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ABSTRACT

Galfenol is an alloy of iron and gallium which possesses a unique combination of structural strength and sig-
nificant magnetostriction. This alloy can be machined, welded and extruded into complex geometries opening
up avenues for a new class of load-bearing transducers with 3D functionality. This work addresses the develop-
ment of an advanced modeling tool to aid in the design of Galfenol transducers. The model describes the full
nonlinear coupling between the electrical, magnetic and mechanical domains in 3D Galfenol structures, yielding
complete system input-output relationships. Maxwell’s equations for electromagnetics and Navier’s equations for
mechanical systems are formulated in weak form. An energy-averaged constitutive model is employed to relate
magnetization and strain to magnetic field and stress in the Galfenol domain. The overall system is approxi-
mated hierarchically; first, piecewise linearization is used to describe quasi-static responses and magnetic bias
calculations. A linear dynamic solution with piezomagnetic coefficients computed at the bias point describes the
system dynamics for moderate inputs. Dynamic responses at large input fields and stresses are described through
an implicit dynamic solution based on the trapezoidal rule. The model equations are solved on a commercial
finite element solver. A case study consisting of a Galfenol unimorph is presented which illustrates the model’s
ability to describe transient dynamic responses.
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1. INTRODUCTION

Magnetostrictive iron-gallium alloys (Galfenol) possess structural-grade mechanical properties in addition to ex-
hibiting moderate magnetostriction. These properties make Galfenol uniquely well-suited for integration within
three-dimensional (3D) active structures. Galfenol can be used in sensors or actuators capable of withstanding
tension, compression and shock loads. To design Galfenol structures, a modeling framework is required for de-
scribing the full nonlinear coupling between the electrical, magnetic and mechanical domains. A Galfenol system
consists of a Galfenol driver (possibly with complex 3D geometry), passive magnetic materials for flux comple-
tion, passive structural materials for load transmission, permanent magnetic materials for magnetic biasing, and
copper coils for generation of dynamic fields. Depending on whether the Galfenol driver is used as a sensor or
actuator, the inputs and outputs consist of various combinations of the magnetic conjugate variables (magnetic
field and magnetic induction) with the mechanical conjugate variables (strain and stress).

Significant effort has been concentrated on developing coupled models for magnetostrictive transducers. In
particular, attention has been paid to 1D transducers with Terfenol-D loaded unidirectionally. Dapino et al.1

coupled the Jiles-Atherton model with a wave equation describing the structural dynamics of a Terfenol-D actua-
tor. Huang et al.2 coupled the Jiles-Atherton equations with a lumped parameter vibratory model and included a
phenomenological description of eddy current losses. Sarawate and Dapino3 developed a uni-directionally coupled
model where eddy currents in the magnetostrictive sample are described by solving the magnetic field diffusion
equation. Some higher dimension models have also been proposed. Benbouzid4 formulated a 2D bidirection-
ally coupled magnetostatic model where Terfenol-D constitutive behavior is incorporated using surface splines.
Kannan and Dasgupta5 formulated a 2D magnetostatic model with bi-directionally coupled magnetomechanical
relations, current induced magnetic fields and electromagnetic body forces. Zhou et al.6 developed a dynamic
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finite element model of a unimorph actuator with one way magnetomechanical coupling. The one way coupled
3D model of Kim and Jung7 describes force due to magnetostriction driving a coupled fluid-structural model for
a sonar transducer. All these models take as input externally applied magnetic field, thus requiring additional
description of the voltage-field relationship to relate system inputs and outputs. Aparicio and Sosa8 describe a
3D, fully-coupled finite element model including dynamic effects but provide a very simple implementation for a
magnetostrictive material with a single element. In order to describe transducer level input-output relationships
for dynamic inputs, Evans and Dapino9 presented a fully coupled dynamic model for 3D magnetostrictive trans-
ducers. The model simultaneously describes the effects of eddy currents, structural dynamics, and flux leakage
on transducer performance. Due to the restriction of COMSOL Multiphysics being unable to handle vectorized
functions, linear constitutive behavior is assumed.

This work aims at extending the framework by Evans and Dapino9 to include nonlinear Galfenol behavior
described using an efficient Discrete Energy Averaged Model (DEAM).10 Nonlinear implementation is challeng-
ing due to the constitutive model inversion required for a vector magnetic potential based formulation and
the inability of COMSOL Multiphysics to handle vectorized functions. For quasi-static operation, an efficient
piecewise-linear solution strategy is proposed in section 4. This strategy is useful for obtaining accurate bias
points. A linear dynamic simulation with piezomagnetic coefficients computed at the bias point describes the
dynamic response of the system for moderate excitations. Finally, an implicit time integration scheme is dis-
cussed in section 6 to obtain the dynamic response of the system for large inputs. Comparison of these solutions
to experiments conducted on a Galfenol unimorph actuator are presented in sections 5 and 7.

For magnetostatic problems, a partitioned solution approach is commonly followed in which magnetic and
mechanical BVPs are solved separately, using the output of one as the input to the other.4, 11 For one way coupled
models convergence is usually straightforward to achieve, but for bidirectional coupling a major iteration loop
is required which can make convergence extremely slow. The methodology followed here is to formulate the
coupled problem and solve for both physics simultaneously. This leads to faster convergence.

2. WEAK FORM EQUATIONS

The aim of the finite element model is to obtain the electromagnetic quantities, magnetic flux density (B),
magnetic field (H), electric flux density (D), electric field (E), and the mechanical quantities, stress (T) and
strain (S) in the system. The electrical and magnetic variables can be related using Maxwell’s equations,

∇×E = −∂B

∂t
, (1)

∇ ·D = ρq, (2)

∇×H = J+
∂D

∂t
, (3)

∇ ·B = 0, (4)

while the mechanical variables can be described using Navier’s equation,

ρ
∂2u

∂t2
+ c

∂u

∂t
= ∇ ·T+ fB. (5)

Almost all formulations for electromechanical systems use a standard displacement-based formulation for the
mechanical subsystem, meaning the solution variables are the mechanical displacements at the nodes of the model.
Strain is obtained using the globally defined gradient operation on the displacement field, while stress is obtained
using constitutive laws. For the electromagnetic subsystem different approaches are followed. Magnetostatic
problems are often modeled using a scalar magnetic-potential-based approach5 where the magnetic field is split
up into a magnetization induced component, computed as the gradient of the scalar magnetic potential, and an
externally imposed component entered as nodal force terms. The advantage of this procedure is that constitutive
laws do not have to be inverted since most constitutive models take magnetic field as the input. The disadvantage
of this formulation is that the current induced fields need to be specified manually but they are almost always
unknown before solving the system. For the same reason, the formulation is restricted to quasi-static operating
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conditions where eddy currents are absent. A vector magnetic-potential-based formulation8, 9 is more appropriate
for dynamic modeling of magnetostrictive transducers since it allows direct inclusion of source current densities
along with description of eddy current induced flux density changes. The vector magnetic potential A is defined
as

B = ∇×A. (6)

With this definition Gauss’ Law (4) is identically satisfied. The second term in (3) models displacement current
and can be neglected within the frequency bandwidth of operation of magnetostrictive transducers (< 30 kHz).
Lorentz forces are neglected since the only component containing a significantly large current density in a mag-
netostrictive transducer is the drive coil which is structurally inactive. Finally, voltage gradients are neglected;
the only source of electrical input is considered to be a source current density applied to the coil. Under these
assumptions the only one of Maxwell’s equations to be solved is (3), which is reduced to

∇×H = Js − σ
∂A

∂t
. (7)

The weak form equations can be derived using the method of weighted residuals as done by Evans et al.9

∫
VB

H · δB dV +

∫
VB

σ
∂A

∂t
· δA dV =

∫
∂VB

(H× n) · δA d∂V +

∫
VB

Js · δA dV, (8)

∫
Vu

T · δS dV +

∫
Vu

(
ρ
∂2u

∂t2
+ c

∂u

∂t

)
· δu dV =

∫
∂Vu

t · δu d∂V +

∫
Vu

fB · δu dV. (9)

The solution variables for the problem are the mechanical displacement field (u) and the vector magnetic potential
(A). The two equations (8) and (9) are decoupled in all domains except in Galfenol where the mechanical and
magnetic states are coupled in a nonlinear manner. The first term in (8) and (9) suggests that the constitutive
law should take (B, S) as inputs and calculate (H, T) as outputs. Almost all constitutive models work the other
way around thus requiring model inversion. Since the models are nonlinear in nature, analytical inversion is in
most cases impossible. Section 3 describes the constitutive law for Galfenol used in this work, while sections 4
and 6 discuss the inversion and incorporation of the constitutive law in the model.

3. DISCRETE ENERGY-AVERAGED MODEL (DEAM)

Incorporation of nonlinear constitutive behavior poses a significant challenge in the formulation of coupled finite
element models for magnetostrictive systems. The most common method to describe magnetostrictive material
behavior has been by obtaining polynomial fits to data. For example, Benbouzid et al.12 used surface splines
to fit experimental data while Kannan and Dasgupta5 used constitutive relations in an incremental form with
coefficients obtained from bicubic spline fits to measurements. Kim et al.7 used 6th order polynomials to fit the
strain-field behavior with a different set of coefficients for each preload condition. The use of spline functions
to fit measurements has the advantages of easy differentiability and implementation for 1D cases. However,
the procedure becomes rather complex if complete 3D material behavior is required. This would require 3D
measurements to be performed, and bulky splines with 9 components (3 for field and 6 for stress) to be fitted
to those measurements. Graham et al.11 implemented Galfenol constitutive behavior through look-up tables
generated using the Armstrong model a priori for a large number of induction and stress values. Although the
Armstrong model is capable of describing 3D Galfenol response, look-up tables were generated for 1D induction
and stress inputs. As is the case with splines, extension to a full 3D version will add significant complexity
because it will require generation of bulky tables with 9 inputs and 9 outputs. For these reasons, using an
efficient constitutive law coded up as functions is beneficial for 3D boundary value problems.

The energy-averaged class of models describe macroscopic material response based on an energy weighted
summation of contributions from domains aligned along different orientations. With fixed orientations (as in
Armstrong’s model13), good accuracy demands a large number of possible orientations to be considered which
results in significant computational effort. To preserve accuracy along with computational efficiency, Evans and
Dapino10 restricted the number of possible orientations to six by considering only the directions which minimize
a locally defined energy functional around each easy axis. The total free energy of a domain close to the kth easy
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axis ck is formulated as the sum of local anisotropy energy Gk
A, magnetomechanical coupling energy Gk

C and the
Zeeman energy Gk

Z as

Gk =
1

2
Kk|mk − ck|2︸ ︷︷ ︸

Gk
A

−Sk
m ·T︸ ︷︷ ︸
Gk

C

−μ0Msm
k ·H︸ ︷︷ ︸

Gk
Z

. (10)

Minimization of the energy functional and linearization of the unity norm constraint on the orientation vectors
(mk ·mk = 1 ≈ ck ·mk = 1) yields the following analytical expression for the kth local minimum

mk =
(
Kk

)−1

[
Bk +

1− ck · (Kk
)−1

Bk

ck · (Kk)
−1

ck
ck

]
, (11)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =

⎡
⎣ Kk − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 Kk − 3λ100T3

⎤
⎦ , (12)

Bk =
[
ck1K

k + μ0MsH1 ck2K
k + μ0MsH2 ck3K

k + μ0MsH2

]T
. (13)

The anhysteretic volume fractions are calculated using Boltzmann-type averaging,

ξkan =
exp

(−Gk/Ω
)

∑r
j=1 exp (−Gj/Ω)

, (14)

where Ω is an averaging factor. Macroscopic anhysteretic material behavior is obtained by summing the individual
contributions of each domain weighted by its corresponding volume fraction. The DEAM is extremely efficient
since it includes energy weighted summation of only six terms and analytical expressions to calculate the minima.
Moreover it can be analytically differentiated to obtain the matrix of material coefficients. This property is
particularly useful for formulating a piecewise-linear solution procedure described in section 4, as well as in the
numerical inversion process for the nonlinear dynamic solution discussed in section 6.

4. PIECEWISE-LINEAR SOLUTION PROCEDURE

Under quasi-static conditions, the weak form equations (8) and (9) can be written in incremental form as

∫
VB

ΔH · δΔB dV

∫
∂VB

(ΔH× n) · δΔA d∂V +

∫
VB

ΔJs · δΔA dV, (15)

∫
Vu

ΔT · δΔS dV =

∫
∂Vu

Δt · δΔu d∂V +

∫
Vu

ΔfB · δΔu dV, (16)

where ΔH and ΔT must be computed as a function of ΔB and ΔS. For some field H0 and stress T0, the DEAM
however computes B and S along with the matrix of derivatives J given by

J =

[
µ = ∂B

∂H (H0,T0) d = ∂B
∂T (H0,T0)

dT = ∂S
∂H (H0,T0) s = ∂S

∂T (H0,T0)

]
. (17)

For small deviations about H0 and T0, the constitutive law can be formulated in incremental form as

[
ΔH
ΔT

]
=

[
µi −a
−aT c

]

︸ ︷︷ ︸
J−1

[
ΔB
ΔS

]
. (18)
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Since the computed piezomagnetic coefficients are dependent on stress and field, which have a spatial variation,
the coefficients are also spatially variant. To preserve this inhomogeneity, the coefficients are declared as inter-
polated data functions of spatial coordinates. Each piezomagnetic coefficient is a separate function and when
called, COMSOL searches in the data file for their values corresponding to that location or interpolates between
nearby points if that location is not present in the file. A total of 33 coefficients is used:

µi=

⎡
⎣ μi

11 μi
12 μi

13

μi
12 μi

22 μi
23

μi
13 μi

23 μi
33

⎤
⎦, a=

⎡
⎣ a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36

⎤
⎦, c=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎦
. (19)

Ideally, the coefficients must be evaluated at all the integration points present in the Galfenol subdomain during
the assembly process. In a 3D model several thousand integration points are present. Evaluation, inversion
and storage of the Jacobian at every integration point is both computationally expensive and memory intensive.
Assuming that the spatial variation in field and stress is not extremely drastic, the coefficients are calculated
only at selected locations and evaluated at the remaining points through interpolation.

Figure 1 shows the overall piecewise linear solution procedure. The process is fast as it does not involve
iteration loops or convergence checks. Consequently, the solution has a drift error which becomes larger with
increasing step size. Thus using a sufficiently small step size is necessary to ensure an accurate solution. The
piecewise linear model is useful for two purposes. First, to obtain a measure of quasi-static system performance
and secondly to generate accurate bias points which preserve the spatial inhomogeneity in the distribution of field
and stress in Galfenol, and hence, the piezomagnetic coefficients. A measure of dynamic response for moderate
inputs about the bias point can be obtained using these piezomagnetic coefficients.

5. PIECEWISE LINEAR MODEL RESULTS

The finite element framework described in the previous sections is validated using a Galfenol unimorph actuator
shown in Figure 2(a). The actuator consists of a composite beam having a Galfenol layer bonded to a brass
substrate, a drive coil, and steel flux return components. The system is excited by applying a voltage input to
the coil and the vertical tip deflection of the beam is measured with a laser displacement sensor.

Piecewise-linear quasi-static solution

Quasi-static measurements are collected by cycling the voltage at 0.1 Hz. In the model, input is applied in
the form of small increments to the coil source current density and solution is obtained using the piecewise-
linear approach outlined in Figure 1. Beam tip deflection is obtained by integrating the vertical displacement
component over the free edge of the Galfenol layer. The simulation describes the nonlinearity in the beam
deflection response (see Figure 3) accurately. The voltage current curve is a straight line whose slope is the dc
resistance of the coil.

Linear dynamic simulation about bias point

Harmonic response of the beam is obtained by applying a bias voltage of 7 V and subsequently applying sinusoidal
voltage inputs at distinct frequencies. The amplitude of the sinusoidal voltage signal is increased with increasing
frequency to keep the current levels comparable so as to obtain good measurable deflections at the beam tip.
Figure 4 shows the results of the linear dynamic simulation at 10 Hz and 100 Hz. At 10 Hz, the model slightly
over-predicts the tip-deflection because of its linear nature. However, as the frequency increases the inertia and
damping forces dominate over the material nonlinearity and smooths out the overall system response which
results in better accuracy.

The linear dynamic solution gives a fairly accurate description of the dynamic performance of the transducer
for moderate inputs about a bias point. However, since Galfenol exhibits moderate magnetostriction, most
applications require the transducer to be operated with larger inputs utilizing the full nonlinear strain of Galfenol.
To obtain such description a nonlinear dynamic solution procedure is formulated as described in the next section.
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Initialize
,=1

H=O, T=O

Compute piezomagnetic coefficients

[p, a, c] = material model(H, T)

Write coefficients to data file as a
function of spatial coordinates

.1

Assemble stiffness matrix
and differential external load

vector

'I,

Compute and update solution
AU = \

u =U

'I,

Extract AH and AT from AU and
update total field and stress vectors

H=H+AH, T=T+AT

Check if inputs have
reached their final values

Is n=N?

Store solution in fem
structure and exit

> nn+1
N

Figure 1. Flowchart of the piecewise-linear solution process.

6. NONLINEAR DYNAMIC SOLUTION PROCEDURE

Solution of nonlinear dynamic systems is a particularly challenging task as even unconditionally stable time
integration schemes for linear systems may become unstable. The governing equations for the finite element
system described in section 2 can be written as

MÜ+DU̇ = R(t)− F(U, t), (20)

where the mass matrix M, damping matrix D, and state vector U are of the form

M =

[
0 0
0 Mu

]
, D =

[
DA 0
0 Du

]
, U =

(
QA

Qu

)
. (21)

The vector of externally applied forces R(t) includes contributions from the coil source current density and/or
traction on certain boundaries; F(U, t) is the internal nodal force vector whose derivative with respect to the
state vector U yields the stiffness matrix. Since F contains contributions from element field and stress which
are nonlinearly dependent on U, the stiffness matrix K is also state dependent. Evaluation of F and K are the
most time consuming operations in the solution process.

Bathe14 suggested various time-integration schemes for nonlinear structural problems of similar form. Explicit
methods are ruled out since the mass matrix is singular. An implicit scheme based on the trapezoidal rule is
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(a) (b)

Figure 2. The Galfenol unimorph actuator used for model validation, (a) geometry, (b) mesh.

0 5 10 15

0

50

100

150

Voltage (V)

T
ip

 d
ef

le
ct

io
n 

(m
ic

ro
ns

)

 

 

Simulation

Experiment

(a)

0 5 10 15

0

0.5

1

1.5

2

2.5

Voltage (V)

C
ur

re
nt

 (
A

)

 

 

Simulation

Experiment

(b)

Figure 3. Quasi-static model results, (a) voltage-deflection, (b) voltage-current.

implemented, combined with equilibrium iterations. At the kth iteration the system equations can be written as

Mt+ΔtÜ(k) +Dt+ΔtU̇(k) + t+ΔtK(k−1)ΔU(k) = t+ΔtR− t+ΔtF(k−1), (22)

t+ΔtU(k) = t+ΔtU(k−1) +ΔU(k). (23)

According to the trapezoidal rule of time integration, the following assumptions are used;

t+ΔtU = tU+
Δt

2

(
tU̇+ t+ΔtU̇

)
, (24)

t+ΔtU̇ = tU̇+
Δt

2

(
tÜ+ t+ΔtÜ

)
. (25)

The vectors Ü(k) and U̇(k) can be written using (23) to (25) as

t+ΔtÜ(k) =
4

Δt2

(
t+ΔtU(k−1) − tU+ΔU(k)

)
− 4

Δt
tU̇− tÜ, (26)

t+ΔtU̇(k) =
2

Δt

(
t+ΔtU(k−1) − tU+ΔU(k)

)
− tU̇. (27)
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Figure 4. Experimental and model predicted results for beam tip deflection and current at different frequencies.

Substitution in (22) yields the equation of motion for the system;

[
t+ΔtK(k−1) +

4M

Δt2
+

2D

Δt

]
ΔU(k) = t+ΔtR−M

[
4

Δt2

(
t+ΔtU(k−1) − tU

)
− 4

Δt
tU̇− tÜ

]

−D

[
2

Δt

(
t+ΔtU(k−1) − tU

)
− tU̇

]
− t+ΔtF(k−1).

(28)

The starting values for the internal force and state vector are considered to be same as the corresponding final
values of the previous time step;

t+ΔtF(0) = tF, t+ΔtU(0) = tU. (29)

The convergence criteria used in this work are based on energy and norm of the out-of-balance load vector.14

Mathematically they can be written as

‖t+ΔtR− t+ΔtF(k−1) −M t+ΔtÜ(k−1) −D t+ΔtU̇(k−1)‖
RNORM

≤ RTOL, (30)

ΔU(k) ·
(
t+ΔtR− t+ΔtF(k−1) −M t+ΔtÜ(k−1) −D t+ΔtU̇(k−1)

)

ΔU(1) ·
(
t+ΔtR− tF−M tÜ−D tU̇

) ≤ ETOL. (31)

The mass and damping matrix are state-independent and hence are assembled only once for the entire simulation.
The internal nodal force vector F and the tangential stiffness matrix K are assembled in every iteration as they
are state-dependent. Evaluation of F requires computation of the total stress and field for a given flux density and
strain distribution, for which the DEAM needs to be inverted. This is done using the Quasi-Newton SR1 formula
which updates the Jacobian inverse directly, eliminating the need for matrix inversion within the iteration loop.
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Figure 5. Actuator response to harmonic excitation at 10 Hz.

The computed Jacobian inverse in the final iteration of the inversion process is used for the assembly of the global
stiffness matrix. Thus, the material model is inverted only once for every integration point and the values of the
3 field components, 6 stress components and 81 terms of the material Jacobian inverse matrix are stored in a
global data structure in MATLAB. Since COMSOL cannot take vector-valued inputs from MATLAB functions,
it calls the same function multiple times to assemble the matrices. The material model is coded up such that it
is executed only once for a particular set of input values and returns directly from the stored data structure for
the remaining number of times.

7. NONLINEAR DYNAMIC MODEL RESULTS

The same Galfenol unimorph actuator (Figure 2) is used to validate the nonlinear dynamic solution procedure.
Harmonic excitations ranging from 10 Hz to 200 Hz are applied to the system in the form V (t) = −Vbias+V0(1−
cos(2πft)). The finite element model is run only for the time duration of the first few cycles. In order to obtain
appreciable displacement response from the beam at higher frequencies a negative bias voltage (Vbias) is applied
first before applying the harmonic signal. This ensures that the effective bias point of the cyclic signal is in the
burst region. In the model the bias point is obtained in a similar fashion by applying the bias voltage smoothed
using a tanh function for ease of convergence. Figures 5 - 8 show the transient response of the transducer for
harmonic inputs at 10, 50, 100, and 200 Hz. The modeled responses show good correlation with the experiments
particularly for the tip deflection response. An interesting outcome of nonlinear Galfenol behavior can be seen
where the quadratic nonlinearity of the magnetostrictive strain at zero field causes frequency doubling in the tip
deflection response. An interesting observation is the relationship between current in the coil and magnetic
field in Galfenol which is often approximated by a linear relationship. Figure 9 shows that there is some hysteresis
in the current-field loop even at 10 Hz. At 50 Hz the hysteresis is considerably larger. This implies that a linear
current-field assumption may introduce significant errors in predicting the phase of the output, particularly at
higher frequencies.
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Figure 6. Actuator response to harmonic excitation at 50 Hz.
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Figure 7. Actuator response to harmonic excitation at 100 Hz.
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Figure 8. Actuator response to harmonic excitation at 200 Hz.
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Figure 9. Modeled relationship between drive current in the coil and average axial field in the Galfenol beam (a) 10 Hz
and (b) 50 Hz.

8. CONCLUDING REMARKS

The paper presented a finite element framework for modeling 3D Galfenol transducers driven over nonlinear
regimes with dynamic inputs. Weak form equations derived from Maxwell’s equations for electromagnetics
and Navier’s equation for mechanical systems are coded into COMSOL (a commercial finite element software),
which is used for meshing, global assembly of matrices and post-processing. Galfenol constitutive behavior
is incorporated using a nonlinear energy-averaged model. A piecewise-linear solution strategy is found to be
useful for obtaining quasi-static system response and accurate bias point determination. A linear dynamic
simulation with piezomagnetic coefficients computed at the bias point provides an accurate description of dynamic
performance for moderate inputs. An implicit time integration scheme based on the trapezoidal rule yields the
dynamic response of the system for large-scale inputs. As is required for any vector magnetic-potential-based
formulation, the constitutive law is inverted numerically using Quasi-Newton iterations. Efficiency is maintained
by coding up the material model such that executing the inversion routine only once calculates the 6 components
of stress, 3 components of field and 81 components of the Jacobian inverse. The inability of COMSOL to
accept vector valued inputs from MATLAB functions is overcome by using a global data structure. The model
is validated using a Galfenol unimorph actuator. Results show that the modeled responses compare well with
experiments and describe the key features which occur due to nonlinear behavior of Galfenol. The framework
also brings out some shortcomings of a linear current-field relationship assumed in models with reduced order
coupling.
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