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A nonlinear, two-dimensional plate model is presented that describes the dynamic response of composite
laminate structures with embedded magnetostrictive materials. The model consists of Navier’s equation
coupled with a discrete energy-averaged constitutive model for magnetostrictive materials. Assuming a
thin composite geometry, the complete three-dimensional model is reduced to a two-dimensional
equivalent single layer plate model by assuming a functional form for displacements. The resulting
two-dimensional variational form, solved using finite element software, is applied to analyze the
displacements of a Galfenol–aluminum composite actuator, wherein Galfenol sheets are embedded into
an aluminum substrate. The model is validated at lower frequencies using time domain measurements of
the dynamic actuation response of the actuator. This framework is subsequently utilized to perform a
parametric study to maximize the tip displacements by varying the geometric parameters: Galfenol loca-
tion, thickness ratio, and substrate properties. The general finite element framework presented in this
paper is applicable to a wider range of magnetostrictive materials and complex composite geometries.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetostrictive materials exhibit the Joule effect, a shape
change in response to externally applied magnetic fields, and the
Villari effect, a change in magnetic susceptibility of the material
when subjected to external stress [1]. These properties make mag-
netostrictive materials useful in sensing and actuation applications
such as active vibration control, energy harvesting, stress and tor-
que sensing, and machining [2,3]. Terfenol-D (Tb0.3Dy0.7Fe1.9) exhi-
bits the largest known room-temperature magnetostriction of
about 1600 ppm [4], but needs to be operated in compression
due to its brittleness. This limitation can be overcome, at the
expense of magnetostriction, by embedding Terfenol-D particles
in epoxy, polymer, or metal matrices. Galfenol (Fe81.6Ga18.4) is a
recent magnetostrictive material that exhibits moderate magne-
tostriction (�350 ppm), but has structural properties comparable
to low-carbon steels, allowing its use in mechanically-harsh envi-
ronments [2]. Galfenol can be integrated with passive components
through fusion welding, machining, or other traditional processes
to design multifunctional, load-bearing structures.
Magnetostrictive materials have been used to build active com-
posite structures (consisting of active magnetostrictive and passive
metallic components) for a variety of applications. Some examples
include a strain sensor [5], torque sensor [6], bioMEMS sensor [7],
and a MEMS actuator [8]. The recent development of ultrasonic
additive manufacturing (UAM), a solid-state welding process that
additively welds thin metal tapes to create complex, metallic com-
posites without melting the parent materials, has the potential to
revolutionize this field. It enables the manufacture of complex,
3-D composite geometries that can be composed of internal chan-
nels, dissimilar metals, electronics, heat-wicking materials, or
smart materials [9–11].

To permit the design, optimization, and control of these
advanced composites, transducer models need to be developed in
parallel with advancements in the manufacturing technology. A
key challenge in developing mathematical models for magne-
tostrictive materials is their highly nonlinear, anisotropic constitu-
tive behavior. Thus, a transducer model for magnetostrictive
composites should be formulated such that it can predict the com-
plex, dynamic response of magnetostrictive materials while
accommodating the sophisticated geometries made possible by
new manufacturing capabilities.

In the past, composites with thin geometries were modeled
using equivalent single layer (ESL) theories that were derived from
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Fig. 1. Schematic of an active composite plate consisting of an embedded
magnetostrictive layer of volume Vm and a passive metallic layer of volume Vp .
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3-D continuum theories by making suitable assumptions about the
kinematics of deformation through the thickness of the laminate
[12]. These theories allowed the reduction of a 3-D problem to a
2-D problem by assuming a functional form for displacement fields
[13]. Early developments of classical plate theories for materials
exhibiting coupled behavior were limited by linear constitutive
models (e.g., piezoelectric, piezomagnetic). One of the earliest
developments includes Mindlin’s first-order plate theory for high
frequency piezoelectric crystals [12]. Reddy enhanced these mod-
els by using a third-order plate theory for thick laminated compos-
ites with integrated sensors and actuators [14]. These linear
models, although sufficient for some regimes of coupled behavior,
are often insufficient to model the nonlinear constitutive response
of magnetostrictive materials.

One of the earlier attempts to model magnetostrictive materials
with nonlinear constitutive behavior was developed by Kannan
and Dasgupta [15]. This paper presented a two-dimensional,
quasi-static, finite-element scheme to model the nonlinear interac-
tions between mechanical and magnetic fields in Terfenol-D. Datta
et al. [16,17] used classical laminated plate theory with the
Armstrong magnetomechanical model to characterize laminated
sensors and actuators in the absence of current-induced magnetic
fields. Neither of these models accounted for dynamic behavior.
More recently, Shu et al. [18] utilized a nonlinear, discrete
energy-averaged (DEA) model [19] to simulate the 1-D dynamic
response of Galfenol-driven unimorph actuators.

In this work, we present the development of a dynamic,
two-dimensional plate model describing the nonlinear magne-
tomechanical behavior of composite plates containing embedded
magnetostrictive materials. The modeling approach is based upon
variational principles and the finite element method. Starting from
a coupled 3-D formulation, the problem is reduced to a 2-D ESL
theory. To model the nonlinear, anisotropic behavior of magne-
tostrictive materials, an anhysteretic, DEA model developed by
Evans and Dapino [19] is utilized. The model is then validated
using measurements of the dynamic, bending actuation response
of a Galfenol–aluminum composite plate (manufactured using
UAM). To illustrate its usefulness for design, the model is applied
to a prototype bending actuator composed of an aluminum plate
with embedded Galfenol sheets.

The paper is structured as follows: Section 2 presents a 3-D
description of a smart composite plate. In Section 3 the 2-D
model is developed for thin composite plates starting from the
complete 3-D formulation. Section 3.2 summarizes the DEA
model developed by Evans and Dapino [19] for fully-coupled
magnetostrictive materials with cubic symmetry. The framework
outlined in Sections 2 and 3 is applied to a Galfenol–aluminum
plate in Section 3.4 and experimentally validated in Section 4.
In Section 5, the framework is utilized to perform a parametric
study of key geometric parameters to optimize the plate’s tip dis-
placement. Finally, the results and contributions of this work are
discussed in Section 6.

2. 3-D magnetomechanical model for active composites with
embedded magnetostrictive layers

This work considers an active composite plate composed of a
metal matrix and embedded magnetostrictive laminae of arbitrary
geometry. Fig. 1 shows a schematic of an example composite plate
containing embedded magnetostrictive layers.

A 3-D model of the composite plate can be formulated by
coupling Navier’s equation with a nonlinear constitutive law for
the magnetostrictive material and linear Hooke’s law for the
passive material. In the 3-D weak form, Navier’s equation can be
written as
Z
Vtot

q
@2u
@t2 �duþ c

@u
@t
�duþ T �dS

" #
dV ¼

Z
@Vtot

t �dud@V þ
Z

Vtot

fB �dudV ;

ð1Þ

where q is the density, c represents the viscous damping factor, and
T and fB denote, respectively, the stress tensor and external body
force acting on the domain Vtot . The traction vector t acts on the
boundary @Vtot . Also, S and u represent the strain tensor and dis-
placements at each point in the domain Vtot . The strain is defined
in terms of the displacements as

S ¼ 1
2
ruþruT� �

; ð2Þ

where T denotes the transpose operator. The constitutive equations
in the passive and magnetostrictive material domains, respectively,
are

T ¼ C � S ðPassive materialÞ ð3Þ

and

T ¼ TmðS;HÞ ðMagnetostrictive materialÞ; ð4Þ

where C is the stiffness matrix, H is the magnetic field, and the func-
tion TmðS;HÞ represents the nonlinear constitutive relationship for
magnetostrictive materials. In this paper, TmðS;HÞ is a DEA model
developed by Evans and Dapino [19], which will be summarized
in Section 3.2. It is assumed that the magnetic field (induced by a
conductive coil) is uniform inside the magnetostrictive material
and can be approximated using Ampére’s Law H ¼ nI, where n is
the coil constant and I is the current in the coil. By assuming a
current-field relationship, the mechanical response of the compos-
ite plate can be modeled without considering magnetic circuit
equations. This is a good approximation of the field inside a long
coil that is tightly wound around a material with a high magnetic
permeability, where coil fringing effects can be neglected.

3. Dimensional reduction using classical plate theory

For the analysis of thin composite plates, the conventional mod-
eling approach is based on ESL theories, which are derived from
3-D continuum theories by making suitable assumptions on the
kinematics of deformation or the stress state through the thickness
of the laminate. These theories allow the reduction of a 3-D
problem to a 2-D problem [20].

An ESL plate theory for active composite structures that contain
embedded magnetostrictive materials is developed by assuming
the following expansion for the displacement field u:

uðx; y; zÞ ¼ u;v ;w½ �T ¼
Xn¼1
n¼0

zn uðnÞðx; yÞ: ð5Þ
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The simplest form of laminated plate theory is the classical plate
theory, where the displacement field takes the form:

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ z/xðx; y; tÞ; ð6Þ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ z/yðx; y; tÞ; ð7Þ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ; ð8Þ

where /x and /y denote rotations about the y and x axes, respec-
tively. Assuming that the deformation has only bending and
in-plane stretching components (i.e., transverse normal and trans-
verse shear effects are negligible), these rotations are represented as

/x ¼ �
@wo

@x
; /y ¼ �

@wo

@y
: ð9Þ

Classical plate theories work well for thin composite plates with
thickness ratio (ratio of thickness to length or width) less than
0.1. As the thickness increases, higher order theories need to be con-
sidered [20]. The displacement forms described in (6)–(9) allow us
to ignore the strain components Szz; Sxz, and Syz, i.e., the problem
reduces to a plane strain problem. The remaining strain compo-
nents can be written as

Sxx

Syy

Sxy

2
64

3
75 ¼

Sð0Þxx

Sð0Þyy

Sð0Þxy

2
664

3
775þ z

Sð1Þxx

Sð1Þyy

Sð1Þxy

2
664

3
775; ð10Þ

where

Sð0Þxx ¼
@u0

@x
; Sð0Þyy ¼

@v0

@y
; Sð0Þxy ¼

1
2

@u0

@y
þ @v0

@x

� �
;

Sð1Þxx ¼
@/x

@x
; Sð1Þyy ¼

@/y

@y
; Sð1Þxy ¼

1
2

@/x

@y
þ
@/y

@x

� �
:

ð11Þ

To define the stresses in the passive and active subdomains,
constitutive equations for each subdomain must be defined.

3.1. Stress components: incorporation of constitutive equations

The composite plate is split into passive and active (magne-
tostrictive) subdomains, represented by subscripts p and m,
respectively.

3.1.1. Passive subdomain constitutive equations
For the passive layers, linear Hooke’s law is used, which

assumes linear isotropic behavior.1 The corresponding constitutive
equations are

Txx

Tyy

Txy

2
64

3
75
ðpÞ

¼ Ep

ð1þ mpÞð1� 2mpÞ

1� mp mp 0
mp 1� mp 0
0 0 1� 2mp

2
64

3
75

Sxx

Syy

Sxy

2
64

3
75
ðpÞ

:

ð12Þ

The following material parameters are used for the aluminum
matrix: Young’s modulus Ep ¼ 69 GPa, Poisson’s ratio mp ¼ 0:33,
and density qp ¼ 2700 kg/m3.

3.1.2. Magnetostrictive subdomain constitutive equations
The inputs for the magnetostrictive constitutive model are mag-

netic field and stress, and the outputs are magnetization and strain,
which includes magnetoelastic and purely mechanical compo-
nents. Consequently, the stress–strain constitutive law can be writ-
ten as
1 This assumption is valid for the aluminum matrix considered in this paper.
However, anisotropic materials can be easily considered by using a stiffness matrix
with fewer restrictions on material symmetry.
Txx

Tyy

Txy

2
64

3
75
ðmÞ

¼ Em

ð1þ mmÞð1� 2mmÞ

1� mm mm 0
mm 1� mm 0
0 0 1� 2mm

2
64

3
75

�
Sxx

Syy

Sxy

2
64

3
75
ðmÞ

� k TðmÞ;H
� �8><

>:
9>=
>;;

ð13Þ

where k denotes the macroscopic magnetoelastic strain (magne-
tostriction) in the magnetostrictive material. Due to the dependence
of k on TðmÞ, (13) is implicit and must be calculated by inverting the
constitutive model of the magnetostrictive material after solving for
the total strain. This work utilizes a fully-coupled, nonlinear DEA
model for cubic magnetostrictive materials developed by Evans
and Dapino [19], which is accurate yet efficient and has been suc-
cessfully used for the modeling of Galfenol-based systems
[21,18,22,23]. This model is summarized in the following section.
To model composite structures containing Terfenol-D constituents,
the analogous DEA model for Terfenol-D developed by Chakrabarti
and Dapino [24] can be used instead, with minor changes to the
proposed framework.

3.2. Review of the two-dimensional discrete energy-averaged model
for cubic magnetostrictive materials

The energy-averaged class of models calculates the macroscopic
constitutive response as an energy-weighted summation of the
response due to domains aligned along different crystallographic
directions. With homogeneously-distributed, fixed orientations
(as in Armstrong’s model [25]), obtaining high accuracy requires
a large number of possible orientations, which results in significant
computational effort.

To improve the computational efficiency while preserving accu-
racy, Evans and Dapino [19] restricted the number of possible ori-
entations to six by considering only the directions that minimize
an energy functional that is locally-defined around each of the

six easy crystallographic directions. The total free energy G
k

of a
magnetic moment oriented in the vicinity of the kth easy direction

c
k

is formulated as the sum of the local magnetocrystalline
(anisotropy),2 magnetoelastic (magnetomechanical coupling) and
magnetic field (Zeeman) energies. This energy can be written in
matrix form as

G
k
¼ 1

2
m
k
�K m

k
�m

k
� B

k
þK0

k
ðk ¼ 1;2; . . . ;6Þ ð14Þ

where m
k

is the magnetic moment direction,

K ¼
K � 3k100Txx �3k111Txy 0
�3k111Txy K � 3k100Tyy 0

0 0 K

2
64

3
75; ð15Þ

B
k
¼ c1

k
K þ loMsH1 c2

k
K þ loMsH2 c3

k
K

h iT
; ð16Þ

where K and K0

k
are anisotropy energy constants, Ms is the satura-

tion magnetization, k100 and k111 are magnetostriction constants,
and lo is the permeability of free space. The minimization of (14)

is constrained (km
k
k ¼ 1) and solved, through the use of Lagrange

multipliers, as an inhomogeneous eigenvalue problem [19]. By

approximating the constraint using km
k
k �m

k
� c

k
, the minimization

problem has the explicit solution
2 The improved anisotropy energy given by Chakrabarti [26] is used.
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m
k
¼ K�1 B

k
þ1� c

k
�K�1 B

k

c
k
�K�1 c

k
c
k

2
4

3
5: ð17Þ

The anhysteretic volume fraction n
k

an of magnetic domains oriented
along the kth minimum energy direction is calculated using
Boltzmann-type averaging,

n
k

an ¼
exp �G

k
=X

� �
Pr

j¼1 exp �G
j

=X
� � ; ð18Þ

where X is a smoothing constant. Macroscopic anhysteretic mate-
rial behavior is obtained by summing the contributions due to each

minimum energy magnetization direction m
k

weighted by their cor-
responding volume fraction. Thus, the strain tensor S is given by the
sum of the elastic and magnetoelastic strains,

S ¼ sTþ k ¼ sTþ
Xr

k¼1

n
k

ank
k

; ð19Þ

where s is the 3� 3 compliance tensor for Galfenol and k
k

represents
the magnetostriction of a ferromagnetic material with cubic sym-
metry due to the kth minimum energy direction,

k
k

¼
3=2k100m1

k 2

3=2k100m2
k 2

3k111 m1
k

m2
k

2
6664

3
7775: ð20Þ

Material constants for Galfenol used in this model are3:
Em ¼ 57 GPa, mm ¼ 0:3; qm ¼ 7870 kg/m3, K ¼ 27:1 kJ/m3, K0 ¼
0:021 kJ/m3, l0Ms ¼ 1:3 T, k100¼156:56 ppm; k111¼1=3� �20ð Þ ppm,
and X¼1300 J/m3.

As detailed in Section 3.1, to integrate the constitutive Eq. (19)
into Navier’s equation (1), inversion of the constitutive model is
required, wherein stress is the output (dependent variable) and
strain is the input (independent variable). Owing to the nonlinear
dependence of S on T and H and the homogenization equation
(18), an analytical inverse does not exist. Following the approach
of Chakrabarti and Dapino [21], the inversion is performed using
the quasi-Newton SR1 formula. By also utilizing the Sherman-
Morrison formula, the need for calculating and inverting the
material Jacobian within the iteration loop is avoided. The use of
an iterative inversion algorithm adds computational cost, but
allows the solution procedure to retain the full nonlinearity of
the constitutive model, unlike inversions based upon linearization
of the constitutive model. Having presented the constitutive model
for the passive and active subdomains, we now proceed to derive
the 2-D ESL plate theory for the magnetostrictive composite plate.

3.3. Derivation of equivalent two-dimensional variational principle

To derive the 2-D weak form starting from the 3-D composite
plate model (1), the 3-D weak form is recalled,Z

Vtot

q
@2u
@t2 � du þ c

@u
@t
� du þ T � dS

" #
dV

�
Z
@Vtot

t � dud@V �
Z

Vtot

fB � dudV ¼ 0: ð21Þ
3 The Galfenol material parameters (including damping coefficient) used in this
framework are optimized for a 2-D problem to accommodate for the plane strain
assumption.
The variational form of 2-D plate theory is derived by substituting
stress, displacement, and strain expressions (6)–(13) into the 3-D
formulation of Navier’s equation (21), which decouples the
through-thickness integration from the in-plane integration. With
Xe as the ESL area and ttot as the plate’s thickness, the first term
on the left-hand side of (21) is reduced to 2-D as follows:Z

Vtot

q
@2u
@t2 �dudV ¼

Z
ttot

Z
Xe

q
@2u
@t2 duþq

@2v
@t2 dvþq

@2w
@t2 dw

" #
dxdydz

¼
Z

Xe

Z
ttot

qdz
� �

@2uo

@t2 duoþ
Z

ttot

qzdz
� �

@2/x

@t2 duo

(

þ
Z

ttot

qzdz
� �

@2uo

@t2 d/xþ
Z

ttot

qz2dz
� �

@2/x

@t2 d/x

þ
Z

ttot

qdz
� �

@2vo

@t2 dvoþ
Z

ttot

qzdz
� �

@2/y

@t2 dvo

þ
Z

ttot

qzdz
� �

@2vo

@t2 d/yþ
Z

ttot

qz2dz
� �

@2/y

@t2 d/y

þ
Z

ttot

qdz
� �

@2wo

@t2 dwo

)
dxdy: ð22Þ

The remaining terms in (21) are reduced to 2-D in a similar manner.
The density integrals in (22) depend only on the geometry and
constituent materials and must be evaluated only once. Similar
integrals will arise for the viscous damping factor c and the stress
terms Txx; Txy, and Tyy. In the interest of simplifying the presenta-
tion of equations, the following equivalent properties for the 2-D
plate are defined:

�qk ¼
Z

ttot

qzk dz; �ck ¼
Z

ttot

c zk dz ðk ¼ 0;1;2Þ ð23Þ

Nxx

Nyy

Nxy

8><
>:

9>=
>; ¼

Z
ttot

Txx

Tyy

Txy

8><
>:

9>=
>;dz;

Mxx

Myy

Mxy

8><
>:

9>=
>; ¼

Z
ttot

Txx

Tyy

Txy

8><
>:

9>=
>;zdz: ð24Þ

Using these representations, the weak form of the equations reduce
toZ

s

Z
Xe

"
�qo

@2uo

@t2 duoþ
@2vo

@t2 dvoþ
@2wo

@t2 dwo

 !(

þ�co
@uo

@t
duoþ

@vo

@t
dvoþ

@wo

@t
dwo

� �

þ �q1
@2/x

@t2 duoþ
@2/y

@t2 dvoþ
@2uo

@t2 d/xþ
@2vo

@t2 d/y

 !

þ�c1
@/x

@t
duoþ

@/y

@t
dvoþ

@uo

@t
d/xþ

@vo

@t
d/y

� �

þ �q2
@2/x

@t2 d/xþ
@2/y

@t2 d/y

 !
þ�c2

@/x

@t
d/xþ

@/y

@t
d/y

� �

þNxxdSð0Þxx þNxydSð0Þxy þNyydSð0Þyy þMxxdSð1Þxx þMxydSð1Þxy þMyydSð1Þyy

#
dxdy

�
Z
@Xe

N̂nnduonþ N̂nsduos�M̂nn
@dwo

@n
�M̂ns

@dwo

@s
þ Q̂ndwo

� �
ds

)
dt¼0;

ð25Þ
where @Xe represents the boundary to Xe and s represents the time
over which the dynamic system is studied. Also, the boundary

terms N̂nn; N̂ns; M̂nn; M̂ns, and Q̂n are defined as

N̂nn

N̂ns

( )
¼
Z

ttot

r̂nn

r̂ns

� 	
dz;

M̂nn

M̂ns

( )
¼
Z

ttot

r̂nn

r̂ns

� 	
zdz; Q̂n¼

Z
ttot

r̂nzdz;

ð26Þ
where r̂nn; r̂ns, and r̂nz are the specified stress components on the
portion of the boundary @Xe. Through additional knowledge of the
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composite geometry and the constituent material properties, the
integrals listed in (23) and (24) can be evaluated. These expressions,
when substituted into the weak form (25), will provide the com-
plete system model in 2-D.

The model presented above is general and applies to thin com-
posite plates of arbitrary construction that contain magnetostric-
tive materials. In what follows, we specialize this 2-D variational
form to a composite plate actuator consisting of a Galfenol layer
embedded into an aluminum matrix.

3.4. 2-D variational form

To develop the equivalent 2-D system corresponding to the 3-D
composite plate described in Fig. 1, the integral terms that appear
in the 2-D variational form (25) are evaluated. For this application,
it is assumed that the plate is only excited by an external magnetic
field (i.e., there are no external forces and the integrals in Eq. (26)
equate to zero). This excitation enters the model through the mag-
netostriction of the Galfenol sheets, which loads and deforms the
passive volume. The electromagnetic body forces and rotary inertia
terms are also ignored. This translates to ignoring the dynamic
terms with coefficients �q1; �q2; �c1, and �c2.

The plate is divided into two equivalent 2-D subdomains
(Fig. 2), i.e., (i) the passive subdomain Ap and (ii) the active subdo-
main Am. The integrals (23) and (24), which are evaluated using
the composite’s dimensions and its material properties, are substi-
tuted into (25) to deduce the 2-D variational form. The density
integrals can be calculated as

Passive Ap : �qk ¼
Z

ttot

qzk dz ¼
qp

kþ 1
zkþ1

1 � zkþ1
4

� �
;

Active Am : �qk ¼
qp

kþ 1
zkþ1

1 � zkþ1
2

� �
þ qm

kþ 1
zkþ1

2 � zkþ1
3

� �
þ

qp

kþ 1
zkþ1

3 � zkþ1
4

� �
; ð27Þ

where qp and qm are the densities of aluminum and Galfenol,
respectively, and z1; z2; z3, and z4 are the z-coordinates at each
through-thickness material boundary. The equivalent damping
coefficients �ck are calculated in a similar manner. The stress
resultant Nxx is calculated as

Passive Ap : Nxx ¼
Z

ttot

Txx dz ¼
Z

ttot

CðpÞ11 Sxx þ CðpÞ12 Syy

� �
dz

¼
Z

ttot

CðpÞ11 ðS
ð0Þ
xx þ zSð1Þxx Þ þ CðpÞ12 ðS

ð0Þ
yy þ zSð1Þyy Þ

h i
dz

¼ CðpÞ11 Sð0Þxx þ CðpÞ12 Sð0Þyy

� �
ðz1 � z4Þ

þ 1
2

CðpÞ11 Sð1Þxx þ CðpÞ12 Sð1Þyy

� �
ðz2

1 � z2
4Þ; ð28Þ
Fig. 2. Equivalent 2-D formulation of the embedded magnetostrictive composite in
Fig. 1.
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A similar procedure is applied to calculate the remaining stress
resultants. Due to the Galfenol sheet’s small thickness, the magne-
tostrictive strain components kxx; kyy, and kxy are assumed constant
through the thickness of each Galfenol layer.

3.5. Computational methodology

The weak form equations are discretized and solved in COMSOL
Multiphysics finite element software. The anhysteretic constitutive
model for Galfenol is supplied to COMSOL through MATLAB func-
tions to retain the model’s full nonlinearity. This work considers
cantilever boundary conditions, for which the field-excited com-
posite plate acts as a bending actuator. Thus, the primary output
of the model is the tip displacement of the plate.

It has been observed that the 2-D framework has an improved
computational efficiency compared to a full 3-D simulation of the
same composite structure. The 2-D simulations are approximately
five times faster than the 3-D framework.

4. Model validation

To validate the model, the tip displacement of a Galfenol–alu-
minum composite plate was measured in response to quasi-static
and dynamic currents produced in an excitation coil. The compos-
ite plate (Fig. 4) was manufactured using ultrasonic additive man-
ufacturing (UAM). The welding was performed using a 9 kW
Fabrisonic SonicLayer 4000 UAM machine. A single sheet of
Galfenol was embedded into the center of the aluminum plate.
As shown in Fig. 3, the experimental setup consisted of a magnetic
circuit composed of a U-shaped Metglas core upon which the exci-
tation coils were wound, a cantilevering fixture, and the composite
plate, which completed the magnetic flux path. The air gap
Fig. 3. Experimental setup: cantilevered Galfenol–aluminum composite clamped to
U-shaped magnetic circuit made of Metglas; cantilever geometry (also used in
validation simulations): W ¼ 22:9 mm, ttot ¼ 1:65 mm, bm ¼ 6:35 mm, tm ¼ 0:965 mm
and L ¼ 25:1 mm.



Fig. 4. Geometry of the Galfenol–aluminum composite plate manufactured using ultrasonic additive manufacturing.
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Fig. 5. Comparison of the experimental and simulated dynamic actuation of the Galfenol–aluminum plate at different frequencies: (i) 0.1 Hz, (ii) 50 Hz, (iii) 150 Hz, (iv)
200 Hz.
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between the magnetic flux return path and the end of the compos-
ite was approximately 0.0254 mm.

The tip displacement of the composite was measured using a
Keyence LK-G32 laser displacement sensor having a repeatability
of 0.05 micron. A National Instruments cDAQ-9178 was used to
acquire data and generate the excitation voltage, which was ampli-
fied using a Techron 7782 linear power amplifier. For dynamic
tests, sinusoidal excitations of amplitude � 3:25 kA/m were super-
imposed on a bias field of � 3:50 kA/m, which was used to maxi-
mize the magnetic field-induced strain and provide two-way
actuation. A comparison between the measured and calculated
tip displacement for frequencies up to 200 Hz is shown in Fig. 5.
Due to the relatively high stiffness of the plate and low Galfenol
volume fraction, the tip displacements are small.

Overall, the model accurately calculates the steady-state,
dynamic actuation response of the composite plate up to 200 Hz.
However, the model does not capture the transient, wherein a
slight decrease in tip displacement is observed as the actuation fre-
quency increases. This can be explained by the lack of electromag-
netic dynamics, namely eddy currents, in the model. The inclusion
of eddy currents and magnetic field nonuniformity can improve
the model’s performance.
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Fig. 6. Galfenol–aluminum composite plate for actuator design study.
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5. Actuator design study: maximizing tip displacements

In this section, we utilize the validated 2-D plate model to max-
imize the displacements of the Galfenol actuator shown in Fig. 6.
Actuator displacements are studied by changing several design
parameters while keeping the volume of Galfenol constant.

The actuator is described as follows. The x–y plane of the coor-
dinate system is coincident with the midplane of the composite
plate, and the x–z plane is a plane of symmetry. The plate dimen-
sions are: length L ¼ 25:4 mm, width W ¼ 25:4 mm, and thickness
ttot ¼ 1:45 mm. The dimensions of each Galfenol patch are: length
L ¼ 25:4 mm, width bm ¼ 3:18 mm, and thickness tm ¼ 0:381 mm.
These sheets are located a distance yo from the x–z symmetry
plane. Finally, the plate is actuated using a conductive coil,4 which
generates sinusoidal and bias magnetic fields that are uniform and
oriented along the x-axis.

Using the proposed model, we aim to maximize the composite’s
tip displacement by modifying: (i) the distance (along y- and
z-axes) of the Galfenol sheets from center axis, (ii) the thickness
ratio, and (iii) the substrate material properties. Parametric studies
are performed by separately varying each of these quantities and,
in some cases, for different plate aspect ratios.
4 The coil and accompanying magnetic circuit need not be modeled due to the
assumptions detailed in Section 2.
5.1. Varying Galfenol location along the y-axis

We first study the displacements at the free end of the plate as
the Galfenol sheets move away from the x–z axis along the width
direction (i.e., as yo varies). The displacements at every point along
the free edge are plotted for five different yo values in Fig. 7. The
results show that the actuator generates highest displacement at
the tip’s center (x ¼ L; y ¼ 0) when both of the Galfenol sheets
are located at the x–z axis, i.e., when yo ¼ 0. As yo increases, the dis-
placement at the tip’s center decreases and local maxima appear at
the x-coordinates about which the Galfenol sheets are centered.

5.2. Varying Galfenol location along the z-axis

Now, the tip displacements of an actuator consisting of a single
centered sheet of double the width is considered (i.e., y0 ¼ 0 is
fixed). In particular, the tip displacements at y ¼ 0 are calculated
as the Galfenol layer moves along the thickness (z-axis). The results
are plotted for different plate aspect ratios a and substrate moduli
Es in Fig. 8. The results demonstrate that the maximum displace-
ment is obtained when the Galfenol sheet is located away from
the neutral bending axis. Also, the displacement is more sensitive
to changes in aspect ratio and substrate modulus when the
Galfenol layer is located away from the neutral axis. The displace-
ment varies linearly with z-coordinate, as assumed in (6)–(8).
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5.3. Varying the Galfenol to substrate thickness ratio

According to the results presented in Figs. 7 and 8, the Galfenol
layer is fixed at the top of the plate with y0 ¼ 0. The tip displace-
ment is now studied as a function of substrate thickness. The
results in Fig. 9 show the existence of a critical thickness ratio
beyond which the tip displacements decrease with increasing
Galfenol-to-substrate thickness ratio.

The tip displacement is maximized by simultaneously maximiz-
ing the Galfenol volume fraction (up to the critical thickness ratio)
and the Galfenol sheet’s offset from the neutral axis. As the sheet’s
thickness increases above the critical value, the neutral axis moves
within the sheet, thus reducing the bending displacement.
Interestingly, a slight increase in the critical thickness ratio is
observed with an increase in aspect ratio and substrate modulus.
At very high substrate stiffness values, the shape of the curve
becomes flatter and the shift in the peak is minimal.

The elastic modulus of the substrate is seen to have a significant
impact on the tip displacement. As the substrate’s modulus
decreases, the flexural rigidity of the beam decreases, thereby pro-
viding less resistance to bending deformation for a given
magnetostriction-induced force. This result is consistent with the
modeling results of Scheidler and Dapino [27], who modeled
changes in the stiffness of Galfenol composite beams.
6. Conclusions

A two-dimensional finite element framework for composite
plates consisting of magnetostrictive laminae has been developed
for transducer applications. The model was developed to accom-
modate complex geometries, nonlinear magnetostrictive material
behavior, and mechanical dynamics. To validate the model and
illustrate its usefulness, the model was applied to a prototype
bending actuator composed of an aluminum plate with embedded
Galfenol sheets. Validation was performed by comparing
time-domain tip displacement measurements to simulations for
different actuation frequencies.

The nonlinear finite element framework was utilized to perform
a design study for a prototype actuator. Parametric studies were
performed on key geometric parameters to maximize the actua-
tor’s tip displacement. A critical value of the Galfenol/aluminum
thickness ratio was observed, above which the tip displacement
decreases. It was also observed that the tip displacement increases
as the Galfenol sheets move away from the neutral axis.
Additionally, the elastic modulus of the substrate had a significant
effect on the results of the parametric studies, where a softer mod-
ulus resulted in larger displacements.
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