5.2). For a
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Figure 5.1: Comparison of magnetization and magnetostriction curves for Terfenol-D
at 13.5 MPa compressive stress [31] with the Armstrong model [2] and the Discrete
Energy Averaged Model (DEAM) [32].

[112]-oriented sample, the magnetization process is governed by two distinct domain

jumps: one from the [111̄] and [1̄1̄1] directions perpendicular to the sample axis to the

[11̄1] and [1̄11] directions oriented 61.9◦ from the sample growth axis, and the second
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Figure 5.2: Armstrong model [2] and DEAM [32] with high smoothing factors for
13.5 and 41.3 MPa prestress. The higher prestress curve shows the reappearance of
kinks in both models.

from [11̄1] and [1̄11] to the [111] direction oriented 19.5◦ from the growth axis. When

no compressive prestress is applied, all the 〈111〉 orientations have equal energy and

the jumps occur at very low magnetic fields. Application of compressive prestress

alters the energy of each of the three sets of orientations. The energy due to applied

stress increases as the angle between the domain magnetization and sample axis de-

creases. Thus the increase in energy is largest for the [111] direction and smallest

for the [111̄] and [1̄1̄1] directions. The difference in energy between the three sets of

easy axes causes domains to stick at a particular set of orientations until additional

magnetic field is applied to overcome the magnetoelastic energy difference between

the current and the next set of orientations. This domain attachment causes kinking

in the magnetization and magnetostriction curves (Figure 5.3). The magnitude of the

kink increases with the amount of applied prestress. Thus a value of smoothing factor

Ω which smooths out the kinks for smaller prestresses cannot eliminate the kinking

when the applied prestress is increased as observed in Figure 5.2. A value of Ω which
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Figure 5.3: Armstrong model [2] and DEAM [32] with low smoothing factors showing
the magnitude of the two kinks with increasing stress.

is high enough to smooth out the kinks for all prestresses results in the model overes-

timating the burst field and underestimating the slope of the magnetostriction-field

curve in the burst region. These issues imply that fundamental changes need to be

made in order to apply energy-averaged models to Terfenol-D.

5.1.2 Model formulation

Elimination of extra kinks

Assuming a [112]-oriented sample, the intermediate kinks occur when domains

align along the [11̄1] and [1̄11] directions for positive applied fields and [11̄1̄] and

[1̄11̄] directions for negative applied fields. Absence of kinks in the measurements

suggests that domains are prevented from orienting along these directions. This

can be modeled by increasing the magnetocrystalline anisotropy energy along these

orientations compared to the other easy axis orientations. In the original DEAM
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formulation, the anisotropy energy is defined locally around each easy axis as

Gk
A =

1

2
Kk‖mk − ck‖2, (5.1)

where the anisotropy constant Kk controls how steep the anisotropy energy wells are

around the kth easy axis ck. Since the anisotropy energy along each easy axis direction

is identically zero, achieving variations in the base anisotropy energy between the

different easy axes is not possible. To achieve such variation an orientation-dependent

global anisotropy energy is superimposed onto the local anisotropy energy defined

around each easy axis direction as

Gk
A = wkGk

A0
+

1

2
Kk‖mk − ck‖2. (5.2)

Here, Gk
A0

is the global anisotropy energy, which for materials with cubic anisotropy

is given by

Gk
A0

= K4(mk2

1 m
k2

2 +mk2

2 m
k2

3 +mk2

3 m
k2

1 ) +K6(mk2

1 m
k2

2 m
k2

3 ), (5.3)

In (5.2), Gk
A0

is weighted by wk, an empirical weighting factor which adjusts the

anisotropy energy along the kth easy axis. Physically, the weighting accounts for the

change in energy landscape that may occur due to precipitates, dislocations and twin

boundaries [1]. The 8 easy axes can be broken down into 3 groups depending upon

their angle with the sample axis: the [111] and [1̄1̄1̄] directions oriented 19.5◦ with

the sample axis, the [111̄] and [1̄1̄1] directions oriented perpendicular to the sample

axis, and the [11̄1], [1̄11], [11̄1̄], and [1̄11̄] directions oriented 61.9◦ from the sample

axis. Thus, there are effectively three weights which must be determined, one for

each group.

Another way to suppress the kinks is to ignore the minima associated with the

four orientations which cause kinking. The global anisotropy energy is still weighted
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but there are only two weights to be determined since the set of directions 61.9◦ from

the sample axis is not considered. This way the number of minima is reduced to

four. The first approach is more accurate as it has more degrees of freedom while the

second approach is more efficient as it involves averaging of only four terms. However,

in the second approach, the three dimensional accuracy of the model is expected to

suffer due to the loss of four orientations. In this paper the full version of the model

is described in detail and its performance is compared to the reduced version in terms

of accuracy and efficiency.

Obtaining the slow approach to saturation

The exact reason for the slow approach to saturation in Terfenol-D is not clearly

understood. Various explanations have been proposed such as the presence of demag-

netization fields [89], or radically different behavior of twins [25], but experimental

proof is lacking. Domain observations reported by Engdahl [31] suggest that clo-

sure domains become increasingly difficult to remove in Terfenol-D as the sample is

magnetized. From these theories and observations it can be postulated that with

increasing applied field, there is a tendency of domains to occupy orientations which

do not minimize the theoretical energy obtained by summing up the anisotropic,

magnetoelastic and Zeeman components. Incorporation of demagnetization fields in

the model comes at the expense of an implicit definition for the total energy which

means that iterations need to be performed to converge to the correct value of volume

fractions. Every iteration will involve computation of the energies, minima, domain

volume fractions, and the bulk magnetization ,adding significant computational effort

to the model.
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An alternative way of incorporating this apparent broadening of domain distribu-

tion is to employ a variable smoothing factor which increases as the domain volume

fractions move farther and farther away from a homogeneous distribution. Mathe-

matically this can be written as

Ω = a0 + a1‖ξan(H,T)− ξ̄‖2, (5.4)

where ξan(H,T) is the vector of anhysteretic domain volume fractions and ξ̄ is a

vector equal in length to ξan but with each component as 1/r, r being the number

of easy axis orientations. Both ξan and ξ̄ are r-dimensional vectors, with r = 8 for

Terfenol-D. When no bias stress or field is applied, assuming cubic magnetocrystalline

anisotropy energy distribution, all 8 orientations are equally likely to be occupied by

the domains. Thus ξan = ξ̄ and Ω = a0, its lowest value. On application of stress

or field the volume fractions will deviate away from this homogeneous distribution

causing Ω to increase. When a bias stress or field is applied, the initial domain

distribution is not homogeneous, so for application of field and stress about the bias

points Ω does no longer increase monotonically. Figure 5.4(a) shows the variation

of Ω with applied field for different bias stress values. At low fields the value of Ω

increases with increasing bias stress while at high fields Ω is larger for a lower bias

stress. This allows the magnetostriction curves for low bias stress to exhibit a sharp

burst region at low fields and a gradual approach to saturation at high fields, while

for the high bias stress curves the slope in the burst region is more gradual since Ω

is relatively large in the burst region (Figure 5.4(b)). Figure 5.5 shows the Ω–stress

curves and the corresponding magnetization-stress curves for different bias fields. For

low bias fields, Ω is small at low stresses and larger at higher stress values while for

high bias fields, Ω is large for low stresses and relatively small for higher stress values.
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Due to the large values of Ω at high bias fields and low stresses, the M-H curves

display very gradual saturation in the low stress region. Thus, even for very high bias

fields, application of stress almost immediately results in magnetization decrease due

to the broad domain distribution. These variations are shown for a crystal having

perfect cubic anisotropy. When the anisotropy is weighted as described previously,

these variations in Ω will change since at zero applied stress and field the domains

will not be homogeneously distributed among the eight directions. Rather they will

be concentrated in orientations along which the global anisotropy energy weight is

the maximum.

Computational aspects

The computation proceeds in a manner identical to the Galfenol constitutive law

up to the computation of the minima. Since the m-dependent portion of the energy

is identical in both cases, expression (4.10) still yield the energy minima. For imple-

mentation in finite element models, the computed minima are normalized to prevent

unphysical behavior at high fields similar to the Galfenol constitutive model.

The new definition for Ω, expression (5.4), destroys the explicit nature of the

model since Ω is defined as a function of ξan while determination of ξan requires

knowledge of Ω according to the relation

ξkan =
exp

(
−Gk/Ω(ξan)

)∑r
j=1 exp (−Gj/Ω(ξan))

, (5.5)

where ξkan is the volume fraction of the kth easy axis. The difference between this

implicit definition and having an implicit definition for energy (as in the case of

demagnetization fields) is that here the energy expressions and therefore the minima

remain unchanged in every iteration. Only the volume fractions need to be computed
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Figure 5.4: (a) Ω-field and (b) strain-field curves for compressive prestresses of 0, 6.5,
13.5, 27.4, 41.3, and 55.3 MPa.
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Figure 5.5: (a) Ω-stress and (b) magnetization-stress curves for constant bias fields
of 0, 32.2, 64.4, 96.6, 128.8, 161 and 193.2 kA/m.
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again. This is illustrated by the flowchart shown in Figure 5.13. The solution loop

involves combining (5.4) and (5.5) to obtain a single equation in terms of Ω, giving

f(Ω) = Ω− a0 − a1

r∑
k=1

(
ξkan − ξ̄k

)2
= 0. (5.6)

Newton-Raphson iterations are performed for quick convergence since the derivative

df/dΩ can be analytically obtained as

df

dΩ
= 1− 1

Ω2

r∑
k=1

2a1

(
ξkan − ξ

k
)(

ξkanG
k − ξkan

r∑
j=1

ξjanG
j

)
. (5.7)

Even with strict tolerances, usually two to three iterations are sufficient for conver-

gence. To investigate the effect of this iterative procedure on the model efficiency,

the model is run with and without iterations for a large number of inputs. It is found

that on an average the iterative version takes only 20 % longer than the non-iterative

one.

5.1.3 Anhysteretic model results

The model is compared with actuation measurements from Moffett et al. [62] and

sensing measurements from Kellogg et al. [51] Anhysteretic model parameters have

been obtained by extracting the anhysteretic curves from data (using simple averaging

of values from the upper and lower branches of the major hysteresis loops [8]) and

using a least squares optimization algorithm. The full model with 8 minima contains

9 parameters (K, Ms, λ100, λ111, a0, a1, w1 = w2, w3 = w4, w5 = w6 = w7 = w8) while

the model with 4 minima contains 8 parameters due to the absence of w5 through w8.

Figure 5.7 shows the performance of the two models when optimized to describe

the magnetostriction measurements of Moffett et al. Both models can describe the

measurements. However, the reduced version shows some error near saturation partic-

ularly for the high bias stress curves. With parameters optimized for the strain-field
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Figure 5.6: Flowchart for the anhysteretic model. Details of the energy minimization
is shown in section 4.1.1.
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Figure 5.7: Comparison of the two modeling approaches with actuation data [62] for
compressive prestresses of 6.9, 15.3, 23.6, 32.0, 40.4, 48.7, 57.1, and 65.4 MPa.

curves (Figure 5.8), the full model accurately describes the stress-strain response.

To apply the model to various material compositions and operating conditions, the

parameters were also optimized for Terfenol-D sensing measurements reported by

Kellogg et al. [51] Throughout the paper an elastic modulus of 115 GPa is used, cal-

culated using the slope of the strain-stress curves at high compressive stresses and

low bias fields. Figure 5.9 reveals that the full version of the model is able to describe

the trends more accurately than the reduced version with four minima.

5.1.4 Extension to hysteretic model

The model can be extended to include hysteresis with an incremental formulation

similar to that done by Evans et al. [32] The total volume fraction increment can be

written as a combination of an anhysteretic and an irreversible component,

dξk = cdξkan + (1− c)dξkirr, (5.8)

125



−80 −70 −60 −50 −40 −30 −20 −10 0

0

500

1000

1500

2000

Stress (MPa)

S
tr

a
in

 (
p
p
m

)

Figure 5.8: Performance of the two modeling approaches in predicting the stress-
strain behavior of Terfenol-D [62] for bias field values of 11.9, 31.8, 55.7, 79.3, 103,
127, 151, and 175 kA/m with parameters estimated from the strain-field curves.
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Figure 5.9: Comparison of the two modeling approaches with sensing data from [51]
for bias magnetic fields of 16.1, 48.3, 80.5, 112.7, 144.9, and 193.2 kA/m.
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where dξkirr is given by

dξkirr =
ζ

kp

(
ξkan − ξkirr

)
[µ0Ms(|dH1|+ |dH2|+ |dH3|) + (3/2)λ100(|dT1|+ |dT2|+ |dT3|)

+3λ111(|dT4|+ |dT5|+ |dT6|)] ,
(5.9)

and dξkan is given by

dξkan =
∂ξkan
∂H

dH +
∂ξkan
∂T

dT. (5.10)

The calculation of partial derivatives ∂ξkan/∂H and ∂ξkan/∂T for the traditional energy-

averaged model is simple since ξkan is explicitly defined in terms of H and T. In this

case ξkan is implicit as given by (5.5). But, it is still possible to obtain an analytical

expression for its derivatives given by

∂ξkan
∂Hi

= αk − ξkan
r∑
j=1

αj + 2a1

(
ξan − ξ̄

)
·
(
dξan
dHi

)(
βk − ξkan

r∑
j=1

βj

)
, (5.11)

where

αk = −ξ
k
an

a

(
∂Gk

∂Hi

)
, (5.12)

βk =
ξkan
a2
Gk, (5.13)

(
ξan − ξ̄

)
·
(
dξan
dHi

)
=

∑r
k=1

(
αk − ξkan

∑r
j=1 α

j
)(

ξkan − ξ
k
)

1− 2a1

∑r
k=1

(
βk − ξkan

∑r
j=1 β

j
)(

ξkan − ξ
k
) . (5.14)

The derivatives ∂Gk/∂Hi can be obtained similar to (4.32). Equation (5.14) is ob-

tained by multiplying (5.11) by
(
ξkan − ξ̄k

)
and summing for all k. The partial deriva-

tives with respect to Ti can be computed following a similar procedure.

5.1.5 Hysteretic model results

The performance of the hysteretic model is described quantitatively in this section

by comparing it with the same data sets. Additionally, the parameters have been op-

timized to describe Terfenol-D magnetostriction data supplied by Etrema Products,
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Inc [43]. As done previously, every data set is simulated with a single set of parame-

ters. However, they are allowed to vary from one set to the other since they represent

measurements on samples with different compositions. The parameter optimization

for the hysteretic model is done using the same least square optimization algorithm

as described earlier. The hysteretic model contains two additional parameters (c and

kp) over the anhysteretic version thus making the total number of parameters 11 and

10 for the full and reduced models. However, the optimization routine is less time

consuming because the parameter values are very close to what they were for the

anhysteretic version. The range for the additional parameters is also easy to estimate

as kp determines the width of the hysteresis loops which is estimated to lie between

4 – 10 kJ while c is the reversibility coefficient whose value is usually between 0.05

and 0.15.

For every curve, the modeling error has been quantified using a normalized RMS

error definition. The error for the ith curve in a data set is given as

error =
1

range(X)

√∑Ni

j=1(Yij −Xij)2

Ni

. (5.15)

where Yij and Xij are the jth component of the ith model vector and data vector,

respectively, each containing Ni points, and range(X) is the difference between the

upper and lower bound for the entire set. A mean error for the entire data set is

obtained by averaging the normalized RMS error for all curves in the set. A max-

imum error is computed by finding the maximum of the error values for all points

for all curves in the data set. This gives a measure of the worst case performance of

the model. Table 5.1 summarizes the mean and the maximum errors obtained for 3

different data sets. For clarity, in this section only plots for the full version of the
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Table 5.1: Mean % Errors obtained with the full and reduced models. Max. % errors
in ().
Data 8 minima 4 minima
Moffett et al. [62](strain-field) 1.1 (3.4) 2.3 (11.2)
Moffett et al. [62](strain-stress with
parameters optimized for strain-
field loops)

2.3 (6.3) 5.7 (20.3)

Etrema Products Inc. [43] 1.2 (5.2) 2.5 (10.3)
Kellogg et al. [51] 1.6 (9.87) 1.97 (12.8)
Simulation time (for Moffett et al.
data)

0.206 s 0.146 s

model are shown. Figure 5.10 shows the performance of the hysteretic model in de-

scribing the measurements reported by Moffett et al. [62] Once again, the parameters

are optimized only for the magnetostriction curves. As shown in Table 5.1, excellent

accuracy is achieved not only for the magnetostriction curves (1.1 % mean error) but

also for the stress-strain curves (2.3 % mean error) for which no separate parameter

optimization was done. The reduced model also gives good overall accuracy except

for high fields and stresses. As observed for the anhysteretic version of the reduced

model, some errors were found in the stress-strain response, particularly in the low

stress, low field region where the maximum error is about 20 %. Similar results are

obtained for sensing measurements reported by Kellogg et al. [51] for Tb0.3Dy0.7Fe2.

In this case the parameters are optimized for both magnetization-stress and strain-

stress curves together and mean errors below 2 % are obtained. The maximum error

is somewhat large in both versions of the model due to the discrepancy in the initial

(0 stress) magnetization description of the 16.1 kA/m bias field curve.
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Figure 5.10: Comparison of hysteretic model with data from Moffett et al [62] for
compressive prestresses of 6.9, 15.3, 23.6, 32.0, 40.4, 48.7, 57.1, and 65.4 MPa. Pa-
rameters optimized for actuation curves.
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Figure 5.11: Comparison of hysteretic model with sensing data from Kellogg et al [62]
for bias magnetic fields of 16.1, 48.3, 80.5, 112.7, 144.9, and 193.2 kA/m.
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Finally, the parameters are optimized to describe the magnetostriction curves

for commercially available Terfenol-D supplied by Etrema Products, Inc. [43] (Fig-

ure 5.12). Not only does the model describe the nonlinear nature of the response with

accuracy but it also quantifies the hysteretic regions very accurately. For example,

at high compressive prestresses, the magnetization process is dominated by reversible

domain rotation giving rise to a nearly anhysteretic response. This is seen both in the

experimental and modeled magnetostriction curves at 16 ksi (110.4 MPa). The model

also describes the effect of preload on the maximum magnetostriction. For example,

the 1 ksi (6.9 MPa) curve exhibits a lower saturation magnetostriction than the 4 ksi

(27.6 MPa) and 8 ksi (55.2 MPa) curves. The optimized parameters for every data

set for both versions of the model are shown in Table 5.2. To compare the efficiencies

of the two models, the time taken by each to simulate the Moffett et al. [62] data set

is clocked in Matlab. The reduced model takes about 30 % less time than the full

version. Thus, the reduced version can be used in applications where some accuracy

can be sacrificed in the interest of computational speed.

5.1.6 Concluding remarks

The energy averaged model derived in this chapter addressed two main discrepan-

cies of previous energy averaged models in modeling Terfenol-D response - presence

of an unphysical kink in the modeled response which is absent in measurements and

absence of the slow approach to saturation present in Terfenol-D magnetostriction.

Use of a weighted global anisotropy energy combined with a variable smoothing factor

based on the deviation of domain volume fractions from a homogeneous distribution

is able to tackle both issues successfully. The anhysteretic model is fully 3D in nature
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Figure 5.12: Comparison of hysteretic model with magnetostriction measurements
provided by Etrema Products Inc. [43] for compressive prestresses of 1, 4, 8, and
16 KSI (6.9, 27.6, 55.2, 110.4 MPa).

and is appropriate for incorporating into the finite element framework of Chapter 3.

Although the addition of an implicit relationship for the domain volume fractions

requires the need for equilibrium iterations to achieve convergence, the model takes

only 20% longer time than its non-iterative counterpart. A hysteretic extension to the

model is formulated based on an evolution equation for the domain volume fractions.

This model is used to simulate the response of three different data sets, including

available data for commercially supplied Terfenol-D by Etrema Products, Inc. The

model accurately describes the regions with and without hysteresis and achieves below

3% mean error for all the sets. The reduced version has somewhat reduced accuracy

and consumes 30% lower computer time than the full version. The hysteretic model is
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useful for implementation in control design where quantifying delays due to hysteresis

is of importance.

5.2 Coupled Axisymmetric Finite Element Model for Terfenol-
D transducers

The brittle nature of Terfenol-D and its poor machinability restricts its avail-

ability to 1D geometries like cylindrical rods. Terfenol-D transducers are commonly

built with the cylindrical magnetostrictive rod at the core with concentric compo-

nents like coil, permanent magnets, and flux return. An axisymmetric formulation

can efficiently model such transducers without sacrificing accuracy. The formula-

tion is developed by imposing axisymmetric approximations on the comprehensive

3D framework of Chapter 3. The current density J and magnetic potential A are

defined as having only an out-of-plane component (Jφ and Aφ written as J and A

respectively for convenience). To avoid singularities in computation, the variables

used in the formulation are the modified magnetic potential (A′ = A/r), modified ra-

dial displacement (u′ = u/r), and axial displacement (w). The magnetic flux density

vector (B) and the strain vector (S) are kinematically related to A′, u′, and w as

B = [Br, Bz]
T =

[
−r∂A

′

∂z
, r
∂A′

∂r
+ 2A′

]T

, (5.16)

S = [Srr, Szz, Srz, Sφφ]T =

[
r
∂u′

∂r
+ u′,

∂w

∂z
, r
∂u′

∂z
+
∂w

∂r
, u′
]T

. (5.17)

The corresponding work conjugates - magnetic field (H) and stress (T) are related

to B and S through constitutive laws and have the form

H =
[
Hr Hz

]T
, (5.18)

T =
[
Trr Tzz Tφφ Trz

]T
. (5.19)
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Since Terfenol-D transducers work primarily under axial loading, the main quantity

of interest is the axial deformation w. Thus w is solved for in all structurally active

domains (i.e. they are ‘axially active’). In some components radial deformation may

occur due to the geometry of the transducer. In such components, radial deformation

u is also computed. These components are both ‘axially active’ and ‘radially active’.

Domains that are only ‘axially active’ (such as Terfenol-D) have a reduced stress and

strain vector with only two components (axial and in-plane shear). This reduction has

significant advantages in the Terfenol-D constitutive law inversion process detailed in

Section 5.2.1.

For an axisymmetric problem the volume integrals can be transformed to area

integrals using ∫
Ve

(F )dV = 2π

∫
Ae

(rF )drdz, (5.20)

which when applied to (2.66) and (2.70) gives∫
AB

rH · δB drdz +

∫
AB

rσ
∂A

∂t
δA drdz =

∫
lB

rHT δA dl +

∫
AB

rJsδA drdz, (5.21)

∫
Au

r (T · δS) drdz +

∫
Au

rρ
∂2u

∂t2
· δu drdz +

∫
Au

rc
∂u

∂t
· δu dV

=

∫
lu

rt · δu dl +

∫
Au

rfB · δu dA.

(5.22)

The weak form equations can be entered in COMSOL using (5.21) and (5.22) as a

function of A, u, w, and the corresponding test variables even though the solution

variables are A′, u′, and w. This is done by adding global expressions relating A and

u to A′ and u′ [16].
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5.2.1 Incorporation of constitutive laws

Terfenol-D constitutive law

In this section the Terfenol-D constitutive law developed in section 5.1 is incorpo-

rated into the weak form equations described in the previous section. As is common

with vector magnetic potential based formulations, a constitutive model inversion is

required such that it takes flux density and strain as inputs and calculates stress

and field as outputs. Moreover, since commercially available Terfenol-D rods have

their [112] crystal orientation aligned with the sample axis (which is the Z axis of the

global coordinate system), a coordinate transformation is required to integrate the

constitutive law with the finite element model. Magnetic flux density and field are

first order tensors and transform according to

Xm = UXG, XG = UTXm, (5.23)

while stress and strain being second order tensors transform according to

Xm = UTXGU, XG = UXmUT. (5.24)

Here the subscripts m and G respectively denote the ‘material’ and ‘global’ coordi-

nate system. The transformation matrix U is formed using the normalized direction

vectors in the material coordinate system that are aligned with the global coordinate

axes;

U =

[
uR
‖uR‖

,
uφ
‖uφ‖

,
uZ
‖uZ‖

]
. (5.25)

The direction vector uZ = [112] while the vectors uR and uφ are not fixed and keep

on changing with the circumferential angle φ. However, since the Terfenol-D driver

has an aspect ratio of 4:1, the radial and circumferential components of stresses and
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fields are expected to be much smaller than the axial components. In that case,

considering uR and uφ to be fixed should not have a noticeable affect on the accuracy

of the model. In this work uR and uφ are selected as [111̄] and |[11̄0] respectively.

Piecewise-linear implementation of the constitutive law necessitates computation

of the material Jacobian matrix (Section 3.2.1). Because of the coordinate transfor-

mation involved, calculation of the material Jacobian is more involved for Terfenol-D.

For derivatives the transformation must be undergone twice, once to transform the

output variable or the quantity being differentiated and once to transform the input

variable with respect to which the differentiation is taking place. For example, the

derivative of the induction with respect to field in the global coordinate system can

be written as

∂BG

∂HG

=

(
∂BG

∂Bm

)(
∂Bm

∂Hm

)(
∂Hm

∂HG

)
. (5.26)

Since both B and H are first order tensors, use of (5.23) yields

∂BG

∂HG

= UT

(
∂Bm

∂Hm

)
U, (5.27)

where ∂Bm/∂Hm can be obtained as derived in section 4.2. This is expected as

the derivative of a first order tensor with respect to another first order tensor is a

second order tensor and thus follows the second order tensor transformation law.

Similarly the derivative of a second order tensor with respect to another second order

tensor (for example ∂S/∂T) will follow the fourth order tensor transformation law.

To simplify the process of higher order tensor transformations, a generalized case is

treated first in which the field and stress are applied along an arbitrary direction

u with flux density and strain measured along another direction v (both u and v

being defined with respect to the material coordinate system). This is repeated with

137



different combinations of u and v aligned along the global axes to get the transformed

derivatives. The algorithm consists of two stages. In the first stage, derivatives with

respect to Hu and Tu are found, where Hu and Tu are the scalar field and stress values

applied along u:

Hm = Hu [u1 u2 u3]T︸ ︷︷ ︸
u

, (5.28)

Tm = Tu [u2
1 u2

2 u2
3 u1u2 u2u3 u1u3]T︸ ︷︷ ︸

uT

. (5.29)

In the second stage the derivatives are projected along v. The required derivatives

can then be calculated as follows:

∂mk

∂Hu

= µ0MsK
−1

[
u− ck ·K−1u

ck ·K−1ck
ck
]
, (5.30)

∂mk

∂Tu
= K−1

−( ∂K

∂Tu

)
mk −

ck ·K−1
(
∂K
∂Tu

)
mk

ck ·K−1ck
ck

 , (5.31)

∂m̂k

∂Hu

=
1

‖mk‖
∂mk

∂Hu

− mk

‖mk‖3

(
mk · ∂mk

∂Hu

)
, (5.32)

∂m̂k

∂Tu
=

1

‖mk‖
∂mk

∂Tu
− mk

‖mk‖3

(
mk · ∂mk

∂Tu

)
, (5.33)

∂Gk

∂Hu

=
∂m̂k

∂Hu

·
(
Km̂k −Bk

)
− µ0Msm̂

k · u, (5.34)

∂Gk

∂Tu
=
∂m̂k

∂Tu
·
(
Km̂k −Bk

)
− 1

2
m̂k · ∂K

∂Tu
m̂k. (5.35)

The derivatives of Skm and ξk can be obtained using (4.28), (4.29), and (5.11) by

substituting Hi and Ti with Hu and Tu respectively. The derivative ∂K/∂Tu is given

by

∂K

∂Tu
= −

 3λ100u
2
1 3λ111u1u2 3λ111u1u3

3λ111u1u2 3λ100u
2
2 3λ111u2u3

3λ111u1u3 3λ111u2u3 3λ100u
2
3

 , (5.36)
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Finally the derivatives are projected along v:

∂Mv

∂Hu

= Ms

r∑
k=1

(
m̂k ∂ξ

k

∂Hu

+
∂m̂k

∂Hu

ξk
)
· v, (5.37)

∂Mv

∂Tu
= Ms

r∑
k=1

(
m̂k ∂ξ

k

∂Tu
+
∂m̂k

∂Tu
ξk
)
· v, (5.38)

∂Smv

∂Hu

= v ·
r∑

k=1

(
Skm

∂ξk

∂Hu

+
∂Skm
∂Hu

ξk
)

v, (5.39)

∂Smv

∂Tu
= v ·

r∑
k=1

(
Skm

∂ξk

∂Tu
+
∂Skm
∂Tu

ξk
)

v. (5.40)

The material Jacobian matrix with the reduced field and stress vectors consists of

16 entries which can be obtained using (5.37)-(5.40) with u and v being substituted

by different combinations of uR and uZ . The piecewise linear solution process uti-

lizing the computed material Jacobian is identical to that discussed in Chapter 3.

Figure 5.13 shows the sequence of operations involved in incorporating the constitu-

tive model for a nonlinear dynamic implementation. The input to the constitutive

law are the flux density and strain tensors calculated kinematically from the vector

magnetic potential and displacement values at the integration points. The algorithm

starts with an initial guess of zero stress and field and converges to the correct values

through Quasi-Newton iterations. In every iteration, first the stress and field vectors

are transformed from the global to the material coordinate system; then the response

of the material to this input stress and field is computed using the energy-averaged

constitutive model, and finally the computed flux density B
(k)
m and strain S

(k)
m (k be-

ing the iteration index) are transformed back to the global coordinate system (B
(k)
G ,

S
(k)
G ) to be compared with the input vectors (BG,SG). In case the difference is greater

than the tolerance, a revised stress and field (H
(k+1)
G and T

(k+1
G )) is estimated based

on the SR1 update formula and the process is repeated till convergence is achieved.
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The SR1 formula directly approximates the material Jacobian inverse which is used

by COMSOL to assemble the tangent stiffness matrix during the dynamic solution

process.

Constitutive laws for passive materials

The stress strain laws for passive structural materials (such as steel) can be written

as shown by Chandrupatla and Belegundu [18],
Trr
Tzz
Tφφ
Trz

 =
E(1− ν)

(1 + ν)(1− 2ν)


1 ν

(1−ν)
ν

(1−ν)
0

ν
(1−ν)

1 ν
(1−ν)

0
ν

(1−ν)
ν

(1−ν)
1 0

0 0 0 (1−2ν)
2(1−ν)



Srr
Szz
Sφφ
Srz

 . (5.41)

Constitutive laws for passive magnetic materials have been modeled using the linear

isotropic relationship H = µ−1B where µ is the constant permeability of the material.

For permanent magnets this law is modified to include the residual induction Bres in

the relevant direction. For example, if the residual induction is along the z direction,

the constitutive law can be written as

Hr =
1

µ
Br, (5.42)

Hz =
1

µ
(Bz −Bres) . (5.43)

Electrically conducting materials have been modeled using a constant conductivity.

The resulting system is assembled and solved using the nonlinear dynamic solution

technique described in section 3.2.2.

5.3 Case Study: Terfenol-D Mount Actuator

Automotive engine mounts serve two main purposes. First, they isolate low am-

plitude engine vibrations from the chassis and secondly they prevent engine bounce
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Figure 5.13: Flowchart showing the process followed to incorporate the Terfenol-D
constitutive law in the model.
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from high amplitude road excitations. Since the frequency of engine vibrations range

from 20 Hz at idling to a few hundred Hertz while road excitations are typically below

5 Hz an ideal mount would have high static stiffness and very low dynamic stiffness.

Active mounts achieve these characteristics by employing an actuator within a pas-

sive hydro-mount. The actuator controls the pressure of the hydraulic fluid inside

the mount to reduce its dynamic stiffness. The small response times and high dis-

placement resolution of magnetostrictive materials make them attractive candidates

for use in mount actuators.

Because smart material drivers capable of broadband response (such as piezo-

electrics and magnetostrictives) posses limited stroke, implementation of these ma-

terials in an active mount actuator necessitates stroke amplification. Hydraulic am-

plification [86, 39] is particularly attractive as it provides large mechanical gains in

a restricted space. The fluid used for amplification can either be the hydraulic fluid

used in the mount [80] or it can be a different fluid sealed from the mount’s hy-

draulic fluid [75]. The former design is more attractive for its simplicity while the

latter is more efficient as the displacement of the smart material driver is not lost

directly to the compliance of the mount. Presence of internal friction and fluid cham-

ber compliance greatly influence the performance of these actuators. Because of this,

linear models considering 100 percent energy transmission greatly overestimate the

performance of such actuators [86, 36].

A magneto-hydraulic actuator (MHA) developed following the second design prin-

ciple combines a Terfenol-D driver with an area based hydraulic stroke amplification

mechanism and obtains millimeter stroke with a bandwidth of over 200 Hz (see Ap-

pendix B). Section 5.3.1 briefly describes the designed actuator. Although the lumped
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parameter model shown in Appendix D can accurately quantify the dynamic mechan-

ical response of the actuator, it is not suitable for transducer design because param-

eters such as fluid chamber compliance and current-field relationships are difficult

to quantify in lumped parameter models. A finite element model is more appropri-

ate for design optimization as it can describe effects of both geometry and material

constitutive parameters (Young’s modulus, permeability, electrical conductivity etc.)

on the dynamic performance of the transducer. The finite element model developed

in Section 5.2 will be used to analyze the performance of the MHA in the following

sections.

5.3.1 Magneto-hydraulic actuator (MHA) design

Figure 5.14 shows the geometry of the MHA. It consists of a fluid chamber with

a large diameter piston at one end driven by a Terfenol-D rod and a small diameter

driven piston at the other end. The magnetic circuit consists of a permanent magnet

Figure 5.14: Physical actuator (left) and cutout (right).
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to provide magnetic bias, a coil to generate the dynamic fields with Terfenol-D at its

core, and iron pieces for flux return. Figure 5.15 shows the 2D axisymmetric version

used for modeling. Some components like the stainless steel body and the preload

plate have not been modeled as they only serve a geometrical purpose. The device is

surrounded by air so that the magnetic potential boundary condition can be applied to

the outer boundary of air. In general, flux density measurements are taken by winding

a pick-up coil around the middle of the rod and strain measurements are taken by

bonding a strain gage close to the midpoint of the rod. Breaking the magnetostrictive

rod domain into 3 areas allows us to evaluate the variables in the central region

separately and compare the behavior of the model against measurements. In this

actuator, all components are considered to be ‘magnetically active’ meaning that the

magnetic degree of freedom (A) is solved for in all the domains. Of these, the base

plate, Terfenol-D rod, end caps, pistons, and casing are considered to be structurally

active also which means that the mechanical degrees of freedom are solved for in only

these components. This partitioning of the solution domain reduces the total degrees

of freedom in the model thus reducing the solution time.

5.3.2 Model augmentation

This section describes the additional physics that was combined with the finite

element model to describe the fluid-structure interaction and friction at the fluid seals.

Fluid domain

Due to the extremely small volume of fluid used in the actuator, inertial effects

in the fluid have been neglected. Also, since the seal friction forces are much higher
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Figure 5.15: Geometry of the transducer used in this study.

compared to viscous forces in the fluid, damping in the fluid is assumed to be neg-

ligible. Thus, only fluid compliance is modeled. The change in volume of the fluid

domain ∆Vf can be written as a sum of contributions from the driver piston ∆VP ,

the driven piston ∆VL, and the casing ∆VC as

∆Vf = −∆VP + ∆VL + ∆VC , (5.44)

where each of these volume changes are calculated using the integral

∆Vi =

∫
li

2πrwdr, (5.45)

over the length of the edge li exposed to the fluid domain. The pressure change in

the fluid is

∆p = − β

Vref
∆Vf , (5.46)
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which is coupled to the structural model through traction on the edges exposed to the

fluid. The model describes the effect of compliance of the fluid chamber components.

Here, β is the effective bulk modulus of the fluid, while in the lumped parameter

model [14], βeff represented an effective modulus describing the combined compliance

of the fluid and fluid chamber components.

Friction model

Friction forces are present at the o-ring seals on the two pistons. At the smaller

(driven) piston seal, actuation forces are low and velocities are high. Hence, even a

small friction force at this seal has a significant impact on the dynamic performance

of the actuator. On the other hand at the larger (drive) piston, actuation forces are

high and velocities are low. Hence a small frictional force at this end does not affect

the dynamic response of the actuator. Thus, friction has been modeled only at the

smaller piston seal.

In the LuGre model [64], friction between two sliding surfaces in contact is de-

scribed as an interaction force between microscopic bristles on both surfaces. The

bristle deflection state ZL is governed by a nonlinear first order differential equation;

ŻL + σ0
|vL|
g(vL)

ZL − vL = 0, (5.47)

where vL is the relative sliding velocity between the two surfaces, which in this case is

the average velocity of the driven piston calculated by integrating 2πrẇ over the edge

of the piston adjacent to the casing, divided by the area of that surface. Function

g(vL) is given by

g(vL) = Fc + (Fs − Fc)e−(vL/vs)2 , (5.48)
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where Fs and Fc are the static and Coulomb friction forces and vs is the Stribeck

velocity. The friction force is given by

FRL = σ0ZL + σ1ŻL + σ2vL, (5.49)

where σ0 and σ1 are the bristle stiffness and bristle damping coefficient, respectively.

This force is applied as traction on the boundary of the smaller piston adjacent to

the casing.

Boundary conditions

Boundary conditions for an axisymmetric problem must be implemented carefully

such that none of the variables become infinite at the r = 0 boundary. In this case,

the axial symmetry condition is enforced using (∂A/∂r)(r=0) = 0 in the magnetically

active domains, u(r=0) = 0 in the radially active domains, and (∂w/∂r)(r=0) = 0 in

the axially active domains. These conditions remove shear stresses and constrain

the radial displacement at the r = 0 boundary. The magnetostrictive system is

encapsulated by a large volume of air. At the outer boundaries of this air volume, the

magnetic potential is set to zero. The bottom face of the base plate and the casing

are considered to be mechanically fixed.

5.3.3 Results and parametric study

Obtaining the bias point

Computation of the dynamic response of the actuator requires accurate determi-

nation of its bias point. The actuator is biased both mechanically and magnetically.

The mechanical bias is due to the compression of the wave spring whose force is trans-

mitted (and amplified) through the fluid to the Terfenol-D rod. The stress developed
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Figure 5.16: Axial magnetic field distribution in the magnetic circuit due to the
permanent magnet.

in the Terfenol-D under an axial load can be assumed uniform. Therefore, this stress

is superimposed directly on the applied stress in the constitutive model function. The

magnetic bias is due to the residual flux density in the permanent magnet. This field

depends on the geometry of the magnetic circuit and cannot be assumed to be homo-

geneously distributed in the rod. The magnetic bias point is obtained by increasing

the residual flux density of the magnet from zero to its actual value using a hyperbolic

tangent function and storing the solution from the final step. Figure 5.16 shows that

the axial magnetic field at the bias point is uniformly distributed in the central region

of the rod with a somewhat lower value at the ends. The average magnetic field in

the Terfenol-D rod is ≈ 30 kA/m.

Response to harmonic inputs

Figure 5.17 shows the actuator response at 20, 50, 100, and 200 Hz. As expected

the phase between voltage and displacement increases with increasing frequency re-

sulting in counter-clockwise rotation of the loops. One shortcoming of the model
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is the assumed anhysteretic Terfenol-D behavior which causes a discrepancy in the

phase of the response. At lower frequencies this is not visible but at 200 Hz this

difference in phase is prominent.

An interesting feature that is observed in both the experimental and modeled

voltage-current loops is that the actuator draws a biased current even though it

is driven with an unbiased sinusoidal voltage input. This happens because of the

nonlinear behavior of Terfenol-D. Because the permeability of the material is field

dependent, the back emf in the coil also varies with voltage giving rise to an asym-

metric current signal. Such effects can only be described accurately with models

where electromagnetic and mechanical responses are fully coupled.

Parametric study

The proposed finite element model can be a useful tool for optimizing device

geometry and material selection. To illustrate, the effect of fluid Bulk modulus,

thickness of the fluid chamber components, conductivity and permeability of the

permanent magnet, and seal friction force on the unloaded displacement response of

the actuator is studied at 20, 50, 100 and 200 Hz.

The effective fluid bulk modulus usually plays a key role in the dynamic perfor-

mance of hydraulic devices. To investigate the effect of stiffening up the fluid (by

degassing etc.), the model is executed with β = 2β0 and β = 4β0, where β0 is the

bulk modulus value tuned to describe the actuator behavior. Figure 5.18(a) shows

that increasing the bulk modulus 4 times achieves a mere 2-3 % increase in the un-

loaded stroke of the actuator below 100 Hz while a more noticeable 8.5 % increase is

observed at 200 Hz. This weak dependence of the actuator performance on the fluid

bulk modulus suggests that the performance of the MHA is limited by structural
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compliance and not the fluid’s compliance which is very low because of the small

volume of fluid used in this actuator (≈ 1.3 c.c).

Next, the effect of structural compliance of the fluid chamber components on

transducer performance is investigated. The model is run with the thickness of the

larger piston and the casing doubled. A remarkable 30 - 35 % stroke increase is

recorded in the 20 - 100 Hz range while a staggering 143 % increase is obtained at

200 Hz. Thus, the primary source of compliance in the transducer comes from the

components enclosing the fluid.

Another vital factor which influences the performance of hydraulic devices is seal

friction. The friction force at the smaller piston seal is reduced to fr = 0.5 fr0 and

fr = 0.25 fr0 where fr0 is the friction force value tuned to describe the experimentally

observed transducer behavior. With the friction force reduced to half, the stroke

increases by 10-12 % in the 20 - 100 Hz range while a 60 % increase is recorded at

200 Hz. With the friction force reduced to one-fourth of the original value, a 15-20 %

stroke increase is recorded below 100 Hz and a substantial 85 % increase is recorded

at 200 Hz. Thus, as expected, reduction in seal friction can bring about considerable

improvements in the unloaded stroke of the transducer.

Finally, to illustrate the advantages of a fully coupled model, the effect of some

electromagnetic parameters on the mechanical performance of the actuator is com-

puted. The permeability of the permanent magnet is increased to twice and four

times the initial value while the conductivity of the permanent magnet is reduced to

zero to study the effect of eliminating eddy currents in the permanent magnet. Both

parameters do not have any appreciable effect on system performance. Increasing the

permeability of the permanent magnet four times leads to a 4 % stroke increase at

150



20 Hz and reduces to a 0.25 % increase at 200 Hz. Setting the conductivity of the

permanent magnet to zero results in negligible improvement at 20 Hz and gradually

increases up to a 3.6 % stroke improvement at 200 Hz. These trends are expected

because increase in permeability increases the total flux flowing in the circuit thus get-

ting higher performance. However increased flux also results in higher eddy currents

as the drive frequency increases. Thus the advantage of having higher permeability

keeps reducing with increasing drive frequency. Conversely, reducing the conductivity

of the permanent magnet has little effect at 20 Hz since eddy currents are negligible

at such low frequencies. With increasing frequency the effect of reduced eddy currents

becomes more apparent (Figure 5.18(b)).
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Figure 5.17: Comparison of modeled voltage-displacement and voltage-current loops
with measurements. (a) 20 Hz, (b) 50 Hz, (c) 100 Hz, and (d) 200 Hz.

152



0 50 100 150 200
0

50

100

150

Frequency (HZ)

%
 P

e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 

 

t = 2 t
0

fr = 0.25 fr
0

fr = 0.5 fr
0

β = 4 β
0

β = 2 β
0

(a)

0 50 100 150 200
0

1

2

3

4

5

Frequency (Hz)

%
 P

e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

 

 

µ
M

 = 2 µ
M0

µ
M

 = 4 µ
M0

σ
M

 = 0

(b)

Figure 5.18: Percentage improvement in the unloaded stroke of the actuator with
variation in (a) mechanical model parameters and (b) magnetic model parameters.
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Chapter 6: SUMMARY AND FUTURE WORK

Magnetostrictive materials have the potential to be applied in many engineering

applications as high bandwidth sensors and actuators. Efficient design of such trans-

ducers requires an adequate modeling framework which fully describes the nonlinear

electro-magneto-mechanical coupling present in them. The primary aim of this disser-

tation was to construct a comprehensive modeling tool which describes this coupling

and is sufficiently general in construction such that it can by applied to any mag-

netostrictive alloy when provided with a constitutive model for the alloy. The work

presented in this dissertation falls under three main categories:

1. Incorporation of nonlinear constitutive laws into a 3D finite element framework

and development of efficient solution schemes to solve the resulting system de-

pending on the drive conditions.

2. Development of constitutive models for Galfenol and Terfenol-D suitable for

integration with the finite element model.

3. Presentation of case studies which validate the model’s ability to describe trans-

ducer level dynamic responses

This chapter summarizes the key achievements of this research and possible future

work which can be carried out using this research as a starting point.
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6.1 Research Summary

6.1.1 Unified model

This work was aimed at developing a finite element framework for modeling 3D

magnetostrictive transducers driven over nonlinear regimes with dynamic inputs.

Weak form equations derived from Maxwell’s equations for electromagnetic systems

and Navier’s equation for mechanical systems are coded into COMSOL (a commer-

cial finite element package used for meshing, global assembly of matrices and post-

processing). A piecewise linear solution procedure was developed to describe the

transducer response under quasistatic conditions. The solution was obtained in the

form of piecewise increments and the magnetostrictive material was modeled using

linear piezomagnetic equations within each incremental step. The piezomagnetic co-

efficients were updated at the end of each step by analytical differentiation of the

constitutive law. Reduction in computational effort was achieved by declaring the

material coefficients as interpolated data functions and computing them only at se-

lected locations. The piecewise linear procedure was found to be useful for obtaining

quasi-static major loops for the system and accurate determination of bias points. A

linear dynamic simulation with the magnetostrictive material coefficients computed at

the bias point was proposed for describing the system dynamics for moderate inputs

about the bias point. An implicit time integration scheme based on the trapezoidal

rule was devised to describe dynamic system responses for large-scale inputs.
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6.1.2 Application to Galfenol transducers

In this chapter a nonlinear discrete energy averaged model for Galfenol was imple-

mented in the unified modeling framework. First, an optimization algorithm was de-

veloped to find the parameters of the discrete energy-averaged model based on the 1D

characterization curves of the Galfenol alloy. With the parameter search algorithm,

the only inputs required by the finite element model were the constitutive parame-

ters of the passive materials (permeability, conductivity, stiffness etc.) and the 1D

magnetomechanical characterization curves for Galfenol. In the parameter optimiza-

tion routine, good initial guesses for the parameters were selected based on analytical

relationships. The algorithm was shown to work for a wide variety of Galfenol al-

loys including single crystal Fe81.5Ga18.5 and textured polycrystalline Fe81.6Ga18.4 with

and without annealing. Although the optimization routine produced the best results

with the full set of characterization curves (i.e. both actuation and sensing) with a

mean error of approximately 2 %, the results obtained with only a single actuation

measurement were also remarkably accurate (≈ 3 %).

For incorporation into the piecewise-linear model, the constitutive law was ana-

lytically differentiated and analytical expressions for the components of the material

Jacobian matrix were obtained. For the nonlinear dynamic solution, the constitutive

model was inverted using the Quasi-Newton SR1 formula which directly updated the

Jacobian inverse, eliminating the need for matrix inversion within the iteration loop.

The computed Jacobian inverse in the final iteration of the inversion process was used

for the assembly of the global stiffness matrix. The inversion routine was coded up

such that a single execution calculated the 6 components of stress, 3 components of
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field and 81 components of the Jacobian inverse, thereby enhancing the overall com-

putational efficiency of the model. The inability of COMSOL to take vector valued

inputs from MATLAB functions was tackled by coding up the material model such

that it was executed only once for a particular set of input values after which the

corresponding ninety outputs were stored in a data structure. For the subsequent

eighty-nine runs with the same inputs, the desired output was returned directly from

the stored data structure. The model was compared to experiments conducted on a

Galfenol unimorph actuator. Results showed that the model is capable of describing

system level input-output relationships under both quasistatic and dynamic condi-

tions.

6.1.3 Application to Terfenol-D transducers

This chapter dealt with the methods used to apply the unified finite element

model to Terfenol-D transducers. The work was split into three major segments: (1)

Development of a constitutive model for Terfenol-D which could be incorporated in the

finite element framework. (2) Reduction of the 3D framework to a 2D axisymmetric

form to take advantage of the axisymmetric nature of Terfenol-D transducers, and (3)

A case study on a Terfenol-D engine mount actuator to validate the model’s ability

to quantify Terfenol-D transducer dynamics.

Terfenol-D constitutive modeling: A fully coupled energy averaged constitu-

tive model was formulated to describe the magnetomechanical response of Terfenol-D.

Two main discrepancies of previous energy averaged models in modeling Terfenol-D

response were recognized as presence of an additional kink in the modeled response

which is absent in measurements and absence of the slow approach to saturation
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present in Terfenol-D magnetostriction. It was shown that use of a weighted global

anisotropy energy combined with a variable smoothing factor based on the devia-

tion of domain volume fractions from a homogeneous distribution tackles both the

issues successfully. Because of the implicit relationship for the domain volume frac-

tions, equilibrium iterations were required to achieve convergence. Nevertheless, the

iteration procedure was found to be extremely efficient and took only 20 % longer

than solving without iterations. A reduced version of the model was also proposed in

which the four minima corresponding to the four easy axes which caused the kinks

were eliminated. This approach was more efficient but suffered from lack of accuracy

under high stress or field for actuation and low stress or field for sensing. A hysteretic

extension to the model was also formulated based on an evolution equation for the

domain volume fractions. It was shown that the model is capable of reproducing the

magnetomechanical behavior of a variety of Terfenol-D alloys provided an optimum

parameter set is computed for the alloy. Both regions and amount of hysteresis were

accurately modeled with mean errors below 5 % in all cases.

Axisymmetric finite element formulation: The 3D unified model was re-

duced to the 2D axisymmetric form to take advantage of the axisymmetric nature of

Terfenol-D transducers. Vector magnetic potential A and current density J were re-

duced to scalars defined in the out-of-plane direction. The weak form equations were

obtained by converting the volume integrals to area integrals. A coordinate transfor-

mation was integrated with the Terfenol-D constitutive law as the global and material

coordinate systems did not coincide. The material Jacobian was computed using a

two-stage vectorized transformation process to avoid direct computation of third and
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fourth order tensor transformations which would require for-loops. Implementation

of the piecewise-linear and nonlinear dynamic solution was done in a manner identical

to the 3D case.

Case study on a Terfenol-D engine mount actuator: The axisymmetric

finite element framework was used to describe the dynamic performance of a hy-

draulically amplified Terfenol-D mount actuator. The FEA model was combined with

lumped equations for the LuGre model to describe seal friction and fluid-structure

interaction which modeled the compliance of the hydraulic fluid but neglected fluid

inertia and damping due to the extremely small volume of fluid used in the actuator.

Results showed that the magnitude of the mechanical and electrical performance of

the actuator was accurately predicted up to 200 Hz. Because of the anhysteretic

nature of the constitutive law for Terfenol-D, the response had small errors in phase

which became particularly noticeable at frequencies above 100 Hz. A parametric

study on the unloaded displacement response of the actuator showed that over 100

% performance improvements can be achieved by doubling the thickness of the fluid

chamber components and reducing the seal friction to one-fourth of its original value

can yield approximately 80 % performance improvement. The actuators performance

was found not to be very sensitive to changes in bulk modulus of the fluid. A four-

fold increase in the bulk modulus caused a mere 8.5% increase in stroke. This was

possibly due to the extremely small fluid volume contained in the hydraulic chamber.

Variation of the electrical and magnetic constitutive parameters (permeability and

conductivity) of the permanent magnet also showed no appreciable improvements in
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transducer performance. However, the example illustrated the utility of the fully-

coupled finite element model in describing the effects of mechanical, magnetic and

electrical constitutive parameters, and transducer geometry on the dynamic perfor-

mance of the transducer.

6.2 Contributions

The main contributions of this dissertation are:

1. Formulation of a unified modeling framework which is capable of describing the

full nonlinear coupling between electrical, magnetic, and mechanical domains

in magnetostrictive transducers. It can simultaneously describe the effects of

flux leakages, structural dynamics, eddy currents, and nonlinear constitutive

behavior on transducer performance. The framework is unified in the sense

that the solution algorithms that are developed and implemented can be used

to describe the dynamic behavior of transducers employing any magnetostrictive

material whose constitutive behavior can be quantified. The framework is shown

to model transducers employing the two most common magnetostrictive alloys,

Terfenol-D and Galfenol, based on nonlinear analytical constitutive models. The

work was concentrated in two areas:

• Development of solution algorithms to efficiently solve the system equa-

tions:

- A fast piecewise-linear solution method was devised based on an in-

cremental formulation for quasistatic operating conditions.
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- An implicit time integration method based on the trapezoidal rule was

implemented to quantify nonlinear dynamic system responses for large

scale dynamic inputs.

• Development of strategies to incorporate nonlinear constitutive models in

the finite element framework:

- A parameter optimization algorithm for a discrete energy averaged

constitutive law was incorporated in the framework to determine the

constitutive model parameters from 1D measurements on the material.

- Analytical differentiation of constitutive models was done to obtain

piezomagnetic coefficients for the piecewise-linear solution.

- Terfenol-D and Galfenol constitutive laws were numerically inverted

using the Quasi-Newton SR1 formula for use in the nonlinear dynamic

solution.

2. Development and refinement of nonlinear constitutive laws suitable for incor-

poration into transducer level models:

• A fully coupled discrete energy-averaged model for Terfenol-D was formu-

lated based on an implicit domain volume fraction definition.

• An energy-averaged model for Galfenol was refined to eliminate instabili-

ties at high magnetic fields making it more suitable for use in finite element

models.
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6.3 Findings

• The developed finite element framework can accurately quantify the mechani-

cal and electrical responses of a Galfenol unimorph actuator and a Terfenol-D

engine mount actuator.

• Approximation of hysteretic material behavior with anhysteretic constitutive

laws caused errors in the phase of the modeled response. These errors were

negligible till 100 Hz and became more noticeable with increasing frequency.

• The framework can be successfully augmented with lumped parameter equations

describing additional physics as was done for seal friction and fluid-structure

interaction to model the response of a Terfenol-D engine mount actuator.

• A parametric study on the engine mount actuator showed that the model is

useful for design optimization. Effects of electrical, magnetic, and mechanical

constitutive parameters on transducer performance can be predicted.

6.4 Future Work

This research provided a tool for modeling 3D magnetostrictive systems as well

as presented applications of this tool to specific Galfenol and Terfenol-D transduc-

ers. The following list discusses possible future work which could be done using this

research as a platform

• One of the limitations of the current implementation is that it assumes use of an-

hysteretic constitutive laws. Development of methods to incorporate hysteretic

material behavior will be a useful addition to the framework. The challenge
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involved in this is that hysteretic constitutive models depend on the history of

the material. In case of the energy-averaged models, it would mean keeping

track of the volume fractions on all the nodes inside the magnetostrictive mate-

rial. Further, methods for ensuring convergence of hysteretic systems must be

applied.

• Significant computational effort is used up in numerical inversion of the con-

stitutive laws. Thus, formulation of efficient inverse constitutive models can

considerably improve the efficiency of the finite element model.

• The accuracy of 3D constitutive laws developed or refined in this work have not

been tested against 3D measurements. 3D characterization of magnetostrictive

alloys will provide valuable information about the validity of these constitutive

models.

• In this work supplemental physics was added in the form of LuGre friction and

fluid-structure interaction (based on only fluid compliance) while modeling the

mount actuator. More complex components can be added to the finite element

framework. For example, structural-acoustic interactions can be incorporated

to model sonar transduction devices or magnetostrictive speakers. Complete

fluid-structure interaction models including fluid inertia, damping, and compli-

ance can be integrated with the framework to model magnetostrictive-hydraulic

pumps.
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Appendix A: VECTOR CALCULUS

A.1 Vector Calculus Operators

Gradient: Gradient of a scalar f is a vector and is written as

grad(f) = ∇f, (A.1)

where the operator ∇ in cartesian coordinates is defined as

∇ =
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂. (A.2)

Divergence: Divergence of a vector field F is a scalar and is defined as

div(F) = ∇ · F. (A.3)

Curl: Curl of a vector field is a vector and is defined as

curl(F) = ∇× F. (A.4)

Laplacian: The Laplacian operator is defined differently for scalars and vectors.

For scalars it is defined as

∆f == ∇2f = (∇ · ∇) f, (A.5)
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and for vectors it is defined as

∇2F = ∇ (∇ · F)−∇× (∇× F) . (A.6)

In Cartesian coordinates the Laplacian of a vector is a vector whose components are

the scalar Laplacian of the corresponding components of the original vector. Thus

∇2F = ∇2Fxî +∇2Fy ĵ +∇2Fzk̂.

A.2 Vector Calculus Identities

The following is a list of identities relating these operators which have been used

in this dissertation.

∇ · (∇× F) = 0, (A.7)

∇×∇f = 0, (A.8)

F× (∇× F) =
1

2
∇ (F · F)− (F · ∇) F, (A.9)

∇ · (F1 × F2) = F2 · (∇× F1)− F1 · (∇× F2) . (A.10)

A.3 Theorems

Stoke’s theorem: The stoke’s theorem relates the surface integral of the curl of a

vector field over a surface S to the line integral of the vector field over its boundary

∂S: ∫
∂S

F · dX =

∫
S

(∇× F) · ndS. (A.11)

Divergence theorem: The divergence theorem states that the volume integral of

the divergence of the vector field over a volume V equals the flux of the vector field
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through the boundary enclosing the volume ∂V :∫
V

∇ · F =

∫
∂V

= F · ndS. (A.12)

When the divergence theorem is applied to the product of a scalar f and a constant

vector, the following theorem can be obtained for the scalar∫
V

∇fdV =

∫
∂V

fdS. (A.13)
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Appendix B: MAGNETO-HYDRAULIC ACTUATOR FOR

ACTIVE ENGINE MOUNTS: DESIGN AND

COMPARISON WITH A COMMERCIAL MOUNT

ACTUATOR

B.1 Introduction to Active Engine Mounts

A typical engine mount has two main purposes. First, to isolate the high frequency

engine vibrations from the chassis and second to prevent engine bounce from low

frequency, high amplitude road excitations. The two functions are contradictory since

the first requires the mount to be compliant and the second requires the mount to be

stiff. This suggests that an ideal engine mount would have frequency and amplitude

dependent stiffness characteristics.

Despite advances in passive mount design (see, e.g., Yu et al. [87] and Jazar et

al. [44]), the trend of increased engine power combined with lighter vehicle frames

poses vibration isolation problems which passive mounts alone cannot adequately ad-

dress. Hence, significant emphasis is now placed on investigating designs and methods

to develop effective active mounts.
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This work presents the development of a compact bidirectional magnetostrictive

actuator for active engine mounts and shows how it compares with a commercial

mount actuator in terms of performance.

B.2 Actuator Design

B.2.1 Estimation of actuator requirements

Figure B.1 shows a schematic of the lumped parameter model used to determine

the actuator requirements. In this model, the transfer function actuator displacement

over engine displacement is given by

Xd

X
(s) =

[(
1 +

Kr

Kb

)
Ae
Ad

+
KrA

2
t

AeAd (ms2 + cs+Kε)

]
, (B.1)

and the transfer function actuator force over engine displacement is

F

X
(s) =

(
Ad
Ae

)
Kr, (B.2)

which is obtained by equating the net transmitted force on the base to zero.

The input to the transfer functions is the engine displacement which is selected as

0.5 mm at the idling frequency (20 Hz), decaying linearly to 0.1 mm at 100 Hz and

then decreasing linearly to 0.05 mm at 1000 Hz based on which the requirement of

the actuator is calculated from (B.1) as 1.6 mm at 20 Hz, 0.35 mm at 100 Hz, and

0.175 mm at 1000 Hz.

The stroke of the proposed actuator is decided by the dimensional constraints on

the Terfenol-D rod. In this case a Terfenol-D rod of diameter 0.5 in (12.7 mm) and

length 2 in (50.8 mm) is chosen. Thus, the expected blocked force of the rod is 4560 N

(assuming E = 30 GPa) and the unloaded stroke is 60 µm (assuming λ = 1200 ppm).
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Figure B.1: Schematic of the active mount model (Lee et. al. [57]).

B.2.2 Actuator gain

The calculation of kinematic gain for an induced-strain actuator must incorporate

loading effects since the maximum strain is obtained when the load is zero and the

maximum load is supported when the displacement is zero. The stroke of a displace-

ment amplified induced-strain actuator is derived by Giurgiutiu et al. [38] as

ue
uref

=
G

1 + rG2
, (B.3)

where G is the kinematic gain, r is the ratio of load stiffness to the smart material rod

stiffness, and uref is the unloaded displacement of the smart material driver. For a

given r, the value of G which maximizes the stroke can be obtained by differentiating

(B.3) with respect to G and equating to zero. This gives the optimal gain Gopt as

Gopt = 1/
√
r. (B.4)

The effective stiffness of the load on the driver is obtained by dividing (B.2) by (B.1).

To calculate Gopt, the value of r at idling frequency is selected because the engine
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Figure B.2: Assembled and exploded view of the magneto-hydraulic actuator.

vibration amplitude is maximum at idling conditions and hence the gain must be such

that the actuator performs at its optimum when the engine is idling. The optimal

gain Gopt is calculated to be 69.

B.2.3 Magnetic circuit and preload

The magnetic circuit consists of three cylindrical Alnico permanent magnets of ID

1.125 in (28.575 mm) and OD 1.5 in (38.1 mm), an AWG 20 wire coil for generating

the dynamic field, iron pieces for flux return and a Terfenol-D rod. The coil has an

ID of 0.6 in (15.24 mm) and an OD of 1 in (25.4 mm). Alnico magnets are selected

because they provide an optimum level of bias field (≈ 40 kA/m) on the Terfenol-D

rod in order to achieve symmetric bidirectional motion. Figure B.2 shows the physical

actuator and a cutout showing the various components. The mechanical preload on
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Table B.1: List of Terfenol-D actuator components.
Component Specification
Length of Terfenol-D rod 2 in (50.8 mm)
Diameter of Terfenol-D rod 0.5 in (12.7 mm)
Alnico magnet (ID × OD × L) (1.125 in (28.58 mm) × 1.5 in (38.1 mm)

× 2.25 in (57.15 mm))
Mass of larger Piston 74.67 g
Mass of smaller Piston 2.30 g
Volume of fluid(DTE 25) 1.30 c.c
Wave spring stiffness 3.5 × 103 N/m
Finger disc spring Stiffness 2.25 × 105 N/m

the Terfenol-D rod is created by a wave spring situated above the driven piston and

by a disc spring located between the magnetic circuit and drive piston. The force

produced by the wave spring on the rod is magnified by the fluid. One advantage

of this configuration is that the fluid remains in compression during operation, thus

reducing the chances of cavitation. The wave spring should be able to produce the

desired force in order to generate the preload, yet it must be as compliant as possible

to produce little force variation over a large range of deformation (≈ ± 1 mm) so

that little energy from the Terfenol-D is used in compressing the spring. The fluid

is sealed by two o-rings (#6 on the smaller piston and #32 for the larger piston).

Table B.1 lists the specifications for different actuator components.

B.3 Benchmarking Against a Commercial Electrodynamic
Mount Actuator

The Terfenol-D magnetohydraulic actuator (MHA) is benchmarked against a com-

mercial electrodynamic mount actuator (CMA) in the frequency domain. Figure B.3
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Figure B.3: Displacement in mechanically-free condition with both devices driven at
full power.

shows the pk-pk unloaded displacement for both devices, obtained by running his-

togram tests at discrete frequencies from 10 Hz to 500 Hz and measuring the actuator

output with a laser displacement sensor. The response at full power shows that the

MHA has a 3-dB cutoff of 280 Hz compared with a 110 Hz cutoff for the CMA. The

gain-bandwidth products are 575 mm Hz and 274 mm Hz, respectively.

Figures B.4(a) and B.4(b) show the first three harmonics for each of the two

free displacement responses. The MHA exhibits a flat response over the frequency

band, with a strong first-order harmonic and almost nonexistent second and third

harmonics. This linear response is advantageous for control purposes. Conversely,

the CMA exhibits significant distortion due to second and third harmonics. Similar

measurements were also performed under mechanically blocked condition [13]
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Figure B.4: Free displacement orders of (a) MHA and (b) CMA.
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Figure B.5: Power consumption of the MHA and CMA.

B.3.1 Electrical power requirement

Figure. B.5 compares the electrical power consumption of the two devices in the

blocked condition. The MHA inductance is significantly lower leading to lower power

consumption even when it is driven at higher current.
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Appendix C: MAGNETO-HYDRAULIC ACTUATOR

DRAWINGS
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Appendix D: DYNAMIC MODEL FOR A

DISPLACEMENT AMPLIFIED MAGNETOSTRICTIVE

DRIVER FOR ACTIVE MOUNTS

This work discusses the development of a lumped parameter 1D model for the

Terfenol-D mount actuator. The primary use of the proposed model is device design

and control. A 1D magnetic field diffusion equation is used to describe the spatial

variation of magnetic field in the Terfenol-D sample due to eddy currents. The Jiles-

Atherton model is used to describe the 1D magnetization response of Terfenol-D

to magnetic fields. Magnetostriction, which is modeled as a single-valued function

of magnetization, provides an input to the lumped parameter model describing the

mechanical system vibrations. Friction at the elastomeric seals is described with the

LuGre dynamic friction model. Structural dynamics of the support has also been

considered to increase the model accuracy.

D.1 Model Structure

Figure D.1 shows the basic structure of the model. The radial dependence of mag-

netic field inside the magnetostrictive rod is established by solving the magnetic field

diffusion equation. The magnetostrictive material response to this radially varying

magnetic field is computed using the Jiles-Atherton constitutive model and coupled
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to a mechanical system model. The mechanical system consists of a hydraulic amplifi-

cation mechanism with compliances and frictional losses at the seals which makes the

system nonlinear. Hence, the entire model is solved numerically in the time domain

and the Fourier components of the final periodic waveform obtained is analyzed.

D.2 Magnetic Field Diffusion

The magnetic field diffusion equation for quasi-stationary operating conditions

can be obtained by using the curl operator on Faraday’s law:

∇×∇×H = ∇× J

= ∇× (σE)

= −σ
(
∂B

∂t

)
= −σµ

(
∂H

∂t

)
. (D.1)

Figure D.1: Flowchart for the actuator model.
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where µ is the constant magnetic permeability of the material. The left hand side of

(D.1) can be simplified to give

∇×∇×H = ∇ (∇ ·H)−∇2H

= ∇
(
∇ ·B 1

µ

)
−∇2H

= −∇2H (∵ ∇ ·B = 0) . (D.2)

For cylindrical geometries the diffusion equation takes the form

∂2H

∂r2
+

1

r

∂H

∂r
= σµ

∂H

∂t
. (D.3)

The boundary condition at the surface of the rod for a harmonically applied field is

H(R, t) = H0e
iωt. The solution to be of the form H0h̃(r)eiωt where h̃(r) is a complex

function of the radius r. Equation (D.3) then reduces to

∂2h̃

∂r2
+

1

r

∂h̃

∂r
− iσµωh̃ = 0. (D.4)

Assuming µ to be constant over the range of applied fields, the solution to (D.4) can

be written as done in [56],

h̃(r) =
I0(q(r))

I0(q(R))
, (D.5)

where I0 is the modified Bessel function of order zero, q(r) =
(√

iσµω
)
r and R is the

radius of the magnetostrictive rod.

D.3 Jiles-Atherton Equations

The Jiles-Atherton model is used to describe the magnetization state of the ma-

terial as a function of the applied field. The total magnetization is written as a

combination of an anhysteretic and an irreversible component,

M = cMan + (1− c)Mirr. (D.6)

185



c is a reversibility parameter which accounts for reversible bowing of domain walls.

When c = 1 domain wall motion is completely reversible and when c = 0, domain

wall motion is completely irreversible. The anhysteretic magnetization is given by

the Langevin function as

Man = Ms

(
coth

(
He

a

)
−
(
a

He

))
, (D.7)

where a is a shape parameter for Man which controls the slope of the anhysteretic

magnetization curve, Ms is the saturation magnetization of the material and He is

an effective field given by [28]

He = H +

(
α +

9

2

σbiasλs
µ0M2

s

)
︸ ︷︷ ︸

α̃

M. (D.8)

σbias is the applied bias stress on the rod and α is a parameter which quantifies

magnetic domain interactions.

The derivative of the irreversible magnetization with respect to the effective field

is

dMirr

dHe

=
Man −Mirr

δk
, (D.9)

With some mathematical manipulation [14] the final differential equation for the

total magnetization in terms of magnetic field can be obtained as

dM

dH
(r) =

(
Φ(M(r))

1− α̃Φ(M(r))

)
. (D.10)

where

Φ(M(r)) =

[
c
dMan

dHe

(r) +
Man(r)−M(r)

δ(r)k

]
. (D.11)

Magnetostriction (λ) is modeled as a single valued function of magnetization

through the relation

λ(r) =
3

2

λs
M2

s

M(r)2. (D.12)
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Figure D.2: Schematic representation of the actuator’s mechanical model.

Since the mechanical model is lumped, magnetostriction is averaged over the cross-

section of the rod to yield an average magnetostriction λavg

D.4 Mechanical Model

Figure D.2 shows the schematic of the mechanical system model. The pressure

differential in the fluid can be written as

∆p = βeff (Apxp − ALxL) , (D.13)

where βeff is an effective modulus which quantifies the compliance of the fluid and

fluid chamber components [15]. The total strain in the rod is a superposition of the

average magnetostriction and the strain induced by compressive stress (σc),

ε = λavg −
σc
E

=
xp − xs
la

. (D.14)
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The force produced by the rod is given by the stress on the rod multiplied by its

cross-sectional area Ar,

Fa = σcAr = EArλavg −
EAr
la

(xp − xs). (D.15)

The equations of motion for the two pistons and the support structure are

Mpẍp + (kdisk)xp + frp = −∆pAp − σcAr, (D.16)

MLẍL + (kL + kpre)xL + frL = ∆pAL, (D.17)

Msẍs + ksxs = −Fa, (D.18)

where kL and kpre are the stiffness of the load and preload springs attached to the

driven piston, and kdisk is the stiffness of the disk spring attached to the Terfenol-D

rod. Variables frL and frp respectively denote the friction forces at the small and

large piston which are described by the LuGre friction model [64].

D.5 Model Results

The actuator was run at discrete frequencies from 10 Hz to 500 Hz with a mechan-

ical pre-stress of ≈ 1 ksi on the rod generated by the preload spring in contact with

the driven piston. The preload spring also acts as the load spring since no external

loading spring is attached to the pushrod. The Terfenol-D rod is magnetically biased

by an Alnico magnet with a field of ≈ 27 KA/m. The actuator is driven with a 4.5 A

sinusoidal current with no d.c bias. The strain on the surface of the Terfenol-D rod

is measured with a strain gage and the displacement of the pushrod is measured with

a laser displacement sensor.

Figure D.3 shows the experimental and simulated time domain responses of the

pushrod displacement at varied actuation frequencies. The model is able to describe
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Figure D.3: Output pushrod displacement at different actuation frequencies.

the initial hysteresis and the nonlinear shape of the response both in terms of ampli-

tude and phase.

A Fourier analysis on the experimental and modeled responses yielded the spectral

content of the waveforms at different frequencies. Figure D.4 shows that the model

accurately describes trends in the higher order components of the Terfenol-D strain

and pushrod displacement.

Figure D.5 shows the magnitude and phase of the first order component of the

pushrod displacement. Strong correlation is obtained in both magnitude and phase.
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Figure D.4: Output pushrod displacement orders.

0 100 200 300 400 500
0

0.5

1

1.5
x 10

−3

Frequency (Hz)

D
is

p
la

c
e

m
e

n
t 

M
a

g
. 

(m
)

 

 

0 100 200 300 400 500
−200

−150

−100

−50

0

Frequency (Hz)

P
h

a
s
e

 (
d

e
g

)

Experiment

Model

Figure D.5: Output pushrod displacement magnitude and phase (first order).
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