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ABSTRACT

A model is developed which describes the dynamic response of a Terfenol-D actuator with a hydraulic displace-
ment amplification mechanism for use in active engine mounts. The model includes three main components:
magnetic diffusion, Terfenol-D constitutive model, and mechanical actuator model. Eddy current losses are
modeled as a one-dimensional magnetic field diffusion problem in cylindrical coordinates. The Jiles-Atherton
model is used to describe the magnetization state of the Terfenol-D driver as a function of applied magnetic
fields. A quadratic, single-valued model for the magnetostriction dependence on magnetization is utilized which
provides an input to the mechanical model describing the system vibrations. Friction at the elastomeric seals is
modeled using the LuGre friction model for lubricated contacts. The actuator’s dynamic response is quantified
in terms of the output displacement in the unloaded condition and force output in the loaded condition. The
model is shown to accurately quantify the dynamic behavior of the actuator over the frequency range considered,
from near dc to 500 Hz. An order analysis shows that the model also describes the higher harmonic content
present in the measured responses. A study on the variation of energy delivered by the actuator with the load
stiffness reveals that the actuator delivers the highest energy output near the stiffness match region.

Keywords: active powertrain mount, Terfenol-D actuator, magnetostrictive materials, hydraulic amplification,
Jiles-Atherton model, LuGre friction model

1. INTRODUCTION

An engine mount is used to isolate engine vibrations from the passenger compartment and prevent excessive
engine bounce from shock excitations. An active mount consists of a passive hydro-mount combined with an
actuator which modulates the pressure of the hydraulic fluid so as to reduce its force transmissibility. Thus the
performance of an active mount depends heavily on the performance of the actuator. Many electromagnetic ac-
tuators1, 2 have been suggested which offer improvements in the vibration isolation characteristics of the mounts.
However, these actuators tend to exhibit a restricted frequency bandwidth, typically less than 80 Hz. To achieve
broader frequency bandwidth, actuators using smart material drivers have been considered.3, 4

Because smart materials capable of broadband response produce a stroke below mount requirements, the
implementation of these materials in active mounts requires stroke amplification. Hydraulic amplification5, 6 is
particularly attractive as it provides large mechanical gains in a restricted space. Ushijima and Kumakawa3

developed a piezo-hydraulic actuator with a stroke of 70 μm which uses the hydraulic fluid in the mount for
amplification. Shibayama et al.4 developed a hydraulically amplified piezo actuator in which the hydraulic
fluid used for amplification was separately sealed from the fluid in the mount. In these designs the mechanical
performance is significantly lower than that predicted by linear mechanical models due to internal friction and
compliances in the fluid chamber components. More advanced modeling is therefore required to accurately
describe and analyze the behavior of hydraulically amplified actuators.

In this paper a dynamic model for the coupled response of a hydraulically amplified magnetostrictive actuator
is presented. Losses due to internal friction, fluid chamber compliance, and support structure compliance are
considered. The model is developed to describe the dynamic response of the hydraulically amplified Terfenol-D

Further author information: (Send correspondence to M.J.D)
S.C.: E-mail: chakrabarti.3@osu.edu, Telephone: 1-614-247-7480
M.J.D.: E-mail: dapino.1@osu.edu, Telephone: 1-614-688-3689

Industrial and Commercial Applications of Smart Structures Technologies 2010, 
edited by M. Brett McMickell, Kevin M. Farinholt, Proc. of SPIE Vol. 7645, 

76450G · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.848875

Proc. of SPIE Vol. 7645  76450G-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



actuator developed by Chakrabarti and Dapino,7 with the primary intent of creating a tool for design optimiza-
tion and control. The response of the cylindrical magnetostrictive driver to applied fields is modeled with a
nonlinear and hysteretic description of magnetization as a function of magnetic field and bias stress based on the
Jiles-Atherton model. The model is coupled with Maxwell’s equations in order to quantify the radial dependence
of magnetization and associated dynamic losses in the driver. A quadratic, single-valued model for the magne-
tostriction dependence on magnetization is utilized which provides an input to the mechanical vibratory model
for the actuator. Friction at the elastomeric seals is described with the LuGre dynamic friction formulation,
hence the model incorporates friction phenomena such as stick-slip, pre-sliding displacement, and the Stribeck
effect.

A brief description of the actuator considered in this paper is provided in Section 2. The overall model
structure is presented in Section 3 whereas Sections 4–6 respectively describe the three model components:
magnetic diffusion, Terfenol-D constitutive model, and mechanical actuator model. A comparison of model
results with experimental measurements is presented in Section 7.

2. ACTUATOR DESIGN

The actuator design is shown in Figure 1; further details can be found elsewhere.7, 8 The actuator has a fluid
chamber with a large driving piston at one end and a small diameter driven piston at the other. The exact
ratio of piston areas in this design is 69.6. The magnetic circuit consists of three Alnico ring magnets, a coil for
generating dynamic fields, iron pieces for flux return, and a Terfenol-D rod. The permanent magnet provides
the required magnetic bias to achieve bidirectional motion.

The mechanical preload on the Terfenol-D rod is created by a wave spring situated above the driven piston
and by a disc spring located between the magnetic circuit and drive piston. The force produced by the wave
spring on the rod is magnified by the fluid. One advantage of this configuration is that the fluid remains in
compression during operation, thus reducing the chances of cavitation. The fluid is sealed on both ends by two
dynamic o-rings.

Figure 1. Physical actuator (left) and cutout (right).

3. MODEL APPROACH

Magnetostrictive materials deform when exposed to magnetic fields and change their magnetization state when
stressed. Because these responses are nonlinear and hysteretic, developing comprehensive models that describe
the coupled relationship between magnetic, elastic, and thermal phenomena in magnetostrictive materials has
been a traditionally difficult problem. Numerous models exist which describe the strain-field loops at quasi-
static frequencies. However, modeling the dynamic strain-field relationship in magnetostrictive transducers is a
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much more challenging problem because of dynamic magnetic losses and vibration of the structural components.
Dapino et al.9 implemented a stress-dependent variation of the Jiles-Atherton model in combination with a
quadratic magnetostriction model as an input to the wave equation describing the structural dynamics of a
Terfenol-D transducer. Huang et al.10 also implemented the Jiles-Atherton model but formulated a lumped
parameter model to describe the structural dynamics and eddy currents. Another approach to model strain-field
loops was developed by Sarawate and Dapino.11 In this work, the radial dependence of field in a magnetostrictive
rod is established by solving the diffusion equation; the resulting field is considered as an input to the constitutive
model for the magnetostrictive rod. A similar modeling approach, shown in Figure 2), is followed in this paper.
The principal difference lies in the way the averaging of the field is done and the complexity of the loading on the
magnetostrictive rod. Sarawate and Dapino11 calculated the average effective field by formulating a weighted
sum of the field at different radii r while we consider H(r, t) as an input to the Jiles-Atherton model to calculate
the magnetization M(r, t) and associated magnetostriction λ(r, t). Averaging yields a bulk magnetostriction
λavg(t). The dynamic strain generated by the driver is obtained by coupling the magnetization model with the
mechanical model.

In the work by Sarawate and Dapino11 the mechanical load on the driver was a single degree-of-freedom linear
spring, mass, and damper system which allows to resolve the magnetostriction waveform into Fourier components.
The response of the mechanical system to those components was found analytically in the frequency domain. In
the present work, the mechanical system consists of a hydraulic amplification mechanism with compliances and
frictional losses at the seals. The resulting system thus has several types of nonlinearities. The complete system
of equations is solved numerically and the Fourier components of the final periodic waveform are analyzed.
Another important difference is the range of fields considered: Sarawate and Dapino11 applied relatively low
fields (16 kA/m pk-pk) to the Terfenol-D rod, resulting in reduced nonlinearity in the material response. In
this work, the applied field is ≈ 55 KA/m pk-pk, which gives rise to increased nonlinearity and hysteresis in the
magnetostrictive response.

Figure 2. Flowchart for the actuator model.

4. MAGNETIC FIELD DIFFUSION

In an electro-magneto-mechanical system the electrical quantities – electric field E, electric flux density D, and
current density J are coupled with the magnetic quantities – magnetic flux density B and magnetic field H. This
coupling can be described with Ampére’s law and the Faraday-Lenz law,

∇× H = J +
∂D
∂t

, (1)

∇× E = −∂B
∂t

. (2)

Ampére’s law describes the generation of magnetic field due to a current density. The second term on the right
hand side of (1) is known as displacement current and gives rise to electromagnetic radiation. This term can be
neglected for the frequency range considered in this study. The Faraday-Lenz law describes the generation of an
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electric field due to a changing flux density. The eddy current density associated with this field inside a material
is J = σE, where σ is the electrical conductivity of the medium (constant for ohmic materials). The direction of
the eddy currents is such that the magnetic field they produce (through (1)) opposes the magnetic flux density
change that induced them. Thus eddy currents impede alternating flux density. The effect of eddy currents is
maximum near the center of an object exposed to alternating fields and gradually reduces to being negligible
near the surface. This gives rise to a spatially variant magnetic field which can be obtained by combination of
(1) and (2) into a single diffusion equation,

∇×∇× H = ∇× J
= ∇× (σE)

= −σ

(
∂B
∂t

)

= −σμ

(
∂H
∂t

)
, (3)

in which μ is the magnetic permeability of the material and the stress dependence of magnetic induction is
assumed negligible. The left hand side of (3) can be simplified,

∇×∇× H = ∇ (∇ ·H) −∇2H

= ∇
(
∇ ·B 1

μ

)
−∇2H

= −∇2H (∵ ∇ ·B = 0) . (4)

For cylindrical geometries the magnetic diffusion equation takes the form

∂2H

∂r2
+

1
r

∂H

∂r
= σμ

∂H

∂t
. (5)

The boundary condition at the surface of the rod for a harmonic applied field is H(R, t) = H0e
iωt. We assume

the solution to have the form H0h̃(r)eiωt with h̃(r) a complex function. Equation (5) then reduces to

∂2h̃

∂r2
+

1
r

∂h̃

∂r
− iσμωh̃ = 0. (6)

Assuming μ to be constant over the range of applied fields, the solution to (6) can be written as done by
Knoepfel,12

h̃(r) =
I0(q(r))
I0(q(R))

, (7)

where I0 is the modified Bessel function of order zero, q(r) =
(√

iσμω
)
r, and R is the radius of the magne-

tostrictive rod. Figure 3 shows the magnetic field in the magnetostrictive rod as a function of r at 500 Hz for
μ = 5μ0 and 1/σ = 58e − 8 Ωm. The field at the center of the rod is smaller in magnitude and lags behind the
field on the surface.

5. JILES-ATHERTON EQUATIONS
The Jiles-Atherton model13 is implemented here to describe the magnetization in the magnetostrictive rod as a
function of applied magnetic fields. The basic governing equations of the model are described here. The total
magnetization at any instant of time can be written as a combination of an anhysteretic and an irreversible
component,

M = cMan + (1 − c)Mirr. (8)

Here, c is a reversibility parameter which accounts for reversible bowing of domain walls. When c = 1, domain
wall motion is completely reversible and when c = 0, domain wall motion is completely irreversible. The
anhysteretic magnetization is given by the Langevin function as

Man = Ms

(
coth

(
He

a

)
−
(

a

He

))
, (9)
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Figure 3. Field at 10 discrete radii from r = 0.127 mm to r = 6.35 mm.

where a is a shape parameter which controls the slope of the anhysteretic magnetization curve, Ms is the
saturation magnetization of the material, and He is an effective magnetic field. In the original Jiles-Atherton
model, He is a mean field that accounts for Weiss-type interactions. We use the formulation for He proposed
by Dapino et al.,14 which includes a Weiss-type mean field with parameter α and an effective field due to bias
stresses σbias,

He = H +
(

α +
9
2

σbiasλs

μ0M2
s

)
︸ ︷︷ ︸

α̃

M. (10)

The derivative of the total magnetization with respect to the applied field can be written as

dM

dH
= c

dMan

dH
+ (1 − c)

dMirr

dH

= c
dMan

dHe

(
dHe

dH

)
+ (1 − c)

dMirr

dHe

(
dHe

dH

)
, (11)

where
dHe

dH
= 1 + α̃

dM

dH
. (12)

The irreversible magnetization is calculated through a law of approach to the anhysteretic magnetization,

dMirr

dHe
=

Man − Mirr

δk
, (13)

where k is a parameter that quantifies the average energy required to break pinning sites and δ is dimension-
less variable which is +1 for increasing fields and −1 for reducing fields. The derivative of the anhysteretic
magnetization relative to the effective field is

dMan

dHe
=

Ms

a

⎛
⎝−

(
1

sinh
(

He

a

)
)2

+
(

a

He

)2
⎞
⎠ , (14)
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Recognizing that the field is radially dependent, combination of (11)-(14) yields a single expression for the
variation of M(r) with respect to H(r),

dM

dH
(r) =

[
c
dMan

dHe
(r) +

Man(r) − M(r)
δ(r)k

]
︸ ︷︷ ︸

Φ(M(r))

[
1 + α̃

dM

dH
(r)
]

, (15)

which can be rearranged to give
dM

dH
(r) =

(
Φ(M(r))

1 − α̃Φ(M(r))

)
. (16)

Assuming the prestress is sufficiently large, the magnetostriction can be approximately modeled as a single valued
function of magnetization through the relation

λ(r) =
3
2

λs

M2
s

M(r)2. (17)

An average magnetostriction is obtained through a weighted sum over the cross-section of the rod,

λavg =
1∑n

i=1 N(ri)

n∑
i=1

λ(ri)N(ri), (18)

where ri are the discrete radii at which the magnetostriction is evaluated and N(ri) are the weights. Figure 4
shows how the average magnetostriction decreases and becomes delayed with increasing actuation frequency.
Table 5 lists the values of the Jiles-Atherton model parameters used in the calculations.
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Figure 4. λavg at different frequencies.

6. MECHANICAL MODEL

A mechanical model for the hydraulically-amplified actuator is shown in Figure 5. The pressure variation in the
fluid can be linearized for small volumetric changes as follows,

Δp = β
ΔV

Vref
, (19)

where β is the fluid bulk modulus and Vref is the fluid volume employed to achieve amplification. Volume change
ΔV can be written in terms of the piston displacements xL and xp, the corresponding piston cross-sectional areas
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Figure 5. Schematic representation of the actuator’s mechanical model.

AL and Ap and the volumetric displacement of the fluid chamber components written in terms of the change in
chamber pressure Δp and their stiffness Co as

ΔV = Apxp − ALxL − Δp

Co
. (20)

Combination of (19) and (20) gives

Δp =
(

Coβ

CoVref + β

)
︸ ︷︷ ︸

βeff

(Apxp − ALxL) . (21)

Parameter βeff is an effective modulus which quantifies the compliance of the fluid and different fluid chamber
components including the o-rings, pistons, and casing. The fundamental deformation equation that must be
satisfied by the magnetostrictive rod at all times is

λavg − σc

E
= ε =

xp − xs

la
, (22)

which states that the total strain in the rod having modulus E is a superposition of the average magnetostriction
and the strain induced by compressive stress (σc). The force generated by the Terfenol-D rod having a cross-
sectional area Ar is

Fa = σcAr = EArλavg − EAr

la
(xp − xs). (23)

Table 1. Jiles-Atherton parameter values.

Parameter Value Parameter Value
E (GPa) 32 a (A/m) 6512
c 0.18 α 0.046
k (A/m) 3000 λs 1150
σbias (ksi) -1.0 Ms (A/m) 7.65×105
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The equations of motion for the two pistons and the support structure are

Mpẍp + (kdisk)xp + frp = −ΔpAp − σcAr, (24)
MLẍL + (kL + kpre)xL + frL = ΔpAL, (25)
Msẍs + ksxs = −Fa, (26)

where kL and kpre are the stiffness of the load and preload springs acting on the driven piston, kdisk is the stiffness
of the disk spring acting on the Terfenol-D rod, frL and frp respectively denote the friction forces at the small
and large piston. Friction at the smaller piston seal has a significant impact on the dynamic response of the
actuator since actuation forces are low and velocities are high at this end. Actuation forces at the larger piston
are high, hence a small frictional force would not have much effect on the dynamic response of the transducer.
For this reason, it is essential to accurately quantify the friction dynamics at the smaller piston. The LuGre
model for lubricated contacts15 is used to model the frictional force based on the bristle interpretation of friction.
The LuGre model equations are given by

dz

dt
= v − σ0

|v|
g(v)

z,

g(v) = Fc + (Fs − Fc)e−(v/vs)2 , (27)

Fr = σ0z + σ1(v)
dz

dt
+ σ2v.

Here, z is the bristle deflection state, Fs and Fc are the static and Coloumb frictional forces, σ0, σ1, σ2 are the
bristle stiffness, bristle damping and viscous damping coefficients respectively, and vs is the Stribeck velocity.
The LuGre model parameters are provided in Table 2.

Table 2. Parameter values for the friction model.

Parameter Driven Piston(small) Driver Piston (large)
σ0 (N/m) 0.34 × 105 1 × 107

σ1 (Ns/m) 35 0
σ2 (Ns/m) 4.3 5 × 104

vs (m/s) 0.0009 0.0009
Fc (N) 5.2 (for v > 0) 100

11.0 (for v < 0)
Fs (N) 5.8 (for v > 0) 120

11.1 (for v < 0)

7. MODEL RESULTS

7.1 Mechanically unloaded tests

The actuator was run at discrete frequencies from 10 Hz to 500 Hz with a mechanical prestress of ≈ 1 ksi (6.9 MPa)
acting on the Terfenol-D rod. No external loading spring is used. The Terfenol-D rod is magnetically biased by
an Alnico magnet with a field of ≈ 27 KA/m. The actuator is driven with a 4.5 A sinusoidal current with no
d.c bias. The strain on the surface of the Terfenol-D rod is measured with a strain gage and the displacement
of the pushrod is measured with a laser displacement sensor. Figure 6 shows the experimental and modeled
time domain responses of the pushrod displacement at varied actuation frequencies. The model describes the
initial hysteresis and the nonlinear shape of the response at low actuation frequencies. The hysteresis comes
largely from the frictional forces in the seals and partly from the material behavior causing a delay in the device
response. As the actuation frequency increases, inertia and damping cause additional time lag and the associated
phase lag causes a CCW rotation of the loop. A Fourier analysis on the experimental and modeled responses is
carried out and the spectral content of the waveforms are compared at different frequencies. Figure 7 shows the
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Figure 6. Output pushrod displacement-field loops at different actuation frequencies.
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Figure 7. Output pushrod displacement orders.

Fourier components of the response. The model describes the trends in the higher order components. Figure 8
shows the magnitude and phase of the first order component of the pushrod displacement. Strong correlation is
obtained in the pushrod displacement response in both magnitude and phase.
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Figure 8. Output pushrod displacement magnitude and phase (first order).
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7.2 Mechanically loaded tests

To obtain a measure of the actuator’s performance under load, the setup shown in Figure 9 is employed. The
pushrod compresses a wave spring and the force generated by the spring compression is measured with a load
cell. The springs work only under compression while the Terfenol-D actuator produces bidirectional output. To
ensure that the springs always remain in compression, they need to be pre-compressed using a height adjustor.
Each spring is compressed until it creates a force of 8 N. This additional load combined with the weight of the
other components attached to the pushrod is amplified through the fluid and creates an additional prestress of
≈ 1 ksi on the Terfenol-D rod. Thus the value of the parameter σbias was changed to 2 ksi (13.8 MPa) for these
calculations. All of the other parameters are kept the same for both the unloaded and loaded conditions. In
addition the external loading springs were found to have some non-linearity in their response and a mean stiffness
was computed based on the range of forces generated by the Terfenol-D actuator. Figure 10 shows the force
produced by the actuator when loaded with springs of different stiffnesses and driven at 5 Hz. The force-field

Figure 9. Setup used to test actuator performance under spring loads.

loops are not as accurate as the displacement-field loops obtained for the unloaded condition. The model over-
predicts the hysteresis in the loops. This could be because loading the pushrod with external components might
have altered the friction forces in ways not incorporated in the model. Also, the force-deflection characteristics
of the external springs have some nonlinearity whereas they have been modeled as linear springs with a mean
stiffness value. Since the mean stiffness values were obtained from the force-deflection curves of the springs,
the overall force output is close to the experimentally obtained values but the shape of the two responses are
slightly different. Similar to the unloaded case, a Fourier analysis of the experimental and modeled time domain
force responses is performed and their spectral content is compared (see Figure 11). Despite the simplicity of
the model, it accurately describes the first order component of the force response. However, the second order
response is underestimated for all the springs.

Finally, the variation in energy output of the actuator with external spring stiffness is studied. An estimate
of the energy output is obtained using the formula

Eo =
1
2

(
(1
2Fpkpk)2

kspring

)
. (28)

Figure 12 shows the energy output of the actuator as a function of the effective stiffness ratio defined as

keff =
kspring

ka
G2, (29)

where G is the kinematic gain given by the ratio of areas of the larger drive piston to the smaller driven piston,
kspring is the external spring stiffness, and ka is the stiffness of the Terfenol-D rod. The energy output is
maximum around the stiffness match region for both the experimental and modeled responses.
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Figure 10. Force-field loops for different stiffnesses.
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Figure 12. Variation of actuator energy output with load spring stiffness.
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8. CONCLUDING REMARKS
A nonlinear model describing magnetic and vibratory dynamics of a hydraulically-amplified magnetostrictive
actuator is presented. Due to the significant effect on performance of friction in the rubber seals, the LuGre
model is implemented in combination with the vibratory equations. The actuator was tested in mechanically
unloaded and loaded conditions; the external loading is applied with springs of different stiffness. In the unloaded
condition, the model predicts the displacement-field loops accurately up to 500 Hz. The nonlinearity in the
response is also described with sufficient accuracy in terms of the higher order components. In the loaded
condition, the model accurately describes the first-order force response but underestimates the second-order
force components. An energy analysis shows that the maximum energy delivered by the actuator to the load is
around the stiffness match region, as expected theoretically.
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