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a b s t r a c t

This paper considers the radial dependence of magnetic diffusion in cylindrical magnetoelastic materials
that results from the simultaneous application of a constant surface magnetic field and a dynamic me-
chanical input. Mechanically induced magnetic diffusion is particularly pronounced in materials that
exhibit a strong magnetoelastic coupling, such as magnetostrictive materials and ferromagnetic shape
memory alloys. Analytical time- and frequency-domain solutions of the PDE governing the radial dif-
fusion of magnetic field are derived. The solutions are non-dimensionalized by deriving a skin depth and
cut-off frequency for mechanically induced diffusion, which are about 2.08 and 4.34 times those for field-
induced diffusion, respectively. It is shown that the effects of mechanically induced diffusion can be
incorporated in linear constitutive models through the use of a complex-valued, frequency-dependent
magnetoelastic coupling coefficient and Young's modulus. The solutions show that for forcing fre-
quencies f up to about the cut-off frequency, the magnitude of the steady-state, dynamic field increases
in proportion to f. As forcing frequency increases above that range, the magnitude overshoots its high
frequency limit, peaks, then decreases to its high frequency limit, at which point the dynamic magnetic
flux becomes zero and continued increases in forcing frequency have no effect. Together, the derived
frequency responses, skin depth, and cut-off frequency can be used to design magnetoelastic systems and
determine if lamination of the magnetoelastic material is necessary

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Eddy currents inside electrically conducting media alter the
propagation of magnetic fields into the media; the resulting at-
tenuation and phase lag of the magnetic fields is quantified by
magnetic diffusion laws. Magnetic diffusion in ferromagnets
caused by the application of dynamic magnetic fields is a classical
problem that has received significant attention since the late
1800s [1–3]. The influence of magnetoelasticity and static stress on
field-induced magnetic diffusion has been investigated only more
recently [4–6].

Dynamic mechanical inputs cause a diffusion of static magnetic
fields into electrically conducting magnetoelastic materials, parti-
cularly ones that exhibit strong coupling, such as magnetostrictive
materials and ferromagnetic shape memory alloys. Mechanically
induced magnetic diffusion is critically important for applications
in which these materials operate under dynamic mechanical
loading, including dynamic sensors, energy harvesters, vibration
dampers, and stiffness tuning devices. However, only a few studies
on this effect have been reported.
The effects of 1D mechanically induced magnetic diffusion have

been briefly studied numerically [7–9]. Sarawate and Dapino [7]
investigated the magnetic field in a Ni–Mn–Ga rod and illustrated
the dependence of the field's time-domain response on the radial
coordinate and strain frequency for a small range of parameters.
1D mechanically induced magnetic diffusion has been analytically
treated in the context of magnetostrictive energy harvesters by
Davino et al. [10], who derived an expression for average harvested
power, and by Zhao and Lord [11], who derived an expression for
the effective internal magnetic field. However, the spatial and
frequency dependence of the internal magnetic field or magnetic
flux density have not been derived. Further, calculation of a skin
depth and cut-off frequency for this effect are absent from the
literature.

This paper presents an analytical model of linear, 1D me-
chanically induced magnetic diffusion in cylindrical magnetoe-
lastic materials. The model is used to quantify the radial depen-
dence of internal magnetic fields created by eddy currents that
result from the application of harmonic, axial stresses. Analytical
time- and frequency-domain solutions are derived for a constant,
axial surface magnetic field after considering the axial symmetry
and assuming (i) negligible displacement currents, (ii) linear
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constitutive behavior, (iii) negligible demagnetizing fields, and (iv)
uniform stress and electrical conductivity . The solutions are non-
dimensionalized and then used to investigate the spatial and fre-
quency dependence of the internal magnetic field and magnetic
flux. Unlike the referenced analytical and numerical solutions,
these analytical solutions provide design criteria, reveal the re-
lative importance of each material property, and provide expres-
sions for skin depth and cut-off frequency. For nonlinear operating
regimes, the derived solutions can be used to assess whether la-
mination of the magnetoelastic material is necessary.
Fig. 1. General mechanically induced magnetic diffusion problem for axial loading
(left) and the simplified 1D problem that is solved (right); the magnetic field at the
surface of the rod, Hext, is assumed to be uniform and constant in time.
2. Model development

The general magnetic diffusion equation for magnetoelastic
materials is derived from Maxwell's equations and the assumption
that displacement currents are negligible
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where μ[ ] and d[ ]⁎ denote the magnetic field- and stress-dependent
magnetic permeability and piezomagnetic coefficient tensors, re-

spectively. In ferromagnetic shape memory alloys, M
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where [e] represents the magnetic field- and strain-dependent
coupling coefficient tensor.

For biased operation and sufficiently low amplitude excitation,
the constitutive tensors μ[ ], d[ ]⁎ , and [e] can be assumed to be
constant. If a cylindrical magnetostrictive material or ferromag-
netic shape memory alloy is operated in a transducer having a
closed magnetic circuit of low reluctance, demagnetizing fields can
be neglected and the circuit can be represented as an infinitely
long rod subjected to a uniform, axial magnetic field Hext at its
surface and an axial, distributed force on its ends. Due to the in-
homogeneous internal magnetic field, the rod's stiffness, and
therefore the applied stress, will be radially dependent [4]. How-
ever, to permit an analytical solution, the stress is assumed to be
uniform throughout the rod. Stress uniformity along the axial di-
rection is valid for forcing frequencies sufficiently below me-
chanical resonance of the rod. Due to this assumption, the rod's
mechanical inertia and damping (i.e., structural dynamics) are
ignored.

Under the aforementioned assumptions, (2) and (3) simplify to

H r t H r t r H r t d T t, , / , , 4rr r t tσμ σ( ) + ( ) − ( ) = ( ) ( )⁎

and

H r t H r t r H r t eS t, , / , , 5rr r t t0σμ σμ( ) + ( ) − ( ) = ( ) ( )

respectively, where r is the radial coordinate, the subscript r de-
notes partial differentiation with respect to r, and μ, dn, and e are
the 33 components of the respective tensors. Thus, the 1D
magnetic diffusion problem for ferromagnetic shape memory al-
loys is identical to that for magnetostrictive materials if e0μ and S
(t) are substituted for dn and T(t), respectively. Consequently, it is
sufficient to only solve (4), which resembles the 1D field-induced
magnetic diffusion problem, but with a forcing term. Fig. 1 depicts
the general mechanically induced magnetic diffusion problem for
axial loading of a magnetoelastic cylinder and the simplified pro-
blem that is solved.
3. 1D time- and frequency-domain solutions

To solve (4), it is convenient to have zero boundary conditions.
This is accomplished using the change of variables
H r t H r t H, , ext
˜ ( ) = ( ) − , so that the initial boundary value problem
is written as
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where r¼R is the surface of the rod. Eqs. (6)–(9) can be written as
an inhomogeneous Bessel equation of order zero using the change
of variables, u rμσ= ,
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where the subscript u indicates partial differentiation with respect
to u.

The solution of (10)–(13) is found using the method of eigen-
function expansions. After assuming that H u t D t U u,˜ ( ) = ( ) ( ), the
eigenvalue problem can be derived from the homogeneous form of
(10) using the method of separation of variables
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where the separation constant k must be negative (i.e., k 2λ= − )
to avoid trivial solutions [12]. The solution of the eigenvalue pro-
blem (14)–(16) is given by Asmar [12] as
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where n 1, 2, 3= … is an index, J0 is the Bessel function of order
zero, and n

0α is the nth positive zero of J0. Using the method of
eigenfunction expansions, the solution of (10) has the form
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Insertion of (19) into (10) followed by simplification using (14) and
(17) gives
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After multiplying both sides of (20) by uJ u R/s
0 0α μσ( ( )), integrating

with respect to u from 0 to Rμσ , interchanging the order of in-
tegration and summation, and using the orthogonality of the
Bessel functions [12], only the sth term of the summation survives
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where J1 is the Bessel function of order 1. Evaluating the integral in
(21) using the change of variables, k u R/s

0α μσ= ( ), and an integral
identity of Bessel functions [12], one gets
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The initial condition (23) is derived by inserting (19) into (11) to
get
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which is a 0th order Bessel series expansion of f r 0( ) = , for which
the expansion coefficients D 0s ( ) must all equal zero. For a har-
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The total time-domain solution in the original coordinates is
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where the real and the imaginary part of (25) are retained for
cosinusoidal and sinusoidal forcing, respectively. By inserting the
steady-state part of (25) into (19), the frequency response of H r t,˜ ( )
can be written as
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4. Non-dimensionalization of the analytical solutions

The time-domain solution is non-dimensionalized in two steps.
First, the rod's radius is written in terms of a parameter q and
penetration (skin) depth δ as

R
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For field- and mechanically induced diffusion, the skin depth can
be generally defined as the depth from the surface at which the
amplitude of the dynamic magnetic flux B̃ has attenuated by an
amount ψ relative to the amplitude at the surface. Using the linear
piezomagnetic equation
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Evaluation of (36) using (35) and the steady-state response of (19)
followed by simplification gives
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where p 2μσωδ= . For field-induced diffusion of plane waves,
exp 1ψ = ( − ) [1], whereas for field-induced diffusion in cylinders,
J 10

1ψ = ( ( − ))− [13]. By numerically solving (37) for the latter
condition, one gets p 4.3393≈ . Thus, the skin depth for me-
chanically induced diffusion in cylinders is

2.0831 2.0831 , 38M H1/2δ μσω δ≈ ( ) = ( )−

where δH is the skin depth for field-induced diffusion in cylinders,
which is given in [13]. The condition M Hδ δ= can be specified, but
at the expense of having a different meaning (i.e., different ψ) for
the skin depth for the two types of diffusion. Thus, δM as given by
(38) is used in this paper.

The second step used to non-dimensionalize the time-domain
solution is to non-dimensionalize the dynamic field such that the
dynamic flux it would produce on its own is normalized by the
magnitude of the dynamic flux produced by the stress alone.
Therefore, the non-dimensionalized dynamic field is
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39
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while the non-dimensionalized total field is H r t H r t H, , ext
́ ( ) = ¯ ( ) + .

To non-dimensionalize the frequency-domain solution, the first
step is to normalize the frequency by a cut-off frequency defined
as the frequency for which Rδ = [13]. Using (38), the cut-off fre-
quency for mechanically induced diffusion is given as
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where c
Hω is the cut-off frequency for field-induced diffusion in

cylinders, which is given in [13]. Thus, by comparing (40) to (34)
and (38), it is found that the frequency can be scaled according to

q . 41c
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The second non-dimensionalization step is the same as that used
for the time-domain solution (i.e., (39)).

The non-dimensionalized time-domain solution is given as
follows. The use of (34) and (38) in (39) followed by simplification
gives
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As before, the real and imaginary parts of (43) and (44) are re-
tained for cosinusoidal and sinusoidal forcing, respectively. The
magnitude M qs¯ ( ) and phase qsϕ̄ ( ) of D jqs¯ ( ) are calculated analo-
gous to (26) and (27), where the real and imaginary parts of D jqs¯ ( )
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where sgn() is the signum function. The magnitude of the steady-
state, non-dimensionalized dynamic field
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is only a function of r R/ and q.
The frequency response of H r R t/ ,¯ ( ) is
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A non-dimensionalized magnetic flux density can be defined as the
dynamic flux density normalized by its magnitude at the surface
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After inserting (35) and (19) into (51) and simplifying, the frequency
response of B r R t/ ,¯ ( ) can be expressed as
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5. Eddy current effects in 0D constitutive models

To incorporate the effects of mechanically induced magnetic
diffusion in 0D linear constitutive models, an effective internal
magnetic field is first defined as the average field over the rod's
cross section

H t
R

H r t dA
R

H r t r dr
1

,
2

, , 53A

R

eff 2 2 0
∫ ∫π

( ) = ( ) = ( ) ( )

where A is the cross-sectional area. Inserting (30) into (53), ne-
glecting the transient part of (25), evaluating the integral as done
in (21), and simplifying, one gets
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The use of the effective field (54) in the 0D linear piezomagnetic
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Fig. 2. Non-dimensionalized time-domain response to sinusoidal forcing for posi-
tive d T̂⁎ , (a) non-dimensionalized dynamic field H r R t/ ,¯ ( ) at radial locations of 0
(cylindrical axis), 0.2R, 0.4R, 0.6R, 0.8R, and 0.9R (distance from the axis increases
from red to blue – the direction of the arrow) for R q/ 1Mδ = = and (b) non-di-
mensionalized, effective dynamic field H teff¯ ( ) for R q/ Mδ = of 0, 0.5, 1, 2, 3, 5, and 10
(q decreases from red to blue – the direction of the arrow). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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where (41) and (40) were used to simplify the expressions. Con-
sequently, mechanically induced magnetic diffusion effects can be
represented in linear models of magnetostrictive materials as a
complex-valued, frequency-dependent piezomagnetic coefficient
(or, in general, as a complex-valued, frequency-dependent cou-
pling coefficient in magnetoelastic materials)

d d d j . 58c
M M M

Re Im( )χ χ χ= = − ( )
⁎ ⁎ ⁎

This is analogous to the representation of field-induced diffusion
as a complex-valued magnetic permeability [13]. The non-di-
mensionalized, effective dynamic field can now be written as

H t d T jsgn 1 e . 59
M M j t

eff Re Im( )( ( ) )χ χ¯ ( ) = ^ − − ( )
ω⁎

If the effective field (54) is instead inserted into the 0D linear
piezomagnetic equation S t dH t T t E/( ) = ( ) + ( ) , the following re-
sults:
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where E is Young's modulus, d d= ⁎, and κ is the magnetomecha-
nical coupling factor. Thus, mechanically induced magnetic diffu-
sion also causes the magnetoelastic material's modulus to be a
complex-valued function of the excitation frequency

E E
1

1 1
.

61
c M 2( )χ κ

=
+ − ( )

6. Results and discussion

The derived solutions involve infinite summations. For the
cases considered in this paper, 20 terms are sufficient to ensure
convergence of the summations; to generate the following figures,
summations were truncated at 500 terms. The general solutions
given in Sections 4 and 5 are illustrated below; thus, the following
figures and discussion are valid for all magnetoelastic materials
when their behavior is sufficiently linear.

The non-dimensionalized time-domain behavior of mechani-

cally induced diffusion is shown in Fig. 2 for positive d T̂⁎ . If d T̂⁎ is
negative, the response is the negative of that shown in Fig. 2. The
spatial dependence of H r R t/ ,¯ ( ) is depicted in Fig. 2a for
R q/ 1Mδ = = . The transient response quickly decays, and the in-
ternal magnetic field becomes nearly sinusoidal in time. The am-
plitude and the phase lag of the steady-state response increase
while moving from the rod's surface to its axis. Fig. 2b shows the
frequency dependence of the non-dimensionalized, effective dy-
namic field H teff¯ ( ) for different q. As q increases, the amplitude and
the phase lag increase monotonically from 0 and /2π to 1 and π,
respectively. The prior numerical solutions [7,8] are consistent
with these trends.

Physically, as the magnitude of the non-dimensionalized dy-
namic field increases from 0 toward 1, the magnetic energy in-
creases in magnitude and varies with time such that it opposes
changes in the magnetoelastic coupling energy. This suppresses
changes in magnetization, leading to a reduction in magnetic flux
changes and a stiffening of the elastic behavior. When the non-
dimensionalized dynamic field has a magnitude of 1 and lags be-
hind the stress by π (or by 0 for a material with negative dn),
changes in the magnetoelastic coupling energy are balanced by
changes in the magnetic energy. As a result, there is no driving
potential to vary the magnetization from its bias value. Therefore,
the magnetic flux remains constant and the material behaves
passively. This state forms the upper bound on mechanically in-
duced magnetic diffusion. From this state, increases in q will have
no effect on the constitutive response at radial locations for which
the upper bound has been reached.

Fig. 3 depicts the steady-state, spatial distribution of the mag-
nitude of the non-dimensionalized dynamic field, which is only a
function of R q/ Mδ = . In each case, the dynamic field is zero at the
rod's surface due to the boundary condition (8). Thus, mechani-
cally induced changes in magnetization are unimpeded at the
surface, where the dynamic magnetic flux attains its maximum
value. When the radius is one skin depth (i.e., q¼1), the magni-
tude of the non-dimensionalized dynamic field at the rod's axis is



Fig. 3. Spatial distribution of the steady-state, non-dimensionalized dynamic field
for different R q/ Mδ = .

Fig. 4. Non-dimensionalized frequency response of (a) the dynamic field H r t,˜ ( ) –

magnitude (top) and phase (bottom) – and (b) the dynamic magnetic flux density
magnitude as functions of q/ c

2ω ω = at radial locations of 0 (cylindrical axis), R0.2 ,
R0.4 , R0.6 , R0.8 , and R0.9 (distance from the axis increases from red to blue – the

direction of the arrow). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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about 0.86. As q increases, magnetic diffusion becomes more se-
vere and the magnitude of the internal dynamic field increases
accordingly. Interestingly, for moderate to high q, the magnitude of
the non-dimensionalized dynamic field exceeds 1. This is dis-
cussed after presenting the frequency-domain responses.

The non-dimensionalized frequency response of H r R t/ ,¯ ( ) at
different radial locations is presented in Fig. 4a. For / cω ω less than
about 1, the magnitude response increases monotonically with
frequency and with decreasing r. In this regime, G r R jq f/ , 1.0¯ ( ) ∝ .
With further increases in frequency, the magnitude overshoots 1,
peaks, then decreases to 1 and becomes independent of frequency.
The peak magnitude decreases and is successively shifted to
higher frequencies as one moves closer to the rod's surface. The
normalized, frequency-independent field magnitude is 1 at all
locations. A /2π− phase shift occurs as frequency increases. The
response toward the surface leads that at the axis, particularly
after the magnitude response at the axis peaks.

To explain the frequency response in Fig. 4a, recall that diffu-
sion-produced fields are in phase with the eddy currents (Am-
père's law), which are induced in proportion to B tt− ( ) (Faraday–
Lenz law). Consequently, H r t B r t, ,t

˜ ( ) ∝ − ( ). At low frequency, the
internal magnetic field is nearly constant and B r t d T t,t t− ( ) ≈ − ( )⁎ ;
thus, the internal field is in phase with d T tt− ( )⁎ , which lags /2π
behind T(t). As frequency increases, the magnitude of the internal
field increases along with the proportion of B r t,t− ( ) caused by the
field. As a result, B r t,( ) phase shifts toward H r t,˜ ( ) and lags behind
T(t). This in turn creates a lag in the eddy currents and H r t,˜ ( ). This
behavior continues with increasing frequency until H(t) lags be-
hind T(t) by π, at which point the magnitude of H r t,˜ ( ) becomes
frequency independent. The overshoot in the magnitude response
of H r R t/ ,¯ ( ) results from the non-180° phase misalignment be-
tween the dynamic field and the stress; it does not imply that the
dynamic field overcomes the applied stress and begins to drive the
system. To illustrate this, the magnitude response of the non-di-
mensionalized dynamic flux is shown in Fig. 4b. At the cut-off
frequency, the magnitude of the non-dimensionalized dynamic
flux is J0.789 10

1≈ ( ( − ))− at the axis; thus, the derivation of the
cut-off frequency in Section 4 is verified. Above the cut-off fre-
quency, the magnitude decays monotonically to zero, first at the
axis, then closer to the surface.

Given a maximum desired attenuation of the magnetic flux
density, Fig. 4b can be used to define design criteria for applica-
tions in which cylindrical magnetoelastic materials are subjected
to dynamic axial stress. In practice, the maximum allowable
attenuation depends on the nature and requirements of a given
application. Selecting 10% attenuation as an example, the forcing
frequency should be kept below about 0.63 times the cut-off fre-
quency. If this condition cannot be met, the cut-off frequency
should be increased by altering the bias condition, changing the
material, or decreasing the rod's radius. If this does not suffice, the
material can be laminated to reduce the effect of eddy currents.

The real and imaginary parts of the eddy current factor for
mechanically induced magnetic diffusion are presented in Fig. 5.
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Fig. 5. Real and imaginary parts of χM, the eddy current factor for mechanically
induced magnetic diffusion, as a function of q/ c
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Since this plot is general, it can be used with (58) to directly cal-
culate a complex-valued magnetoelastic coupling coefficient for
incorporating mechanically induced magnetic diffusion effects in
any magnetoelastic material.
7. Conclusions

This paper considered the radial dependence of the magnetic
field inside cylindrical magnetoelastic materials that results from
eddy currents that are induced by the application of a harmonic,
axial mechanical input; this effect, which is particularly pro-
nounced in magnetostrictive materials and ferromagnetic shape
memory alloys, was termed mechanically induced magnetic dif-
fusion to distinguish it from the conventional magnetic field-in-
duced magnetic diffusion. The PDE governing radial diffusion was
derived from the general magnetic diffusion equation by con-
sidering the symmetry of the problem and assuming linear con-
stitutive behavior, uniform stress, and negligible demagnetizing
fields. Analytical time- and frequency-domain solutions were de-
rived using the method of eigenfunction expansions. By non-di-
mensionalizing the dynamic magnetic field and deriving a pene-
tration (skin) depth δM and cut-off frequency c

Mω for mechanically
induced diffusion, the solutions were non-dimensionalized (i.e.,
made applicable to all magnetoelastic materials). The skin depth
and the cut-off frequency are

2.0831 2.0831 62M H1/2δ μσω δ≈ ( ) = ( )−

and

R4.3393 4.3393 , 63c
M

c
H2 1( )ω μσ ω≈ = ( )

−

respectively, where δH and c
Hω are the skin depth and the cut-off

frequency for field-induced diffusion in cylinders, respectively. By
defining an effective internal magnetic field as the average field
over the cylindrical rod's cross section, it was shown that the ef-
fects of mechanically-induced diffusion can be incorporated in 0D
constitutive models through the use of a complex-valued mag-
netoelastic coupling coefficient and Young's modulus.

The non-dimensionalized solutions were plotted to illustrate
the response of these materials to mechanically induced diffusion.
The spatial distribution of the magnitude of the non-dimensio-
nalized dynamic field was given for a wide range of skin depths.
For forcing frequencies below about 5 times the cut-off frequency
(or equivalently, for rods with radii less than about 2.2 times the
skin depth), the dynamic, internal magnetic field increases
monotonically from zero at the rod's surface to a maximum at its
axis. The internal field at the axis also phase lags behind the field
closer to the surface. Up to about the cut-off frequency, the mag-
nitude of the steady-state, dynamic field increases in proportion to
f1.0. As forcing frequency increases above that range, the magni-
tude overshoots its high frequency limit, peaks, then decreases to
its high frequency limit, at which point the dynamic magnetic flux
becomes zero and further increases in forcing frequency have no
effect. The magnitude response of the dynamic magnetic flux was
also presented. Given a maximum desired attenuation of the
magnetic flux density, this magnitude response can be used to
define design criteria for many applications, including dynamic
sensors, energy harvesters, vibration dampers, and tunable stiff-
ness devices. For example, for a maximum attenuation of 10%, the
forcing frequency should be kept below about 0.63 times the cut-
off frequency. The normalized real and the imaginary part of the
eddy current factor were plotted as a function of the normalized
forcing frequency. Given a material of known properties, the
complex-valued magnetoelastic coupling coefficient can be di-
rectly calculated from this plot.
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