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ABSTRACT

A coupled axisymmetric finite element model is formulated to describe the dynamic performance of a hydraulically
amplified Terfenol-D mount actuator. The formulation is based on the weak form representations of Maxwell’s
equations for electromagnetics and Navier’s equation for mechanical systems. Terfenol-D constitutive behavior
is modeled using a fully coupled energy averaged model. Fluid pressure is computed from the volumetric
deformation of the fluid chamber and coupled back to the structure as tractions on the boundaries encompassing
the fluid. Seal friction is modeled using the Lugre friction model. The resulting model equations are coded into
COMSOL (a commercial finite element package) which is used for meshing and global assembly of matrices.
Results show that the model accurately describes the mechanical and electrical response of the actuator under
static and dynamic conditions. At higher frequencies there are some errors in the phase due to the anhysteretic
nature of the Terfenol-D constitutive law. A parametric study reveals that the performance of the actuator can
be significantly improved by stiffening the fluid chamber components and reducing seal friction.
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1. INTRODUCTION

Magnetostrictive materials deform in response to applied magnetic fields and change their magnetization state
when stressed. These processes come about by inherent moment realignments which have extremely small re-
sponse times making these materials suitable for high frequency actuation and sensing mechanisms. One such
application is in active powertrain mounts which require a broadband actuator to actively control the pressure of
the hydraulic fluid in the mount so as to reduce its dynamic stiffness. To achieve the high stroke requirement of
an engine mount actuator (≈ 2 mm), implementation of smart material drivers capable of broadband response
requires stroke amplification. Hydraulic amplification1, 2 is particularly attractive as it provides large mechanical
gains in a restricted space. Ushijima and Kumakawa3 developed a piezo-hydraulic actuator with a stroke of 70
μm which uses the hydraulic fluid in the mount for amplification. Shibayama et al.4 developed a hydraulically
amplified piezo actuator in which the hydraulic fluid used for amplification was separately sealed from the fluid
in the mount. Chakrabarti and Dapino5 combined a conventional magnetostrictive Terfenol-D driver with a
hydraulic amplification mechanism to obtain millimeter stroke with a bandwidth of over 200 Hz. Due to the
presence of material nonlinearities, internal friction, and fluid chamber compliances, linear models considering
100 % energy transmission greatly overestimate the performance of such actuators.1, 6 Chakrabarti and Dapino7

developed a lumped parameter model considering seal friction, nonlinear Terfenol-D material response and com-
pliance of the fluid chamber components to model the behavior of their magneto-hydraulic actuator. Although
the model can accurately quantify the dynamic mechanical response of their actuator, it is not suitable for trans-
ducer design because parameters such as fluid chamber compliance and current-field relationships are difficult
to quantify in lumped parameter models. A finite element model is more appropriate for design optimization as
it can describe effects of both geometry and material constitutive parameters (Young’s modulus, permeability,
and electrical conductivity) on the dynamic performance of the transducer.
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Significant research effort has been concentrated on developing an efficient finite element scheme for magne-
tostrictive transducers. Benbouzid8 formulated a 2D bidirectionally coupled magnetostatic model with Terfenol-
D constitutive behavior modeled using surface splines. Kannan and Dasgupta9 formulated a 2D magnetostatic
model with bi-directionally coupled magnetomechanical relations, current induced magnetic fields and electro-
magnetic body forces. Zhou et al.10 developed a 2D dynamic finite element model of a unimorph actuator with
one way magnetomechanical coupling. The one way coupled 3D model of Kim and Jung11 describes force due to
magnetostriction driving a coupled fluid-structural model for a sonar transducer. Evans and Dapino12 presented
a fully coupled dynamic model for 3D magnetostrictive transducers simultaneously including the effects of eddy
currents, structural dynamics, and flux leakage on transducer performance.

The present work aims at coupling the weak form equations by Evans et al.12 with a nonlinear energy
averaged model for Terfenol-D to describe the response of the magneto-hydraulic mount actuator developed by
Chakrabarti and Dapino.5 In order to exploit the axisymmetric geometry of the device, the equations are reduced
to a 2D axisymmetric form. Vector magnetic potential A and current density J are reduced to scalars defined
in the out-of-plane direction. Fluid pressure in the actuator is computed as a product of the volumetric change
of the fluid chamber and the bulk modulus of the fluid. The computed pressure is coupled to the structural
model through traction terms on the edges exposed to the fluid. Friction at the o-ring seals is described using
the LuGre friction model which describes friction as an interaction force between microscopic bristles present on
the sliding surfaces in contact. The complete system of equations is coded into COMSOL (a commercial finite
element package) using the weak form mode. COMSOL is used for geometric modeling, meshing and global
assembly of matrices. Section 3 describes the formulation in detail while section 4 discusses the constitutive law
for Terfenol-D used in this work. Section 5 describes the time-integration scheme used to solve the nonlinear
coupled system. This is followed by comparison of modeled responses to measurements along with a parametric
study highlighting the sensitivity of the dynamic performance of the actuator to different design parameters in
section 6.

2. MAGNETO-HYDRAULIC ACTUATOR (MHA)

Figure 1 shows the geometry of the modeled device. The MHA has a fluid chamber with a large diameter piston
at one end driven by a Terfenol-D rod and a small diameter driven piston at the other end. The magnetic circuit

Figure 1. Assembled and exploded view of the Magneto-Hydraulic Actuator.
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consists of a permanent magnet to provide magnetic bias, a coil to generate the dynamic fields with Terfenol-D
at its core, and iron pieces for flux return. Figure 2 shows the 2D axisymmetric version used for modeling.
Some components like the stainless steel body and the preload plate have not been modeled as they serve only a
geometrical purpose. The device is surrounded by air so that the magnetic potential boundary condition can be
applied to the outer boundary of air. In general, flux density measurements are taken by winding a pick-up coil
around the middle of the rod and strain measurements are taken by bonding a strain gage close to the midpoint
of the rod. Breaking the magnetostrictive rod domain into 3 areas allows us to evaluate the variables in the
central region separately and compare the behavior of the model against measurements. In this actuator, the
base plate, Terfenol-D rod, end caps, pistons, and casing are considered to be structurally active. Of these, the
end caps, Terfenol-D, and the smaller piston are considered to be only axially active (meaning radial displacement
is assumed to be zero) while the others are both radially and axially active.

Figure 2. Geometry of the transducer used in this study.

3. MODEL FORMULATION

Global relationships and weak form equations

A large number of magnetostrictive transducers are axisymmetric in nature with the magnetostrictive driver at
the core surrounded by a concentric drive coil, permanent magnets, and flux return components. The axisym-
metric formulation for electromagnetic problems is an extremely useful tool to efficiently model such transducers
without sacrificing accuracy. The current density J and magnetic potential A are defined as having only an
out-of-plane component (Jφ and Aφ written as J and A respectively for convenience). Therefore, the magnetic
flux density B has a radial and axial component only, given by

Br = −∂A

∂z
, Bz =

1

r

∂

∂r
(rA). (1)

To avoid singularity in the calculation of Bz at r = 0, the variable used in this formulation is A′ = A/r. With
this definition Br and Bz are given by

Br = −r
∂A′

∂z
, Bz = r

∂A′

∂r
+ 2A′. (2)
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Similarly, the strain vector is given by four components which are related to the modified radial displacement
u′ = u/r and axial displacement w as

ε = [εr, εz, γrz, εφ]
T =

[
r
∂u′

∂r
+ u′,

∂w

∂z
, r

∂u′

∂z
+

∂w

∂r
, u′

]T
. (3)

Although the solution variables are A′, u′, and w, the weak form equations can be entered in COMSOL as a
function of A, u, w, and the corresponding test variables by adding global definitions of A and u in terms of A′

and u′.

The weak form equations for a generalized magnetostrictive system can be written as done by Evans et al.12

as ∫
VB

H · δB dV +

∫
VB

σ
∂A

∂t
· δA dV =

∫
∂VB

HT · δA d∂V +

∫
VB

Js · δA dV, (4)

∫
Vu

T · δS dV +

∫
Vu

ρ
∂2u

∂t2
· δu dV +

∫
Vu

c
∂u

∂t
· δu dV =

∫
∂Vu

t · δu d∂V +

∫
Vu

fB · δu dV. (5)

For an axisymmetric problem the volume integrals can be transformed to area integrals using∫
Ve

(F )dV = 2π

∫
Ae

(rF )drdz. (6)

The modified weak form equations can now be written as∫
AB

rH · δB drdz +

∫
AB

rσ
∂A

∂t
δA drdz =

∫
lB

rHT δA dl +

∫
AB

rJsδA drdz, (7)

∫
Au

r (T · δS) drdz +

∫
Au

rρ
∂2u

∂t2
· δu drdz +

∫
Au

rc
∂u

∂t
· δu dV =

∫
lu

rt · δu dl +

∫
Au

rfB · δu dA. (8)

where the vectors H, B, T, S, u are

B =
[
Br Bz

]T
, H =

[
Hr Hz

]T
, u =

[
u w

]T
,

S =
[
Srr Szz Sφφ Srz

]T
, T =

[
Trr Tzz Tφφ Trz

]T
. (9)

In case of Terfenol loaded axially, the relationship can be simplified by assuming that radial deformation of the
rod is negligible. Thus, the strain and stress vectors are reduced to two components (axial and in plane shear).

Fluid Domain

The fluid domain is modeled as having only a capacitive component. The change in volume of the fluid domain
ΔVf can be written as a sum of contributions from the driver piston ΔVP , the driven piston ΔVL, and the casing
ΔVC as

ΔVf = −ΔVP +ΔVL +ΔVC , (10)

where each of these volume changes are calculated using the integral

ΔVi =

∫
li

2πrwdr, (11)

over the length of the edge li exposed to the fluid domain. These can be added in COMSOL as boundary
integration variables. The pressure change in the fluid is

Δp = − β

Vref
ΔVf . (12)

The fluid pressure is coupled to the structural model through traction on the edges exposed to the fluid. The
model describes the effect of the compliance of fluid chamber components. Here, β is the effective bulk modulus
of the fluid alone, while in the lumped parameter model,7 βeff represented an effective modulus describing the
combined compliance of the fluid and fluid chamber components.
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Friction model

Friction forces are present at the o-ring seals on the two pistons. Friction at the small driven piston seal has a
significant impact on the dynamic response of the actuator since actuation forces are low and velocities are high
at this end. On the other hand at the large driver piston end, actuation forces are high and velocities are low;
hence a small frictional force at this end does not affect the dynamic response of the actuator. Thus, friction
has been modeled only at the smaller piston seal.

In the LuGre model,13 friction between two sliding surfaces in contact is described as an interaction force
between microscopic bristles on both surfaces. The bristle deflection state ZL is governed by a nonlinear first
order differential equation;

ŻL + σ0
|vL|
g(vL)

ZL − vL = 0, (13)

where vL is the relative sliding velocity between the two surfaces, which in this case is the average velocity of
the driven piston calculated by integrating 2πrẇ over the edge of the piston adjacent to the casing, divided by
the area of that surface. Function g(vL) is given by

g(vL) = Fc + (Fs − Fc)e
−(vL/vs)

2

, (14)

where Fs and Fc are the static and Coulomb friction forces and vs is the Stribeck velocity. The friction force is
given by

FRL = σ0ZL + σ1ŻL + σ2vL, (15)

where σ0 and σ1 are the bristle stiffness and bristle damping coefficient, respectively. This force is applied as
traction on the boundary of the smaller piston adjacent to the casing.

Boundary Conditions

Boundary conditions for an axisymmetric problem must be implemented carefully such that none of the vari-
ables become infinite at the r = 0 boundary. In this case, the axial symmetry condition is enforced us-
ing (∂A/∂r)(r=0) = 0 in the magnetically active domains, u(r=0) = 0 in the radially active domains, and

(∂w/∂r)(r=0) = 0 in the axially active domains. These conditions remove shear stresses and constrain the radial
displacement at the r = 0 boundary. The magnetostrictive system is encapsulated by a large volume of air. At
the outer boundaries of this air volume, the magnetic potential is set to zero. The bottom face of the base plate
and the casing are considered to be mechanically fixed.

4. CONSTITUTIVE LAWS

Terfenol-D Constitutive Model

Modeling the constitutive behavior of Terfenol-D has been a traditionally difficult problem. The presence of a
large magnetostriction anisotropy, low magnetocrystalline anisotropy, and a twinned dendritic structure gives
rise to complex domain level processes which are not completely understood.14 The Jiles-Atherton model15 has
been commonly used to model actuators based on Terfenol-D loaded unidirectionally,16, 17 but detailed material
characterization using this model is not available in the literature. Another approach to modeling Terfenol-D was
formulated by Armstrong et al.18 where bulk properties are derived from an expected value of a large number
of moments. The model was later extended to include magnetomechanical hysteresis and its efficiency was
improved by restricting the choice of moment orientations to the easy magnetization axes19 (8 〈111〉 directions
for Terfenol-D). Evans and Dapino20 developed a constitutive model for Galfenol by choosing orientations which
minimize a locally defined energy functional about each easy axis direction. This eliminated the loss in accuracy
in the Armstrong model due to the restricted choice of moment orientations, and greatly improved computational
speed. The total free energy of a domain close to the kth easy axis ck is formulated as the sum of local anisotropy
energy Gk

A, magnetomechanical coupling energy Gk
C and the Zeeman energy Gk

Z

Gk =
1

2
Kk‖mk − ck‖2︸ ︷︷ ︸

Gk
A

−Sk
m ·T︸ ︷︷ ︸
Gk

C

−μ0Msm
k ·H︸ ︷︷ ︸

Gk
Z

. (16)
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Minimization of the energy functional and linearization of unity norm constraint on the orientation vectors
(mk ·mk = 1 ≈ ck ·mk = 1) yields the following expression for the kth local minimum

mk =
(
Kk

)−1

[
Bk +

1− ck · (Kk
)−1

Bk

ck · (Kk)
−1

ck
ck

]
, (17)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =

⎡
⎣ Kk − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 Kk − 3λ100T3

⎤
⎦ , (18)

Bk =
[
ck1K

k + μ0MsH1 ck2K
k + μ0MsH2 ck3K

k + μ0MsH2

]T
. (19)

The anhysteretic volume fractions are calculated explicitly using Boltzmann-type averaging,

ξkan =
exp

(−Gk/Ω
)

∑r
j=1 exp (−Gj/Ω)

, (20)

where Ω is a constant averaging factor.

This energy averaged model has two major shortcomings when applied to Terfenol-D. First, there is an
extra kink in the modeled response and secondly, the experimentally observed slow approach to saturation is
absent. Assuming a [112] oriented sample, the intermediate kinks occur when domains align along the easy axes
oriented 61.9◦ from the sample axis. Absence of kinks in the measurements suggests that domains are prevented
from orienting along these directions. This can be modeled by superimposing an orientation dependent global
anisotropy energy on to the local anisotropy energy defined around each easy axis direction as

Gk
A = wkGk

A0
+

1

2
Kk‖mk − ck‖2, (21)

where Gk
A0

is the global anisotropy energy, which for materials with cubic anisotropy has the form21

Gk
A0

= K4(m
k2

1 mk2

2 +mk2

2 mk2

3 +mk2

3 mk2

1 ) +K6(m
k2

1 mk2

2 mk2

3 ), (22)

weighted by wk, an empirical weighting factor which adjusts the anisotropy energy along the kth easy axis. The
8 easy axes can be broken down into 3 groups depending upon their angle with the sample axis implying that
only three weights need to be determined.

The experimentally observed slow approach to saturation can be obtained by defining the smoothing factor
as a function of deviation of anhysteretic domain volume fractions ξan from a homogeneous distribution ξ̄ as

Ω = a0 + a1‖ξan − ξ̄‖2. (23)

This new definition of Ω destroys the explicit nature of the model since Ω is defined as a function of ξan while
determination of ξan requires knowledge of Ω given by (20). The correct values of Ω and ξkan are obtained by
performing Newton-Raphson iterations. Even with strict tolerances, usually two to three iterations are sufficient
for convergence. Figure 3 shows the performance of the model in describing the measurements presented by
Moffett et al.22

As is common with a vector magnetic-potential-based formulation, the constitutive law needs to be inverted
to take flux density and strain tensors as input and calculate stress and field. This inversion is done using the
quasi-newton SR1 matrix update formula which updates the Jacobian inverse directly eliminating the need for
any matrix inversion within the iteration loop. The computed Jacobian inverse in the final iteration of the
inversion process is stored and used by COMSOL for the assembly of the global stiffness matrix.
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Figure 3. Comparison of the proposed anhysteretic energy averaged model with measurements collected by Moffett et
al.22 All curves have been obtained with the same set of parameters.

Constitutive laws for passive materials

The stress strain laws for passive structural materials (such as steel) can be written as shown by Chandrupatla
and Belegundu23 ⎧⎪⎪⎨

⎪⎪⎩

Trr

Tzz

Tφφ

Trz

⎫⎪⎪⎬
⎪⎪⎭

=
E(1− ν)

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎣

1 ν
(1−ν)

ν
(1−ν) 0

ν
(1−ν) 1 ν

(1−ν) 0
ν

(1−ν)
ν

(1−ν) 1 0

0 0 0 (1−2ν)
2(1−ν)

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

Srr

Szz

Sφφ

Srz

⎫⎪⎪⎬
⎪⎪⎭

. (24)

The magnetic constitutive laws for passive magnetic materials have been modeled using the linear isotropic
relationship H = μ−1B where μ is the constant permeability of the material. For permanent magnets this law is
modified to include the residual induction Bres in the relevant direction. For example, if the residual induction
is along the z direction, the constitutive law can be written as

Hr =
1

μ
Br, (25)

Hz =
1

μ
(Bz −Bres) . (26)

Electrically conducting materials have been modeled using a constant conductivity.

5. NONLINEAR DYNAMIC SOLUTION PROCEDURE

Solution of nonlinear dynamic systems is a particularly challenging task as even unconditionally stable schemes
for linear systems may become unstable. In this work an implicit time integration scheme is followed based on
the trapezoidal rule as described by Bathe.24 The governing equations for the coupled finite element system can
be written as

MÜ+DU̇ = R(t)− F(U, t), (27)

where the mass matrix M, damping matrix D and state vector U are of the form

M =

[
0 0
0 Mu

]
, D =

[
DA 0
0 Du

]
, U =

(
QA

Qu

)
. (28)
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The vector of externally applied forcesR(t) includes contributions from the coil source current density, tangential
applied fields, point forces, and/or traction on certain boundaries. F(U, t) is the internal nodal force vector whose
derivative with respect to the state vector U yields the stiffness matrix. Since F contains contributions from
field and stress which are nonlinearly dependent on U, the stiffness matrix K is also state dependent. Bathe24

suggested various time-integration schemes for nonlinear structural problems of similar form. Explicit methods
are ruled out since the mass matrix is singular. An implicit scheme based on the trapezoidal rule is implemented,
combined with equilibrium iterations. At the kth iteration the system equations can be written as

MÜ(k) +DU̇(k) + t+ΔtK(k−1)ΔU(k) = t+ΔtR− t+ΔtF(k−1), (29)

t+ΔtU(k) = t+ΔtU(k−1) +ΔU(k). (30)

According to the trapezoidal rule of time integration, the following assumptions are used

t+ΔtU = tU+
Δt

2

(
tU̇+ t+ΔtU̇

)
, (31)

t+ΔtU̇ = tU̇+
Δt

2

(
tÜ+ t+ΔtÜ

)
. (32)

The vectors Ü(k) and U̇(k) can be written using (30) to (32) as

t+ΔtÜ(k) =
4

Δt2

(
t+ΔtU(k−1) − tU+ΔU(k)

)
− 4

Δt
tU̇− tÜ, (33)

t+ΔtU̇(k) =
2

Δt

(
t+ΔtU(k−1) − tU+ΔU(k)

)
− tU̇. (34)

Substitution in (29) yields the equation of motion for the system;

[
t+ΔtK(k−1) +

4M

Δt2
+

2D

Δt

]
ΔU(k) = t+ΔtR−M

[
4

Δt2

(
t+ΔtU(k−1) − tU

)
− 4

Δt
tU̇− tÜ

]

−D

[
2

Δt

(
t+ΔtU(k−1) − tU

)
− tU̇

]
− t+ΔtF(k−1).

(35)

The starting values for the iterations are obtained from the values obtained in the previous time step.

t+ΔtF(0) = tF, t+ΔtU(0) = tU. (36)

The convergence criteria used in this work are based on energy and the norm of the out-of-balance load vector.24

Mathematically they can be written as

‖t+ΔtR− t+ΔtF(k−1) −M t+ΔtÜ(k−1) −D t+ΔtU̇(k−1)‖
RNORM

≤ RTOL, (37)

ΔU(k) ·
(
t+ΔtR− t+ΔtF(k−1) −M t+ΔtÜ(k−1) −D t+ΔtU̇(k−1)

)

ΔU(1) ·
(
t+ΔtR− tF−M tÜ−D tU̇

) ≤ ETOL. (38)

The mass and damping matrix are state-independent and hence are assembled only once for the entire simulation.
The internal nodal force vector F and the tangential stiffness matrix K are assembled in every iteration as they
are state-dependent. Evaluation of F requires computation of the total stress and field for a given flux density
and strain distribution, for which the Terfenol-D constitutive law needs to be inverted. This is done using the
Quasi-Newton SR1 formula which updates the Jacobian inverse directly, eliminating the need for matrix inversion
within the iteration loop. The computed Jacobian inverse in the final iteration of the inversion process is used
for assembly of the global stiffness matrix.
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Figure 4. Axial magnetic field distribution in the magnetic circuit due to the permanent magnet.

6. MODEL VALIDATION AND PARAMETRIC STUDY

Obtaining the bias point

To calculate the dynamic response of the actuator, its bias point needs to be accurately determined. The actuator
is biased both mechanically and magnetically. The mechanical bias is due to the compression of the wave spring
whose force is transmitted (and amplified) through the fluid to the Terfenol-D rod. The stress developed in
the Terfenol-D under an axial load can be assumed uniform. Therefore, this stress is superimposed directly on
the applied stress in the constitutive model function. The magnetic bias is due to the residual flux density in
the permanent magnet. This field depends on the geometry of the magnetic circuit and cannot be assumed to
be homogeneously distributed in the rod. The magnetic bias point is obtained by increasing the residual flux
density of the magnet from zero to its actual value using a hyperbolic tangent function and storing the solution
from the final step. Figure 4 shows that the axial magnetic field at the bias point is uniformly distributed in the
central region of the rod with a somewhat lower value at the ends. The average magnetic field in the Terfenol-D
rod is ≈ 30 kA/m.

Response to harmonic inputs

Figure 5 shows the actuator response at 20, 50, 100, and 200 Hz. As expected the phase between voltage
and displacement increases with increasing frequency resulting in counter-clockwise rotation of the loops. One
shortcoming of the model is the assumed anhysteretic Terfenol-D behavior which causes a discrepancy in the
phase of the response. At lower frequencies this is not visible but at 200 Hz this difference in phase is prominent.
It can be seen in both the experimental and modeled voltage-current loops that the current signal is asymmetric.
Although the actuator is driven with an unbiased sinusoidal voltage input, the resulting current signal is biased
due to the nonlinear behavior of Terfenol-D. Such effects can only be described with models where electromagnetic
and mechanical responses are fully coupled.

Parametric Study

The proposed finite element model can be a useful tool for optimizing device geometry and material selection. To
illustrate , the effect of fluid Bulk modulus, Young’s modulus of the fluid chamber components, and seal friction
force on the unloaded displacement response of the actuator is studied. Since the requirements of a mount
actuator are most stringent under engine idling conditions (≈ 20 Hz), the results presented here are obtained by
varying parameters for a 20 Hz drive frequency.

The effective fluid bulk modulus usually plays a key role in the dynamic performance of hydraulic devices. In
this work, fluid bulk modulus is varied from 0.1β0 to 2β0, where β0 is the manufacturer specified bulk modulus for
the fluid. Figure 6(a) shows that even a 50 % reduction in the fluid bulk modulus hardly causes any change in the
stroke produced by the actuator. This is because the compliance of the structural fluid chamber components is
much higher than that of the fluid itself. A 90 % reduction in the fluid’s bulk modulus makes the two compliances
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Figure 5. Comparison of modeled voltage-displacement and voltage-current loops with measurements.

closer and a noticeable 20 % drop in the stroke of the actuator is recorded. To illustrate this fact, the Young’s
modulus of the stainless steel fluid chamber components is increased to 1.5 and 3 times its initial value. The
performance of the actuator improves by ≈ 30 % when the Young’s modulus is increased 3 times (Figure 6(c)).

Another design parameter which is expected to significantly affect the actuator response is the seal friction
force, which is varied by changing the parameters Fc and Fs in (14). Reducing the friction force by half results in
a 12 % increase in performance, while removing it completely yields a 24 % increase. Table 1 shows the percentage
change in the peak-peak stroke of the actuator for different parameter values. It can be seen that the actuator
performance can be significantly enhanced by increasing the stiffness of the fluid chamber components. Further
enhancements in performance can be achieved by reducing the friction at the seals. Attempting to increase the
effective bulk modulus of the fluid would not have a substantial effect on the actuator’s performance. This is
primarily due to the extremely low volume of fluid used in this design.

Table 1. Effect of design parameters on the percentage change in the unloaded displacement response of the MHA at 20
Hz (negative sign denotes reduction in performance).

Parameter % change
β = 0.1β0, Es = Es0, F r = Fr0 -20.16
β = 0.5β0, Es = Es0, F r = Fr0 -2.40
β = 2β0, Es = Es0, F r = Fr0 1.22
β = β0, Es = 1.5Es0, F r = Fr0 12.94
β = β0, Es = 3Es0, F r = Fr0 31.47
β = β0, Es = Es0, F r = 0.5Fr0 11.93
β = β0, Es = Es0, F r = 0.25Fr0 18.73

β = β0, Es = Es0, F r = 0 23.67
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Figure 6. Effect of different design parameters on the unloaded displacement response of the MHA at 20 Hz, (a) Bulk
modulus of fluid, (b) Friction forces at the driven pushrod, (c) Young’s modulus of fluid chamber components.

7. CONCLUDING REMARKS

This paper presents a coupled axisymmetric finite element model of a Terfenol-D mount actuator. The vector
magnetic-potential-based finite element model couples Maxwell’s equations and Navier’s equations through a
nonlinear energy averaged constitutive law for Terfenol-D. The model is capable of describing the dynamic
mechanical and electrical behavior of the actuator due to nonlinear Terfenol-D behavior and dynamics of the
structure and fluid. At high frequencies the model shows some discrepancy in the phase of the predicted output
due to the assumed anhysteretic Terfenol-D constitutive law. A parametric study on the unloaded displacement
response of the actuator at 20 Hz (engine idling conditions) shows that increasing the stiffness of the fluid
chamber components can substantially improve the actuator’s output displacement. Further enhancements in
the performance can be made by reducing seal friction. It is also found that the actuator’s performance is not
very sensitive to changes in bulk modulus of the fluid due to the extremely small fluid volume contained in the
hydraulic chamber.
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