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In this paper, we model fully coupled thermo-electro-magneto-mechanical (TEMM)
behavior in the finite-deformation regime by (i) developing for the first time a comprehen-
sive catalogue of free energies, state variables, and state equations, and (ii) combining this
catalogue with the first principles of nonlinear continuum electrodynamics. We develop
our catalogue in a thermodynamically consistent manner, and circumvent the ambiguities
and challenges inherent in nonlinear continuum electrodynamics, by connecting with clas-
sical equilibrium thermodynamics. We use its formalism as a blueprint for characterizing a
fundamental energetic process, that is, one where internal energy is the characterizing
potential, the independent variables are extensive, and the dependent variables are
intensive. A key feature of identifying this fundamental energetic process is the resulting
ability to transparently and rigorously introduce new free energies – many appearing in
the finite-deformation TEMM literature for the first time – that employ any set of intensive
or extensive quantities as independent variables. We also develop novel mathematical
transformations that accommodate alternative electromagnetic work conjugates as
independent variables.

Each thermodynamic potential in our comprehensive catalogue characterizes a particu-
lar thermo-electro-magneto-mechanical process. Each process, in turn, correlates with a
particular experiment, the independent variables being controlled and the dependent vari-
ables being the measured responses. Our framework will thus enable the development of
constitutive models for multifunctional materials under different experimental conditions.
Additionally, the research presented herein can be used to convert targeted performance
properties that are inherently nonlinear, three dimensional, and anisotropic into a ‘‘recipe’’
for multifunctional material design.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Multifunctional materials are a novel class of engineered materials whose distinguishing feature is their ability to provide
structural integrity (e.g., strength, stiffness, rigidity) while simultaneously accomplishing one or more performance-based
functions (e.g., sensing, actuation) (Christodoulou & Venables, 2003). They are often manufactured by layering a constituent
set of materials into a composite, or by embedding particles or fibers in a matrix (Nemat-Nasser, Nemat-Nasser, Plaisted,
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Starr, & Amirkhizi, 2006; Salonitis, Pandremenos, Paralikas, & Chryssolouris, 2010). Multifunctional materials are generally
tailored to optimally accomplish a particular set of tasks. For instance, conformal load-bearing antennas embedded in the
structure of an aircraft are fabricated from materials that are capable of supporting aerodynamic loads in addition to radi-
ating and receiving electromagnetic signals (Lee & Inman, 2009; You & Hwang, 2005). These and many other novel capabil-
ities afforded by multifunctional materials (e.g., self healing, power generation, power storage, and vibration mitigation)
promise to (i) improve existing actuating and sensing technologies by increasing efficiency and reducing weight, cost, energy
consumption, and size, and (ii) expand the performance space of the next generation of intelligent systems, structures, and
devices (Nemat-Nasser et al., 2006).

In order to optimally design new multifunctional materials, there is a need to develop rigorous mathematical models that
can corroborate experimental data, be used to generate numerical simulations, and be employed in computational design
software. A common practice in the mathematical modeling of material response is to a priori specialize the constitutive
equations to a particular regime of behavior. For example, in the continuum modeling of smart materials, material response
is frequently confined to low-signal, small-deformation ranges of operation; time dependence of the electromagnetic fields
and material nonlinearity are often neglected; or only a subset of the full thermo-electro-magneto-mechanical (TEMM) cou-
pling is accounted for.

These simplifying assumptions are used to generate mathematically tractable models that are well-suited for particular
materials under particular operating conditions. However, this specialized approach is too restrictive to facilitate the design
and characterization of the next generation of multifunctional materials and devices. As an example, for multifunctional de-
vices such as load-bearing antenna systems that operate at high frequencies (up to MHz-GHz) (You & Hwang, 2005), the cus-
tomary quasi-static electromagnetic field approximation breaks down. To model their behavior accurately, more advanced
dynamic simulations of fully coupled TEMM behavior are required. Thus, we contend that enabling multifunctional materials
to reach their full performance potential demands a modeling architecture that (a) is based as much as possible on first prin-
ciples; (b) has the breadth to accommodate 3-D fully coupled thermo-electro-magneto-mechanical behavior, finite deforma-
tions, anisotropy, nonlinear constitutive response, and dynamic electromagnetic fields; and (c) has the flexibility to
accommodate multifunctionality at various time scales, length scales, and compositional levels.

The foundation for this type of mathematical framework was presented, for instance, in Truesdell and Toupin (1960), Tou-
pin (1963), Landau, Lifshitz, and Pitaevskii (1984), Penfield and Haus (1967), Tiersten (1971), Tiersten (1990), Hutter, van de
Ven, and Ursescu (2006), Hutter (1979), Hutter (1977), Hutter and Pao (1974), Pao (1978), Pao and Hutter (1975), Maugin
and Eringen (1977), Maugin (1988), Eringen and Maugin (1990), Green and Naghdi (1984) and Green and Naghdi (1995),
to list a small but influential portion of the early work. These seminal models unify continuum mechanics with classical elec-
trodynamics, and consist of fundamental laws or first principles (i.e., Maxwell’s equations, conservation of charge, conser-
vation of mass, balance of linear momentum, balance of angular momentum, and the first law of thermodynamics),
coupling terms (i.e., electromagnetic interaction terms that couple the thermomechanical balance laws to Maxwell’s equa-
tions), and boundary conditions. They describe the most general form of fully coupled thermo-electro-magneto-mechanical
behavior in a deformable, polarizable, magnetizable continuum. Theoretial aspects of these general models have been revis-
ited in recent years in Kovetz (2000), Ericksen (2007), Ericksen (2008), Steigmann (2009) and Maugin (2009), while practical
applications to nonlinear electro-elastic solids, nonlinear magneto-elastic solids, and electro-rheological fluids have been
pursued in Dorfmann and Ogden (2003, 2004a, 2004b, 2005a, 2005b, 2006), Steigmann (2004), Rajagopal and Ruzicka
(2001), McMeeking and Landis (2005), McMeeking, Landis, and Jimenez (2007), Vu, Steinmann, and Possart (2007), Kankan-
ala and Triantafyllidis (2004), Voltairas, Fotiadis, and Massalas (2003), Suo, Zhao, and Greene (2008), Zhao and Suo (2008),
Zhu, Stoyanov, Kofod, and Suo (2010), Qin, Librescu, Hasanyan, and Ambur (2003), Qin, Hasanyan, Librescu, and Ambur
(2003), Richards and Odegard (2010), Oates, Wang, and Sierakowski (2012).

However, certain aspects of constitutive modeling and material characterization, enabled through the principles of ther-
modynamics, remain unexplored in the finite-deformation TEMM literature. In particular:

(i) The constitutive models do not at the outset explicitly identify the intensive–extensive work conjugates in the second
law, as is customary in classical thermodynamics (Callen, 1985). As the electromagnetic work conjugates differ from
model to model in finite-deformation TEMM (more on this in Section 5), this leads to ambiguity in specifying the fun-
damental energetic relationship (i.e., the functional form of the internal energy). The fundamental energetic relation-
ship is the starting point for proceeding transparently and rigorously with the formalism of Legendre transformations,
which is used to define new free energies (Callen, 1985). Often, the fundamental energetic relationship is not explicitly
specified, making the connection between the characterizing free energy in the constitutive model and the internal
energy of the system opaque.

(ii) The constitutive models are not comprehensive in that they do not consider all possible combinations of independent
variables and corresponding thermodynamic potentials. Notably absent from many finite-deformation TEMM theories
are free energies that employ stress as an independent variable. From an experimental perspective, intensive quanti-
ties like stress and temperature are often more convenient to control than extensive quantities like deformation and
entropy. Hence, it is important to identify all possible free energies to provide the experimentalist with optimal flex-
ibility when characterizing novel multifunctional materials.
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In this paper, our primary contributions are addressing these shortcomings and taking the necessary first steps toward
creating a unified, comprehensive, and thermodynamically consistent model for designing and characterizing novel multi-
functional materials with coupled thermo-electro-magneto-mechanical response. Importantly, our approach reconciles
large-deformation Eulerian continuum mechanics and electrodynamics with the principles of classical thermodynamics.
We remedy shortcoming (i) above by explicitly identifying the extensive and intensive quantities in our particular statement
of the second law. As is customary in classical thermodynamics, the internal energy is defined as a function of the extensive
quantities, and the thermodynamic state equations, derived from the second law of thermodynamics (Coleman & Noll, 1963),
define the corresponding intensive quantities (Callen, 1985).

With this fundamental energetic relationship as our starting point, we remedy shortcoming (ii) by deriving free energies
that utilize any or all of the intensive quantities as independent variables using Legendre transforms of the internal energy,
defined in a manner consistent with classical thermodynamics (Callen, 1985). This formalism enables us to develop an
exhaustive list of free energies, most of which are presented in the literature for the first time, with any combination of
intensive or extensive independent variables. Another novel feature of our framework is the introduction of a secondary var-
iable as an independent variable in a free energy. Secondary variables are physical quantities that are not a part of the afore-
mentioned intensive–extensive conjugate pairs, but are accessible algebraically from them. For instance, electric
displacement is a linear combination of electric field (intensive) and polarization (extensive). To rigorously enable the use
of secondary quantities as independent variables, we develop novel Legendre-type transformations that define a new set
of free energies in a thermodynamically consistent manner. The resulting constitutive framework is comprehensive in that
it is capable of characterizing all TEMM processes.

This paper is structured as follows: In Section 2, we explicitly state the first principles (i.e., Maxwell’s equations, con-
servation of mass, balance of linear momentum, balance of angular momentum, and the first law of thermodynamics) for a
deformable, polarizable, magnetizable TEMM material. The thermomechanical balance laws presented in Section 2 include
electromagnetic interaction terms (namely, the electromagnetic body force, body couple, and energy supply) that couple
the thermomechanical balance laws to Maxwell’s equations. These coupling terms are described and quantified in Sec-
tion 3. In Section 4, using the formalism described earlier, we develop a comprehensive catalogue of free energies, state
variables, and state equations that characterize fully coupled TEMM processes. Contact can be established with similar cat-
alogues presented by other authors, e.g., Pérez-Fernández, Bravo-Castillero, Rodríguez-Ramos, and Sabina (2009) and
Smith (2005, pp. 63–64) for the special case of thermo-electro-mechanical processes, and Soh and Liu (2005) for the spe-
cial case of electro-magneto-mechanical processes, all within the regime of small deformations and linear material
response.

In Section 5, energy potentials that utilize secondary electromagnetic quantities as independent variables are introduced
using novel Legendre-type transformations of the internal energy, and contact is established with previous work by Green
and Naghdi (1984). In Section 6, we extend the formalism of Sections 4 and 5 to TEMM processes employing entropy rather
than energy as the characterizing thermodynamic potential. We deduce a set of Legendre-transformed entropic potentials,
from which those in a previous paper by Rooney and Bechtel (2004) can be recovered as special cases. In Section 7, we high-
light some potential applications of our TEMM framework.
2. The first principles for TEMM materials

In this section, the first principles (or fundamental laws) for a polarizable, magnetizable, deformable thermo-electro-
magneto-mechanical (TEMM) material are presented. We first give the integral expressions, rather than starting directly
with a set of pointwise equations, because the pointwise equations must be derivable from an integral set, and the assump-
tions for continuum models are imposed on the integral form (Green & Naghdi, 1991, 1995). An important feature of this
progression is that it enables scientists and engineers to assess the physical relevance of a particular pointwise equation
by determining if a corresponding integral statement exists.

In this paper, we adopt the following Eulerian integral statements2 of the first principles (Hutter et al., 2006; Pao & Hutter,
1975):

Gauss’s law for magnetism
2 We
and bol
which d
Z
@V

b� � nda ¼ 0; ð1aÞ
Faraday’s law
d
dt

Z
S

b� � nda ¼ �
Z
@S

e� � ldl; ð1bÞ
employ as much as possible the convention that lowercase Greek letters denote scalars, bold lowercase Latin letters denote first-order tensors (vectors),
d uppercase Latin letters denote second-order tensors (tensors). Accordingly, our notation for the various electromagnetic vector fields is lowercase,
eparts from the uppercase notation appearing in much of the literature.
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Gauss’s law for electricity
3 The
are rela
Z
@V

d� � nda ¼
Z
V

r�dv; ð1cÞ
Ampère–Maxwell law
d
dt

Z
S

d� � ndaþ
Z
S

j� � nda ¼
Z
@S

h� � ldl; ð1dÞ
Conservation of mass
d
dt

Z
V

qdv ¼ 0; ð1eÞ
Balance of linear momentum
d
dt

Z
V

qvdv ¼
Z
V

qðfm þ femÞdv þ
Z
@V

tda; ð1fÞ
Balance of angular momentum
d
dt

Z
V

x� qvdv ¼
Z
V

x� qðfm þ femÞdv þ
Z
V

qcemdv þ
Z
@V

x� tda; ð1gÞ
First law of thermodynamics
d
dt

Z
V

qðeþ 1
2

v � vÞdv ¼
Z
V

qðfm þ femÞ � vdv þ
Z
@V

t � vdaþ
Z
V

qðrt þ remÞdv �
Z
@V

hda: ð1hÞ
These integral statements are global, i.e., valid on the entire body and all subsets, namely any open material volume V

bounded by a closed material surface @V, or any open material surface S bounded by a closed material curve @S, all in
the present configuration. In (1a)–(1h), l, is the unit tangent along @S; n is an outward unit normal; dv; da, and dl are volume,
area, and line elements in the present configuration; () � () denotes an inner product; () � () denotes a vector cross product;
and d=dt denotes the derivative of a function of a single variable t.

The thermo-electro-magneto-mechanical fields appearing in (1a)–(1h) are Eulerian, i.e., they are functions of the present
position x of a continuum particle and time t. These fields include the present density q, velocity v, mechanically and elec-
tromagnetically induced specific body forces fm and fem, traction t, electromagnetically induced specific body couple cem, spe-
cific internal energy e, thermally and electromagnetically induced specific energy supply rates rt and rem, and heat flux h.
Additionally, e�;d�;h�;b�;r�, and j� are the effective electric field intensity, effective electric displacement, effective magnetic
field intensity, effective magnetic induction, effective free charge density, and effective free current density. These effective
fields are the electromagnetic fields acting on the deforming continuum as seen in its present configuration, measured with
respect to a co-moving frame (Eringen & Maugin, 1990; Pao, 1978). The relations between the effective fields and the standard
fields, the latter being measured with respect to a fixed frame, vary from model to model. As an example, the transformation
equations of Minkowski3 are
e� ¼ eþ v � b; d� ¼ d; h� ¼ h� v � d; b� ¼ b; r� ¼ r; j� ¼ j� rv; ð2Þ
where the effective electromagnetic fields are denoted by superscript stars, and the standard electromagnetic fields are un-
starred. Other sets of transformations are given by the Chu, Lorentz, and Statistical formulations, each based on a different
set of principles and postulates (Pao, 1978).

The transformations (2) describing the effective electromagnetic fields that appear in Maxwell’s equations must be con-
sistent with invariance requirements. We note that the Maxwell Eqs. (1a)–(1d) are invariant under an extended Lorentz
transformation, whereas the thermomechanical balance laws (1e)–(1h) are invariant under a Galilean transformation, result-
ing in ambiguity when the two sets of equations are coupled. For the purpose of this work, we assume non-relativistic ef-
fects, i.e., jvj � c. The Lorentz invariance of the Maxwell equations can then be approximated as Galilean invariance for
certain special classes of non-relativistic motions (Rajagopal & Ruzicka, 2001).

The continuous, bounded nature of the integrands in (1a)–(1h) enables the transport, divergence, and Stokes’s theorems,
and the requirement that (1a)–(1h) be global, i.e., true for the entire body and all subsets, enables the localization theorem.
Assuming that the traction t and heat flux h are dependent on surface geometry only through the outward unit normal n, so
that t ¼ Tn and h ¼ q � n, application of the transport, divergence, Stokes’s, and localization theorems to the Eulerian integral
Eqs. (1a)–(1h) leads to the Eulerian pointwise equations
div b� ¼ 0; ð3aÞ
Minkowski formulation is motivated by Einstein’s special theory of relativity (Hutter et al., 2006; Pao, 1978). In this approximation, the effective fields
ted to the standard fields through semi-relativistic inverse Lorentz transformations.
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curl e� ¼ � b�ð Þ0 � curl ðb� � vÞ; ð3bÞ

div d� ¼ r�; ð3cÞ

curl h� ¼ d�ð Þ0 þ curl ðd� � vÞ þ r� v þ j�; ð3dÞ

_qþ qdiv v ¼ 0; ð3eÞ

q _v ¼ qðfm þ femÞ þ div T; ð3fÞ

q Cem þ T� TT ¼ 0; ð3gÞ

q _e ¼ T � L þ qðrt þ remÞ � div q; ð3hÞ
where T is the Cauchy stress, q is the Eulerian heat flux vector, L ¼ grad v ¼ @v=@x, is the Eulerian velocity gradient, Cem is a
skew tensor whose corresponding axial vector is cem, and
u0 ¼ @u
@t
; _u ¼ u0 þ v � gradð Þu
denote the Eulerian and material time derivatives of an arbitrary vector u. In (3a)–(3h), div ðÞ denotes the Eulerian diver-
gence, curl ðÞ denotes the Eulerian curl, and TT denotes the transpose of T. We emphasize that the pointwise Eqs. (3a)–
(3h) are valid statements of the first principles because they are progenies of the global Eqs. (1a)–(1h).

The pointwise first principles (3a)–(3h) are supplemented by two additional sets of equations. One set, discussed in Sec-
tion 3, quantifies the electromagnetically induced body force fem, body couple cem, and energy supply rate rem. A second set,
discussed in Sections 4–6, consists of state equations that characterize a general TEMM process by relating the independent
and dependent variables in the first-principle equations.

3. Modeling of the electromagnetically induced coupling terms

Electromagnetic forces in deformable continua can be modeled as inertial terms, incorporated into the constitutive re-
sponse, or introduced through an electromagnetically induced body force, body couple, and energy supply (Eringen & Mau-
gin, 1990; Hutter et al., 2006). In this paper, the lattermost approach is adopted, i.e., the thermomechanical Eqs. (3e)–(3h) are
coupled to the Maxwell Eqs. (3a)–(3d) through the electromagnetic body force fem, body couple cem (or, equivalently, Cem),
and energy supply rate rem.

In principle, the continuum or macroscopic-scale coupling terms fem
; cem, and rem can be derived from the atomic or micro-

scopic-scale electromagnetic problem by solving for the forces created by moving charges at the atomic level (Eringen &
Maugin, 1990): Conceptually, knowledge of the position, velocity, and charge of each discrete particle enables the electro-
magnetic fields acting on each such particle to be calculated. With these atomic-scale electromagnetic fields known, the con-
tinuum electromagnetic fields e�;d�;h�, and b� are deduced by statistically averaging the values of their discrete microscopic
counterparts over an infinitesimal volume element (De Groot & Suttorp, 1972). Similarly, the continuum body force fem, body
couple cem, and energy supply rate rem are computed by statistically averaging the Lorentz forces (and accompanying couples
and energies) acting on the charged particles. Thus, if the solution of the microscopic problem is known, the continuum cou-
pling terms fem

; cem, and rem can be deduced using statistical averaging techniques.
In practice, however, the atomic details (e.g., position, velocity, and charge of each discrete particle) required to gener-

ate the solution of the microscopic problem are unavailable. Hence, the continuum-scale body force fem, body couple cem,
and energy supply rate rem modeling the effect of the atomic-scale forces, couples, and energies induced by moving
charges must be postulated. These postulates are generally motivated by either atomic physics or empiricism. One such
model for a polarizable, magnetizable, deformable continuum is coined the Maxwell–Minkowski formulation (Hutter
et al., 2006):
qfem ¼ r�e� þ j� � b� þ ðgrad e�ÞTp� þ loðgrad h�ÞTm� þ d�� � b� þ d� � b��; ð4aÞ

qCem ¼ e� � p� � p� � e�ð Þ þ lo h� �m� �m� � h�ð Þ; ð4bÞ

qrem ¼ j� � e� þ qe� �
_p�

q

� �
þ qloh� �

_m�

q

� �
; ð4cÞ
where ðÞ � ðÞ denotes the dyadic product of two vectors,
u�¼ _uþ u ðdiv vÞ � ðgrad vÞu ¼ u0 þ curl ðu� vÞ þ v ðdiv uÞ ð5Þ
is a convected rate of an arbitrary vector u, and
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p� ¼ d� � �oe�; m� ¼ 1
lo

b� � h� ð6Þ
are the effective electric polarization and effective magnetization, with �o and lo the permittivity and permeability in vacuo.
The Maxwell–Minkowski model (4a)–(4c) has as special cases interaction theories describing forces exerted by electro-

static fields in polarizable solids (Maxwell, 1873) and magnetostatic fields in magnetizable solids (Brown, 1966). Use of
(4a)–(4c) in balance of linear momentum (3f), balance of angular momentum (3g), and the first law of thermodynamics
(3h) yields4
q _v ¼ qfm þ r�e� þ j� � b� þ ðgrad e�ÞTp� þ loðgrad h�ÞTm� þ d�� � b� þ d� � b�� þ div T; ð7aÞ

T� TT ¼ p� � e� � e� � p�ð Þ þ lo m� � h� � h� �m�ð Þ; ð7bÞ

_e ¼ 1
qR

P � _Fþ e� �
_p�

q

� �
þ loh� �

_m�

q

� �
þ rt þ 1

q
j� � e� � 1

q
div q; ð7cÞ
where
P ¼ JTF�T ð8Þ
is the first Piola–Kirchhoff stress, J ¼ qR=q is the determinant of the deformation gradient F ¼ Grad x ¼ @x=@X;qR is the uni-
form reference density, and X is the reference position of a continuum particle.

4. State equations rendered by the second law of thermodynamics: energy formulations

In this section, we demonstrate how restrictions imposed by the second law of thermodynamics can be used to develop a
catalogue of free energies and thermodynamic state equations for characterizing fully coupled thermo-electro-magneto-
mechanical (TEMM) materials.

4.1. The Clausius–Duhem inequality

In this paper, as our particular statement of the second law, we adopt the Clausius–Duhem inequality (Coleman & Noll,
1963; Truesdell & Noll, 1992; Truesdell & Toupin, 1960)
d
dt

Z
V

qgdv P
Z
V

q
rt

h
dv �

Z
@V

h
h

da; ð9Þ
whose pointwise version is
q _g� q
rt

h
þ div q

h

� �
P 0; ð10Þ
where h is the absolute temperature, g is the specific entropy, and we have used h ¼ q � n. We note that alternative state-
ments of the second law have been presented and investigated by numerous authors, e.g., Gurtin and Williams (1966),
Liu and Müller (1972), Hutter (1975), Hutter (1977) and Green and Naghdi (1977). We also mention an approach to the ther-
modynamic treatment of continua recently set forth by Rajagopal & Srinivasa (see, for instance, Rajagopal & Srinivasa (1998)
and Rajagopal & Srinivasa (2004)) that appeals to the maximization of the rate of entropy production.

Inequality (10) is then algebraically combined with the first law of thermodynamics (7c) to produce the reduced Clau-
sius–Duhem inequality
� _eþ 1
qR

P � _Fþ h _gþ e� �
_p�

q

� �
þ loh� �

_m�

q

� �
þ 1

q
j� � e� � 1

qh
q � gradh P 0: ð11Þ
Analogous to classical thermodynamics (Callen, 1985), this fundamental statement of the second law consists of contribu-
tions from conjugate pairs of thermal, electrical, magnetic, and mechanical quantities. Each of these conjugate pairs (or work
conjugates) is the product of an extensive quantity in rate form (F;g;p�=q, and m�=q) and an intensive quantity in non-rate
form (P; h; e�, and h�). Note that when we use the adjective ‘extensive’, it is tacit that we mean an extensive quantity per unit
all that electromagnetic effects in the thermomechanical balance laws can be modeled as an electromagnetically induced body force, body couple, and
supply, or, alternatively, incorporated into the constitutive response. The latter is accomplished by defining a total stress tensor s ¼ Tþ Tem that consists
ibutions from the Cauchy stress tensor T and the Maxwell stress tensor Tem . Tem is defined so that its skew symmetric part is qCem and its divergence is
or the Maxwell–Minkowski formulation (4a)–(4c), Tem ¼ e� � d� þ h� � b� � 1

2 �oe� � e� þ loh� � h�
� �

I, (Hutter et al., 2006).) By formulating the first
les and the constitutive equations in terms of the total stress tensor s instead of the Cauchy stress tensor T, explicit coupling between the

agnetic fields and the thermomechanical fields is eliminated from Eqs. (7a)–(7c), and is instead accounted for in the constitutive equations for s.
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mass. The utility of the second law, and our identification of the extensive and intensive quantities, will become apparent
shortly.

4.2. The fundamental or internal energy formulation

The pointwise field Eqs. (3a)–(3e) and (7a)–(7c) constitute the first principles of our model, true for all TEMM materials.
For the purposes of developing the thermodynamic state equations (Callen, 1985; Moran, Shapiro, Boettner, & Bailey, 2010)
that supplement these first principles and characterize particular TEMM materials, we conceptually divide the fields appear-
ing in (3a)–(3e) and (7a)–(7c) into three groups
5 In t
depende

6 Alth
our fram
fx;g;p�;m�g; fP; h; e�;h�; e;q; j�g; fq; fm
; rt ;r�g; ð12Þ
denoted the independent variables, dependent variables, and balancing terms, respectively.5 (Note that the set of independent
variables contains slots occupied by one mechanical, one thermal, one electrical, and one magnetic quantity, respectively, from
left to right.) Hence, the fields P; h; e�;h�; e;q, and j� are determined from constitutive equations that, in general, depend on the
history of the motion x, specific entropy g, effective electric polarization p�, and effective magnetization m�, and possibly their
rates or gradients. A group of quantities x;g;p�;m�;P; h; e�;h�; e;q; j�;q; fm

; rt , and r� that satisfy the governing Eqs. (3a)–(3e) and
(7a)–(7c) for all space and time in the domain of interest describes a thermo-electro-magneto-mechanical (TEMM) process.

In this paper, we assume that the material response is path independent, reversible, and rate insensitive. This implies that
the deformation, although it may be large, is elastic and fully recoverable, and the material only undergoes non-dissipative
TEMM processes. It follows, then, that these non-dissipative TEMM processes can be approximated as quasi-static thermo-
dynamic processes, which can be completely described through the principles of classical equilibrium thermodynamics6

(Callen, 1985).
Analogous to classical equilibrium thermodynamics, our fundamental energy potential is the specific internal energy e,

which employs extensive quantities as its independent variables. Hence, for the fundamental formulation, the natural inde-
pendent variables are the extensive quantities F;g;p�=q, and m�=q appearing as rates in (11), and the natural dependent vari-
ables are the conjugate intensive quantities P; h; e�, and h�. Thus, for thermodynamic consistency, and to respect the
reversible elastic nature of the process, we adjust the division (12) so that the dependence of the response on the present
position x, polarization p�, and magnetization m� is through the deformation gradient F ¼ Grad x;p�=q, and m�=q, respec-
tively. Additionally, we demand that the response depends on these independent variables only through their values at
the present time t, not their histories, rates, or gradients, i.e.,
P ¼ �P F;g;
p�

q
;
m�

q

� �
; h ¼ �h F;g;

p�

q
;
m�

q

� �
; e� ¼ �e� F;g;

p�

q
;
m�

q

� �
; h� ¼ �h� F;g;

p�

q
;
m�

q

� �
; e ¼ �e F;g;

p�

q
;
m�

q

� �
;

ð13Þ
where the superscript breve is used to distinguish a function from its value.
In what follows, we demonstrate how restrictions imposed by the second law of thermodynamics (11) yield a set of state

equations that provide the dependent variables P; h; e�, and h� (the intensive quantities) as partial derivatives of the specific
internal energy e (the fundamental thermodynamic potential) with respect to the independent variables F;g;p�=q, and m�=q
(the extensive quantities), respectively. (In order to obtain the constitutive equations that characterize a particular TEMM
material, the state equations are amended to satisfy invariance, angular momentum, and material symmetry requirements,
and the material constants (e.g., permeability, permittivity, Young’s modulus, coefficient of thermal expansion) are deter-
mined experimentally).

Use of the chain rule on e ¼ �e F;g;p�=q;m�=qð Þ gives
_e ¼ @�e
@F
� _Fþ @�e

@g
_gþ @�e

@ p�
q

� � � _p�

q

� �
þ @�e

@ m�
q

� � � _m�

q

� �
ð14Þ
and substitution of this result into the second law (11) leads to
1
qR

P� @
�e
@F

� �
� _Fþ h� @

�e
@g

� �
_gþ e� � @�e

@ p�
q

� �
0
@

1
A � _p�

q

� �
þ loh� � @�e

@ m�
q

� �
0
@

1
A � _m�

q

� �
þ 1

q
j� � e� � 1

qh
q � gradh P 0: ð15Þ
As is customary, we demand that the second law holds for all processes (Coleman & Noll, 1963). Since the coefficients of the
rates ( _F; _g, etc.) in inequality (15) are independent of the rates themselves, and the rates may be varied independently and
are arbitrary, it follows that the coefficients vanish, i.e.,
his division, b�;d� , and T are relegated to secondary dependent variables, i.e., variables that can be calculated from the independent and primary
nt variables in (12) using the algebraic relationships (6). Also note that v; F, and L can be calculated from x using vector and tensor calculus.
ough we derive our constitutive framework assuming that the system is in thermodynamic equilibrium (i.e., it only undergoes reversible processes),
ework can be used to model irreversible systems that operate in a regime close to equilibrium (Callen, 1985).
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P ¼ qR
@�e
@F

; h ¼ @�e
@g

; e� ¼ @�e

@ p�
q

� � ; h� ¼ 1
lo

@�e

@ m�
q

� � : ð16Þ
What remains of inequality (15), i.e., j� � e� � 1
h q � gradh P 0, is called the residual dissipation inequality.7 We collectively

coin the set of independent variables fF;g;p�=q;m�=qg, the thermodynamic energy potential e ¼ �e F;g;p�=q;m�=qð Þ, and the
state Eqs. (16) the fundamental formulation or internal energy formulation.

4.3. The modified internal energy formulation

From an experimental point of view, it is more practical to control the electric polarization p� and magnetization m� than
the ‘‘mixed’’ quantities p�=q and m�=q. Hence, we modify the internal energy formulation to accommodate the use of p� and
m� as the electromagnetic independent variables.

We proceed by using the chain rule
_p�

q

� �
¼ 1

q
_p� þ 1

q
F�T � _F
� �

p�;
_m�

q

� �
¼ 1

q
_m� þ 1

q
F�T � _F
� �

m� ð17Þ
to rewrite the fundamental form (11) of the Clausius–Duhem inequality:
� _eþ 1
qR

Pþ 1
q

e� � p� þ loh� �m�� �
F�T

� 	
� _Fþ h _gþ 1

q
e� � _p� þ lo

q
h� � _m� þ 1

q
j� � e� � 1

qh
q � gradh P 0; ð18Þ
where we have used
_1
q

� �
¼ 1

q
div v; div v ¼ tr L ¼ trð _FF�1Þ ¼ F�T � _F: ð19Þ
In the modified form (18) of the second law, polarization p� and magnetization m� appear as rates (i.e., natural independent
variables). Accordingly, the thermodynamic potential e is a function of F;g;p�, and m�, i.e., e ¼ �e F;g;p�;m�ð Þ; a superscript
bar is used instead of a superscript breve to signify a different internal energy function with the same value. Use of the chain
rule gives
_e ¼ @�e
@F
� _Fþ @�e

@g
_gþ @�e

@p�
� _p� þ @�e

@m� � _m� ð20Þ
and substitution of this result into (18) leads to
1
qR

Pþ 1
q

e� � p� þ loh� �m�� �
F�T � @

�e
@F

� �
� _Fþ h� @�e

@g

� �
_gþ 1

q
e� � @�e

@p�

� �
� _p� þ lo

q
h� � @�e

@m�

� �
� _m� þ 1

q
j� � e�

� 1
qh

q � gradh P 0: ð21Þ
Since the coefficients of _F; _g; _p�, and _m� in inequality (21) are independent of the rates, and the rates may be varied inde-
pendently and are arbitrary, it follows that the coefficients vanish, i.e.,
P ¼ qR
@�e
@F
� J e� � p� þ loh� �m�� �

F�T; h ¼ @�e
@g

; e� ¼ q
@�e
@p�

; h� ¼ q
lo

@�e
@m� : ð22Þ
We collectively coin the set of independent variables fF;g;p�; m�g, the thermodynamic energy potential
e ¼ �e F;g;p�;m�ð Þ, and the state Eqs. (22) the modified internal energy formulation.

We emphasize that the second term on the right-hand side of Eq. (22)1 is generally absent in the existing literature for
coupled material behavior, e.g., Smith (2005), wherein material response is customarily modeled in the small-deformation
regime. It can be shown that this term vanishes from our more general large-deformation constitutive framework (and other
finite-deformation constitutive models, e.g., Hutter et al. (2006)) when the standard assumptions of small-deformation the-
ory are invoked.

4.4. Other energetic formulations

In principle, knowledge of the internal energy e ¼ �e F;g;p�=q;m�=qð Þ or e ¼ �e F;g;p�;m�ð Þ is necessary and sufficient to
characterize any general TEMM process. (Said differently, specification of the internal energy alone determines P; h; e�,
and h�; refer to the state Eqs. (16) and (22).) However, process characterization is most straightforwardly accomplished
residual dissipation inequality quantifies irreversibilities in a thermodynamic process, in this case Joule heating and heat conduction, both transport
es (Hutter et al., 2006). Accordingly, unlike the other dependent variables (see Eq. (16)), the conductive current j� and heat flux q are not derivable from
odynamic potential.



Table 1
Energy potentials and associated independent variables.

Family 1 Family 2 Family 3 Family 4

�e, or �e EFhpm EPgpm EPhpm

EFgem EFhem EPgem EPhem

EFgph EFhph EPgph EPhph

EFgeh EFheh EPgeh EPheh
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when the independent and dependent variables synchronize with those one wishes to control and measure, respectively. In
experiments, it is generally more convenient to control intensive quantities than extensive quantities. For example, temper-
ature is easier to control than entropy or heat.

To change any or all of the independent variables from extensive to intensive, a new thermodynamic potential function is
defined through a Legendre transformation of the internal energy (Callen, 1985). In this section, we investigate all possible
Legendre transforms EðaÞðbÞðcÞðdÞ of the internal energy, where the superscript letters (a), (b), (c), and (d) are placeholders for an
appropriate mechanical, thermal, electrical, and magnetic independent variable, respectively. This compact notation denotes
that the Legendre-transformed energy potential EFhpm, for instance, is a function of deformation, temperature, effective elec-
tric polarization, and effective magnetization.

As shown in Table 1, we categorize the energy potentials into four families, each employing a common set of thermome-
chanical independent variables: Family 1, deformation and entropy (both extensive); Family 2, deformation (extensive) and
temperature (intensive); Family 3, stress (intensive) and entropy (extensive); and Family 4, stress and temperature (both
intensive). Either electric field intensity or electric polarization, and either magnetic field intensity or magnetization, com-
plete the set of independent variables. Thus, within each family, there are four different energy potentials, each associated
with one of the four possible sets of independent variables.

With the formulations of Sections 4.2 and 4.3 as templates, in the subsections that follow, we derive the state equations
associated with some of the potentials listed in Table 1. These representative cases are intended to provide the reader with a
sufficient blueprint to reproduce the full catalogue presented in Appendix A.

4.4.1. Family 1: entropy-deformation family

In Family 1, the common thermomechanical independent variables are deformation F and specific entropy g, both exten-
sive quantities. Energy potentials that use deformation, entropy, and either or both of the intensive electromagnetic quan-
tities as independent variables are introduced as Legendre transformations of the internal energy e ¼ �e F;g;p�;m�ð Þ.

Entropy-deformation-electric field-magnetic field formulation

In this formulation, we promote the intensive electromagnetic quantities e� and h� to independent variables, and con-
comitantly relegate p� and m� to dependent variables. The thermodynamic energy potential EFgeh is defined as the Legendre
transformation of internal energy e ¼ �e F;g;p�;m�ð Þwith respect to the electromagnetic variables, from p� to e� and m� to h�,
8 All
EFgeh ¼ e� 1
q

e� � p� � lo

q
h� �m�; ð23Þ
from which
_EFgeh ¼ _e� 1
q

e� � p�ð ÞF�T � _Fþ e� � _p� þ p� � _e�
h i

� lo

q
h� �m�ð ÞF�T � _Fþ h� � _m� þm� � _h�

h i
ð24Þ
follows, where we have used Eq. (19). Substituting (24) into (18) leads to
� _EFgeh þ 1
qR

P � _Fþ h _g� 1
q

p� � _e� � lo

q
m� � _h� þ 1

q
j� � e� � 1

qh
q � gradh P 0; ð25Þ
a statement of the second law of thermodynamics for this formulation.8 Via the chain rule,
_EFgeh ¼ @EFgeh

@F
� _Fþ @EFgeh

@g
_gþ @EFgeh

@e�
� _e� þ @EFgeh

@h�
� _h�; ð26Þ
and, upon subsequent use of (26) in (25), it follows that
1
qR

P� @EFgeh

@F

 !
� _Fþ h� @EFgeh

@g

 !
_g� p�

q
þ @EFgeh

@e�

 !
� _e� � lo

q
m� þ @EFgeh

@h�

 !
� _h� þ 1

q
j� � e� � 1

qh
q � gradh P 0: ð27Þ
formulations presented in this paper have a corresponding second law statement.
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Since the coefficients of _F; _g; _e�, and _h� are independent of the rates, and the rates may be varied independently and are arbi-
trary, it follows that the coefficients vanish, i.e.,
9 Not
of the f

10 For
straight
P ¼ qR
@EFgeh

@F
; h ¼ @EFgeh

@g
; p� ¼ �q

@EFgeh

@e�
; m� ¼ � q

lo

@EFgeh

@h�
; ð28Þ
with j� � e� � 1
h q � gradh P 0 the residual dissipation inequality.

4.4.2. Family 2: temperature-deformation family

In Family 2, we introduce Legendre-transformed energy potentials that use temperature, an intensive quantity, rather
than specific entropy, an extensive quantity, as the thermal independent variable.

Temperature-deformation-electric field-magnetization formulation

In this formulation, F; h; e�, and m� are the independent variables. We define the energy potential EFhem as the Legendre
transformation of internal energy e ¼ �e F;g;p�;m�ð Þ with respect to the thermal and electrical variables, from g to h and
p� to e�,
EFhem ¼ e� hg� 1
q

e� � p�; ð29Þ
whose rate form
_EFhem ¼ _e� h _g� g _h� 1
q

e� � p�ð ÞF�T � _Fþ e� � _p� þ p� � _e�
h i

; ð30Þ
when inserted in (18), yields the second law statement
� _EFhem þ 1
qR

Pþ lo

q
h� �m�ð ÞF�T

� 	
� _F� g _h� 1

q
p� � _e� þ lo

q
h� � _m� þ 1

q
j� � e� � 1

qh
q � gradh P 0: ð31Þ
Use of the chain rule on _EFhem leads to the state equations
P ¼ qR
@EFhem

@F
� loJ h� �m�ð ÞF�T; g ¼ � @EFhem

@h
; p� ¼ �q

@EFhem

@e�
; h� ¼ q

lo

@EFhem

@m� : ð32Þ
4.4.3. Family 3: entropy-stress family

In Family 3, we introduce energy potentials that utilize the intensive quantity P, rather than the extensive quantity F, as
the mechanical independent variable. We construct sets of state equations using the fundamental form of the Clausius–Du-
hem inequality (11), where P and F form an intensive–extensive conjugate pair and e ¼ �e F;g;p�=q;m�=qð Þ.9 In the formula-
tion that follows, we promote the intensive quantities P and h� to independent variables, and concomitantly relegate the
extensive quantities F and m�=q to dependent variables.

Entropy-stress-polarization-magnetic field formulation

In this formulation, the independent variables are P;g;p�=q, and h�. EPgph, the thermodynamic energy potential,10 is
defined as the Legendre transformation of internal energy e ¼ �e F;g;p�=q;m�=qð Þ with respect to the mechanical and magnetic
variables, from F to P and m�=q to h�,
EPgph ¼ e� 1
qR

P � F� loh� �m
�

q
; ð33Þ
or, in rate form,
_EPgph ¼ _e� 1
qR

P � _F� 1
qR

F � _P� lo
m�

q
� _h� � loh� �

_m�

q

� �
: ð34Þ
Inserting (34) in (11) yields the second law statement
� _EPgph � 1
qR

F � _Pþ h _gþ e� �
_p�

q

� �
� lo

m�

q
� _h� þ 1

q
j� � e� � 1

qh
q � gradh P 0 ð35Þ
e that P and F are not conjugate variables in the modified form of the Clausius–Duhem inequality (18), where e ¼ �e F;g;p�;m�ð Þ, necessitating our use
undamental form (11).
notational brevity, we do not distinguish p�=q from p� (nor m�=q from m�) in the superscript of the energy potentials, as this difference can be
forwardly ascertained from the corresponding state equations.
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and application of the chain rule to _EPgph leads to
� 1
qR

Fþ @EPgph

@P

 !
� _Pþ h� @EPgph

@g

 !
_gþ e� � @EPgph

@ p�
q

� �
0
@

1
A � _p�

q

� �
� lo

q
m� þ @EPgph

@h�

 !
� _h�

þ 1
q

j� � e� � 1
qh

q � gradh P 0; ð36Þ
from which the state equations
F ¼ �qR
@EPgph

@P
; h ¼ @EPgph

@g
; e� ¼ @EPgph

@ p�
q

� � ; m� ¼ � q
lo

@EPgph

@h�
ð37Þ
follow.

4.4.4. Family 4: temperature-stress family

In Family 4, we introduce Legendre-transformed energy potentials that use the intensive quantities stress and tempera-
ture, rather than the extensive quantities deformation and entropy, as the thermomechanical independent variables.

Temperature-stress-electric field-magnetic field formulation

The set of independent variables for this formulation is fP; h; e�;h�g. The corresponding thermodynamic energy potential
EPheh is defined as the Legendre transformation of internal energy e ¼ �e F;g;p�=q;m�=qð Þwith respect to the mechanical, ther-
mal, electrical, and magnetic variables, from F to P;g to h;p�=q to e�, and m�=q to h�,
EPheh ¼ e� 1
qR

P � F� hg� e� � p
�

q
� loh� �m

�

q
: ð38Þ
Taking the rate of (38) gives
_EPheh ¼ _e� 1
qR

P � _F� 1
qR

F � _P� h _g� g _h� e� �
_p�

q

� �
� p�

q
� _e� � loh� �

_m�

q

� �
� lo

m�

q
� _h� ð39Þ
and substitution of this result into (11) yields
� _EPheh � 1
qR

F � _P� g _h� p�

q
� _e� � lo

m�

q
� _h� þ 1

q
j� � e� � 1

qh
q � gradh P 0: ð40Þ
Use of the chain rule on _EPheh leads to the state equations
F ¼ �qR
@EPheh

@P
; g ¼ � @EPheh

@h
; p� ¼ �q

@EPheh

@e�
; m� ¼ � q

lo

@EPheh

@h�
: ð41Þ
5. Energy formulations utilizing secondary independent variables

Recall that the internal energy e ¼ �e F;g;p�=q;m�=qð Þ is a function of the extensive quantities F;g;p�=q, and m�=q. In Sec-
tion 4, thermodynamic energy potentials employing one or more of the intensive quantities P; h; e�, and h� as independent
variables were introduced using Legendre transformations of e. These intensive–extensive conjugate pairs or work conjugates
(i.e., P and F; h and g; e� and p�=q;h� and m�=q) appearing in the fundamental form of the second law of thermodynamics (11)
are dictated by the choice (4c) of the electromagnetic energy rem. It follows, then, that different choices of rem (of which there
are many options available in the literature; see, for instance, Eringen & Maugin (1990), Hutter et al. (2006), Pao & Hutter
(1975) and Kovetz (2000)) lead to different sets of electromagnetic conjugate pairs in finite-deformation TEMM. For instance,
the electric displacement d� and magnetic induction b�, both extensive quantities, frequently appear as parts of a conjugate
pair (see, for example, Green & Naghdi (1984), Kovetz (2000), Kankanala & Triantafyllidis (2004), Rajagopal & Ruzicka (2001)
and Dorfmann & Ogden (2004a)).

The formalism of Legendre transforms presented in Section 4, however, does not enable us to use d� and b� as independent
variables since they are not part of the electromagnetic work conjugates employed in this paper (i.e., e� and p�=q;h� and m�=q).
We thus coin d� and b� secondary or auxiliary quantities. In this section, we overcome this limitation by, for the first time, pre-
senting a mathematically rigorous procedure for introducing secondary electromagnetic quantities as independent variables.

5.1. Entropy-deformation-electric displacement-magnetic induction formulation

In this section, F;g;d�, and b� are selected as the independent variables. However, as discussed above, the secondary
quantities d� and b� cannot be introduced as independent variables through a conventional Legendre transformation of
the internal energy. We circumvent this by positing a Legendre-type transformation of e ¼ �e F;g;p�;m�ð Þ, i.e.,
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EFgdb ¼ eþ �o

2q
e� � e� þ lo

2q
h� � h�; ð42Þ
whose rate form is
_EFgdb ¼ _eþ 1
2q

�oe� � e� þ loh� � h�
� �

F�T � _Fþ 1
q
�oe� � _e� þ loh� � _h�
� �

; ð43Þ
where we have used (19). Note that the last two terms on the right-hand side of (42) represent electrical and magnetic ener-
gies, respectively, in vacuo. Substitution of (43) into (18), and subsequent use of the algebraic relationships in (6), leads to
� _EFgdb þ 1
qR

Pþ 1
q

e� � d� þ h� � b� � 1
2
�oe� � e� � 1

2
loh� � h�

� �
F�T

� 	
� _Fþ h _gþ 1

q
e� � _d� þ 1

q
h� � _b� þ 1

q
j� � e�

� 1
qh

q � grad h P 0; ð44Þ
the second law statement for this formulation. Note that d� and b� appear as rates in the second law inequality (44), i.e., as
natural independent variables. Use of the chain rule on _EFgdb leads to
1
qR

P� @EFgdb

@F
þ 1

q
e� � d� þ h� � b� � 1

2
�oe� � e� � 1

2
loh� � h�

� �
F�T

" #
� _Fþ h� @EFgdb

@g

 !
_gþ 1

q
e� � @EFgdb

@d�

 !
� _d�

þ 1
q

h� � @EFgdb

@b�

 !
� _b� þ 1

q
j� � e� � 1

qh
q � gradh P 0; ð45Þ
from which the state equations
P ¼ qR
@EFgdb

@F
� J e� � d� þ h� � b� � 1

2
�oe� � e� � 1

2
loh� � h�

� �
F�T; h ¼ @EFgdb

@g
; e� ¼ q

@EFgdb

@d�
; h� ¼ q

@EFgdb

@b�
ð46Þ
follow.
We collectively coin the set of independent variables fF;g;d�;b�g, the thermodynamic energy potential EFgdb, and the

state equations (46) the entropy-deformation-electric displacement-magnetic induction formulation. This formulation
makes contact with a formulation presented in Green and Naghdi (1984). This contact is significant as the two formulations
were developed from different perspectives. In particular, the terms from the energy supply rate rem that Green & Naghdi
‘‘transferred to be included in the internal energy’’ (Green & Naghdi, 1984, p. 184), although not explicitly identified by
the authors, are precisely the last two terms on the right-hand side of our Legendre-type transformation (42). Green & Nag-
hdi’s ‘‘augmented’’ internal energy (although not symbolically differentiated from their original internal energy) is thus
equivalent to our transformed energy potential EFgdb defined in (42).

State equations for other formulations that employ either d� or b� as an independent variable are catalogued in Appendix A.

5.2. Generation of an infinite number of thermodynamic energy potentials

We extend the formalism of the previous sections by presenting a generalized energy potential
Eð�Þð�Þð�Þð�Þ ¼ e� a1
1
qR

P � F� a2hg�
1
q

e� � a3

2
�oe� þ a4p�

� �
� lo

q
h� � a5

2
h� þ a6m�

� �
; ð47Þ
where the internal energy function takes its appropriate representation, either e ¼ �e F;g;p�=q;m�=qð Þ or e ¼ �e F;g;p�;m�ð Þ.
The integers a1;a2;a4, and a6 can either be 1 or 0. Integers a3 and a5 are then determined per the following restrictions:

(i) When a4 is 1, a3 is 0.
(ii) When a4 is 0, a3 is arbitrary. This introduces energy potentials with arbitrary linear combinations of e� and p� as the

electrical independent variable.
(iii) When a6 is 1, a5 is 0.
(iv) When a6 is 0, a5 is arbitrary. This introduces energy potentials with arbitrary linear combinations of h� and m� as the

magnetic independent variable.

Among the infinite number of energy potentials that can be constructed using this formalism are those catalogued in
Appendix A. For instance, if we select a1 ¼ a2 ¼ a4 ¼ a6 ¼ 0, restrictions (ii) and (iv) dictate that a3 and a5 are arbitrary.
Setting the arbitrary integers a3 and a5 to �1, and employing e ¼ �e F;g;p�;m�ð Þ, we recover the special case (42). In this
example, by setting the arbitrary integers a3 and a5 to �1, the special linear combinations d� ¼ p� þ �oe� and
b� ¼ loðh

� þm�Þ are introduced as the electrical and magnetic independent variables, respectively.
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6. Entropy as a characterizing thermodynamic potential

In Sections 4 and 5, we developed a comprehensive thermodynamic framework that uses energetic potentials to charac-
terize near-equilibrium fully coupled TEMM processes. In this section, we present an alternative thermodynamic framework,
wherein we use entropy and Legendre transforms of entropy as the characterizing potentials for near-equilibrium fully
coupled TEMM processes. Entropic potentials are often used to describe equilibrium states in statistical thermodynamics11

(Callen, 1985; Landau & Lifshitz, 1980).
We proceed by rewriting the fundamental form of the Clausius–Duhem inequality (11) as:
11 Oth
12 Leg

1861).
_gþ 1
qR

P
h
� _F� 1

h
_eþ e�

h
�

_p�

q

� �
þ lo

h�

h
�

_m�

q

� �
þ 1

qh
j� � e� � 1

qh2 q � gradh P 0: ð48Þ
With entropy g as the thermodynamic potential, the natural independent variables, i.e., the extensive quantities, are the rate
terms F; e;p�=q, and m�=q. The corresponding dependent variables, i.e., the conjugate intensive quantities, are identified as
the coefficients of these rate terms, namely P=h;1=h; e�=h, and h�=h. Thus, the fundamental entropic relationship (Callen, 1985),
i.e., entropy as a function of extensive variables, is
g ¼ �g F; e;
p�

q
;
m�

q

� �
: ð49Þ
In order to use polarization p� and magnetization m� as the electromagnetic independent variables instead of the extensive
quantities p�=q and m�=q, the Clausius–Duhem inequality (48) is rewritten using the chain rule (17):
_gþ 1
qR

P
h
þ J

e�

h
� p� þ lo

h�

h
�m�

� �
F�T

� 	
� _F� 1

h
_eþ 1

q
e�

h
� _p� þ lo

q
h�

h
� _m� þ 1

qh
j� � e� � 1

qh2 q � gradh P 0: ð50Þ
Use of the chain rule on the thermodynamic potential g ¼ �g F; e;p�;m�ð Þ gives
_g ¼ @
�g
@F
� _Fþ @

�g
@e

_eþ @�g
@p�
� _p� þ @�g

@m� � _m�: ð51Þ
Substitution of this result into inequality (50) leads to the state equations for this formulation, i.e.,
P ¼ �qRh
@�g
@F
� J e� � p� þ loh� �m�� �

F�T;
1
h
¼ @

�g
@e
; e� ¼ �qh

@�g
@p�

; h� ¼ �qh
lo

@�g
@m� : ð52Þ
We collectively coin the set of independent variables fF; e;p�;m�g, the thermodynamic entropy potential g ¼ �g F; e;p�;m�ð Þ,
and the state Eqs. (52) the modified entropic formulation.

With this formulation as a template, we investigate other formulations involving alternative sets of independent vari-
ables. Similar to the energetic formulations presented in Section 4 (refer to Table 1 and Appendix A), the entropic for-
mulations are categorized into four families, each with a common set of thermomechanical independent variables:
Family 1 – F and e (both extensive); Family 2 – F (extensive) and h (intensive); Family 3 – P=h (intensive) and e (exten-
sive); and Family 4 – P=h and h (both intensive). Either e�=h (intensive) or p�=q (extensive), and either h�=h (intensive) or
m�=q (extensive), are selected as the electrical and magnetic independent variables, respectively. Thus, within each fam-
ily, there are four different formulations, each associated with one of the four possible sets of independent variables. Also
associated with each of these formulations is an entropy potential gðaÞðbÞðcÞðdÞ, where the superscripts (a), (b), (c), and (d)
are placeholders for an appropriate mechanical, thermal, electrical, and magnetic independent variable, respectively (refer
to Table 2).

We note that the intensive variables P=h, e�=h, and h�=h discussed above depend on temperature and are thus not purely
mechanical, electrical, and magnetic, respectively. We later show that, in certain instances, this temperature dependence can
be eliminated.

6.1. Legendre-transformed entropic potentials

Legendre-transformed entropic potentials for a purely thermomechanical process are known as Massieu–Planck func-
tions12 (Callen, 1985; Rooney & Bechtel, 2004). In this paper, the Massieu–Planck functions are extended to a fully coupled fi-
nite-deformation thermo-electro-magneto-mechanical process for the first time. Recall that for the fundamental entropic
relationship, the extensive quantities F; e;p�=q, and m�=q are the independent variables, and the conjugate intensive quantities
P=h;1=h; e�=h, and h�=h are the dependent variables. The first-order Legendre transformations required to change any of the
extensive thermal, electrical, magnetic, or mechanical independent variables to their intensive counterparts are listed in Table 3.
er applications, and the limitations of using entropy as a thermodynamic potential, are discussed in Landauer (1975).
endre transforms of entropy are known as free entropies, a concept first introduced by Francois Massieu to characterize fluids (Massieu, 1869; Massieu,



Table 2
Entropic potentials and associated independent variables.

Family 1 Family 2 Family 3 Family 4

�g, or �g gFhpm gPepm gPhpm

gFeem gFhem gPeem gPhem

gFeph gFhph gPeph gPhph

gFeeh gFheh gPeeh gPheh
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In fact, any potential listed in Table 2 can be constructed from a combination of the first-order Legendre transformations listed
in Table 3, and the corresponding state equations can be derived from second law restrictions.

6.2. State equations

In this section, we demonstrate the derivation of the state equations for some of the entropic potentials listed in Table 2.
The full set of Legendre transformations and state equations is catalogued in Appendix B.

Internal energy-deformation-electric field-magnetization formulation

In this formulation, the independent variables are F; e; e�=h, and m�. The potential gFeem is introduced as the Legendre
transform of entropy g ¼ �g F; e;p�;m�ð Þ with respect to the electrical variable, i.e.,
gFeem ¼ gþ 1
q

p� � e
�

h
; ð53Þ
as shown in Table 3, whose rate form is
_gFeem ¼ _gþ 1
q

e�

h
� p�

� �
F�T � _Fþ 1

q
e�

h
� _p� þ 1

q
p� �

_e�

h

� �
: ð54Þ
Upon substituting (54) into (50) and eliminating _g, the second law inequality for this formulation becomes
_gFeem þ 1
qR

P
h
þ J lo

h�

h
�m�

� �
F�T

� 	
� _F� 1

h
_e� 1

q
p� �

_e�

h

� �
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q
h�

h
� _m� þ 1

qh
j� � e� � 1

qh2 q � gradh P 0: ð55Þ
Using
_gFeem ¼ @g
Feem

@F
� _Fþ @g

Feem

@e
_eþ @g

Feem

@ e�
h

� � � _e�

h

� �
þ @g

Feem

@m� � _m� ð56Þ
in inequality (55) leads to the state equations
P ¼ �qRh
@gFeem

@F
� J loh� �m�� �

F�T;
1
h
¼ @g

Feem

@e
; p� ¼ q

@gFeem

@ e�
h

� � ; h� ¼ �qh
lo

@gFeem

@m� : ð57Þ
For this particular formulation, the electrical independent variable e�=h is dependent on temperature. This dependence
cannot be eliminated for gFeem or any of the other potentials belonging to Families 1 and 3. However, for the potentials
belonging to Families 2 and 4, where the thermal independent variable is h, it is possible to eliminate this dependence, as
we demonstrate in the following example.

Temperature-stress-electric field-magnetic field formulation

In this formulation, the independent variables are all intensive quantities. The entropic potential gPheh is defined as the
Legendre transform of entropy g ¼ �g F; e;p�=q;m�=qð Þwith respect to all four independent variables, from extensive to inten-
sive (F to P=h; e to 1=h;p�=q to e�=h, and m�=q to h�=h), i.e.,
Table 3
First-order Legendre transformations.

IVs Transformation equations

e) 1
h

gFhpm ¼ g� e
1
h

F) P
h

gPepm ¼ gþ 1
qR

F � P
h

p�
q )

e�

h
gFeem ¼ gþ p�

q
� e
�

h

m�

q
) h�

h
gFeph ¼ gþ lo

m�

q
� h
�

h
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gPheh ¼ g� e
1
h
þ 1

qR
F � P

h
þ p�

q
� e
�

h
þ lo

m�

q
� h
�

h
; ð58Þ
following Table 3. The rate form of this equation is
_gPheh ¼ _g� 1
h

_e� e
_1
h
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: ð59Þ
The second law corresponding to this formulation is obtained by substituting the rate form (59) into inequality (48), i.e.,
_gPheh � 1
qR

F �
_P
h

� �
þ e

_1
h

� �
� p�

q
�

_e�

h

� �
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qh
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qh2 q � gradh P 0: ð60Þ
The rate terms in inequality (60) are rewritten as
_1
h

� �
¼ �

_h

h2 ;
_P
h
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h
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h2 P;
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h2 e�;
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h
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_h

h2 h�; ð61Þ
which leads to
_gPheh � 1
qRh

F � _P� 1
h2 e� 1

qR
P � F� 1

q
e� � p� � lo

q
h� �m�

� �
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qh
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qh
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qh2 q � gradh P 0;

ð62Þ
enabling the use of P; h; e�, and h� as independent variables. The chain rule
_gPheh ¼ @g
Pheh

@P
� _Pþ @g

Pheh

@h
_hþ @g

Pheh

@e�
� _e� þ @g

Pheh

@h�
� _h� ð63Þ
is then used in inequality (62) to derive the state equations
e ¼ h2 @gPheh

@h
þ 1

qR
P � Fþ 1

q
e� � p� þ lo

q
m� � h�; F ¼ qRh

@gPheh

@P
; p� ¼ qh

@gPheh

@e�
; m� ¼ qh

lo

@gPheh

@h�
: ð64Þ
We emphasize that operation (61) allowed the state Eqs. (64) to be written in terms of the purely mechanical (P), thermal (h),
electrical (e�), and magnetic (h�) independent variables, which are more favorable for characterization than P=h;1=h; e�=h,
and h�=h. This formalism can be applied to all potentials belonging to Families 2 and 4 (i.e., potentials with temperature h
as the thermal independent variable) in order to eliminate the temperature dependence of the mechanical, electrical, and
magnetic independent variables.

7. Applications

We envision our mathematical framework serving as a rigorous starting point for enabling the design and characteriza-
tion of novel multifunctional materials with fully coupled thermo-electro-magneto-mechanical response. In the following
subsections, we elaborate on this vision.

7.1. Experimental characterization of multifunctional materials

Each thermo-electro-magneto-mechanical process in our catalogue correlates with a particular experiment, the
independent variables being controlled and the dependent variables being the measured responses. In practice, a given
experiment is most straightforwardly characterized by a thermodynamic potential that employs the quantities one wishes
to control as its independent variables. For instance, in an experiment conducted on a viscous fluid at constant temper-
ature and constant pressure (i.e., an isothermal, isobaric process), Gibbs free energy, which uses pressure and temperature
as independent variables, is the most favorable thermodynamic potential for characterizing the process. Hence, the
breadth of our catalogue of TEMM processes is intended to provide engineers, applied physicists, and material scientists
with optimal flexibility in their approach to experimentally characterizing multifunctional materials and deducing their
3-D energy landscapes.

7.2. Irreversible TEMM material behavior

Irreversibilities such as mechanical hysteresis (e.g., viscoelasticity), electrical hysteresis (e.g., ferroelectricity), magnetic
hysteresis (e.g., ferromagnetism), dependence on deformation history or loading history (e.g., plasticity), and viscous dissipa-
tion (e.g., Newtonian fluid dynamics) occur in many practically important physical processes. The state equations presented in
our comprehensive catalogue, however, are derived under the auspices of classical equilibrium thermodynamics, which gov-
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erns reversible TEMM processes or near-equilibrium irreversible TEMM processes (Callen, 1985). Nevertheless, the formalism
and methodology presented in this paper can be straightforwardly extended to model far-from-equilibrium irreversibilities
through the use of internal state variables (Coleman & Gurtin, 1967; Landis, 2002; Maugin & Muschik, 1994) that parameter-
ize the history of a thermo-electro-magneto-mechanical process.

7.3. Constraints and stability in TEMM

In the context of thermomechanics, a constrained theory assumes a priori that only those processes satisfying a prescribed
relation between certain thermal and mechanical quantities are allowable. A familiar example is that of an absolutely incom-
pressible material, whose density cannot be changed by any means, be it thermal or mechanical. Constrained theories have
two powerful advantages: the governing equations produced by a constrained theory are generally easier to solve than those
produced by the full ‘unconstrained’ theory, and less experiments are necessary to characterize the material in the context of
the constrained model (Rooney & Bechtel, 2004).

A modern approach for developing constrained theories is to model the constraint as a constitutive limit, i.e., a restriction
on the constitutive behavior of the material as described by a thermodynamic potential (Bechtel, Rooney, & Forest, 2004).
Although the formalism of constitutive limits has been used to model constraints such as incompressibility in thermome-
chanics (see, for example, Bechtel et al. (2004) and Bechtel, Rooney, & Wang (2004) for mechanically and absolutely incom-
pressible Newtonian fluids, respectively, and Rooney & Bechtel (2004) for mechanically incompressible finite-deformational
elastic solids), this approach remains largely unexplored in thermo-electro-magneto-mechanics, as do investigations into the
stability of constrained TEMM theories. Stability of the thermodynamic equilibrium (Bechtel, Rooney, & Forest, 2005) is an
important consideration when assessing the validity of a constrained theory: In finite-deformation elasticity, for instance,
temperature-deformation constraints are found to have an unstable equilibrium, i.e., certain perturbations of the equilib-
rium state grow without bound (Rooney & Bechtel, 2004).

Our comprehensive catalogue of free energies and state equations represents the starting point for (i) the development of
constrained TEMM theories via the formalism of constitutive limits and (ii) investigations into their stability.

7.4. Design of new multifunctional materials

The standard practice in the fabrication of new materials is to first manufacture the material, then experimentally deter-
mine its macroscopic-scale or continuum performance properties (e.g., permeability, permittivity, Young’s modulus,
coefficient of thermal expansion). Following this customary approach, our thermodynamic framework can be utilized to
characterize novel multifunctional materials as described in the previous parts of this section. However, numerous experi-
ments and costly trial-and-error are required to iteratively arrive at a design that optimally accomplishes the performance
objectives required by a particular multifunctional application. We envision the research in this paper – in particular, our
comprehensive catalogue of free energies and state equations – enabling the development of a new ‘‘inverse design’’
paradigm: Briefly, the targeted macroscopic-scale performance properties will be expressed in terms of material response
functions relating a set of independent and dependent variables from the continuum model. Using the state equations,
the material response functions will then be converted into conditions on the free energy. By integrating these conditions,
an energy landscape will be constructed that provides a ‘‘recipe’’ for microscopic-scale material design and fabrication.

8. Summary

In this paper, we have developed a first-principles-based continuum thermodynamic framework for modeling fully cou-
pled thermo-electro-magneto-mechanical (TEMM) processes in the finite-deformation regime. This framework was devel-
oped from a unified perspective, integrating fundamental principles from continuum mechanics, electrodynamics, and
classical thermodynamics. As such, it represents a first step towards facilitating the design and characterization of novel
multifunctional materials. In order to enable these multifunctional materials to reach their full performance potential, our
modeling architecture was developed to accommodate (a) 3-D fully coupled thermo-electro-magneto-mechanical behavior,
finite deformations, nonlinear constitutive response, dynamic electromagnetic fields, and anisotropy, and (b) multifunction-
ality at various time scales, length scales, and compositional levels.

Our primary contribution was the development of a comprehensive catalogue of free energies and state equations that
enable the modeling and characterization of any general TEMM process. Central to the development of this comprehensive
catalogue was the fundamental energetic process, which, analogous to classical thermodynamics, features extensive indepen-
dent variables, intensive dependent variables, and specific internal energy as the characterizing thermodynamic potential.
The fundamental energetic process was the thermodynamically consistent starting point from which all alternative energetic
processes in this paper were derived. These alternative processes were classified as either (a) those whose free energies use
any or all of the conjugate intensive quantities as independent variables, or (b) those whose free energies use one or more
secondary electromagnetic quantities as independent variables. The former were introduced using Legendre transformations
of the internal energy, the latter using novel Legendre-type transformations. This formalism was then extended to processes
that employ entropy rather than energy as the characterizing thermodynamic potential. Most of the thermodynamic poten-
tials appearing in our catalogue, both energetic and entropic, were introduced for the first time.
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Appendix A. Energy formulations

(See Tables 4–9.)
Table 4
Fully coupled state equations for energy Family 1.

Residual Dissipation Inequality: j� � e� � 1
h

q � gradh P 0

Energy Potential State Equations
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Table 5
Fully coupled state equations for energy Family 1 (with secondary electromagnetic IVs).

Residual dissipation inequality: j� � e� � 1
h q � gradh P 0

Energy potential State equations
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2q
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Table 6
Fully coupled state equations for energy Family 2.

Residual dissipation inequality: j� � e� � 1
h

q � gradh P 0

Energy potential State equations
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Table 7
Fully coupled state equations for energy Family 2 (with secondary electromagnetic IVs).

Residual dissipation inequality: j� � e� � 1
h q � gradh P 0

Energy potential State equations
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Table 8
Fully coupled state equations for energy Family 3.

Residual dissipation inequality: j� � e� � 1
h q � gradh P 0

Energy potential State equations

EPgpm ¼ e� 1
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e� ¼ @EPgph

@ðp�q Þ
m� ¼ � q

lo

@EPgph

@h�

EPgeh ¼ e� 1
qR

P � F� e� � p
�

q
� loh� �m

�

q F ¼ �qR
@EPgeh

@P
h ¼ @EPgeh

@g

p� ¼ �q
@EPgeh

@e�
m� ¼ � q

lo

@EPgeh

@h�

Table 9
Fully coupled state equations for energy Family 4.

Residual dissipation inequality: j� � e� � 1
h

q � gradh P 0

Energy potential State equations

EPhpm ¼ e� 1
qR

P � F� hg F ¼ �qR
@EPhpm

@P
g ¼ � @EPhpm

@h

e� ¼ @EPhpm

@ðp�q Þ
h� ¼ 1

lo

@EPhpm

@ðm�

q Þ

EPhem ¼ e� 1
qR

P � F� hg� e� � p
�

q F ¼ �qR
@EPhem

@P
g ¼ � @EPhem

@h

p� ¼ �q
@EPhem

@e�
h� ¼ 1

lo

@EPhem

@ðm�

q Þ

EPhph ¼ e� 1
qR

P � F� hg� loh� �m
�

q F ¼ �qR
@EPhph

@P
g ¼ � @EPhph

@h

e� ¼ @EPhph

@ðp�q Þ
m� ¼ � q

lo

@EPhph

@h�

EPheh ¼ e� 1
qR

P � F� hg� e� � p
�

q
� loh� �m

�

q F ¼ �qR
@EPheh

@P
g ¼ � @EPheh

@h

p� ¼ �q
@EPheh

@e�
m� ¼ � q

lo

@EPheh

@h�
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Appendix B. Entropy formulations

(See Tables 10–13.)
Table 11
Fully coupled state equations for entropy Family 2.

Residual dissipation inequality: j� � e� � 1
h q � gradh P 0

Entropy potential State equations

gFhpm ¼ g� e
h P ¼ �qRh

@gFhpm

@F
� J e� � p� þ loh� �m�� �

F�T e� ¼ �qh
@gFhpm

@p�

e ¼ h2 @gFhpm

@h
h� ¼ �qh

lo

@gFhpm

@m�

gFhem ¼ g� e
h
þ p�

q
� e
�

h P ¼ �qRh
@gFhem

@F
� Jlo h� �m�ð ÞF�T p� ¼ qh

@gFhem

@e�

e ¼ h2 @gFhem

@h
þ 1

q
e� � p� h� ¼ �qh

lo

@gFhem

@m�

gFhph ¼ g� e
h
þ lo

m�

q
� h
�

h
P ¼ �qRh

@gFhph

@F
� J e� � p�ð ÞF�T e� ¼ �qh

@gFhph

@p�

e ¼ h2 @gFhph

@h
þ lo

q
m� � h� m� ¼ qh

lo

@gFhph

@h�

gFheh ¼ g� e
h
þ p�

q
� e
�

h
þ lo

m�

q
� h
�

h
P ¼ �qRh

@gFheh

@F
p� ¼ qh

@gFheh

@e�

e ¼ h2 @gFheh

@h
þ lo

q
m� � h� þ 1

q
e� � p� m� ¼ qh

lo

@gFheh

@h�

Table 10
Fully coupled state equations for entropy Family 1.

Residual dissipation inequality: j� � e� � 1
h

q � gradh P 0

Entropy potential State equations

�g
P ¼ �qRh

@�g
@F

1
h
¼ @

�g
@e

e� ¼ �h
@�g

@ p�
q

� � h� ¼ � h
lo

@�g

@ m�

q

� �
�g

P ¼ �qRh
@�g
@F
� J e� � p� þ loh� �m�� �

F�T

1
h
¼ @

�g
@e

e� ¼ �qh
@�g
@p�

h� ¼ �qh
lo

@�g
@m�

gFeem ¼ gþ 1
q

e�

h
� p� P ¼ �qRh

@gFeem

@F
� Jlo h� �m�ð ÞF�T

1
h
¼ @g

Feem

@e
p� ¼ q

@gFeem

@ðe�h Þ
h� ¼ �qh

lo

@gFeem

@m�

gFeph ¼ gþ lo

q
h�

h
�m� P ¼ �qRh

@gFeph

@F
� J e� � p�ð ÞF�T

1
h
¼ @g

Feph

@e
e� ¼ �qh

@gFeph

@p�
m� ¼ q

lo

@gFeph

@ðh�h Þ

gFeeh ¼ gþ 1
q

e�

h
� p� þ lo

q
h�

h
�m� P ¼ �qRh

@gFeeh

@F
1
h
¼ @g

Feeh

@e
p� ¼ q

@gFeeh

@ðe�h Þ
m� ¼ q

lo

@gFeeh

@ðh�h Þ



Table 13
Fully coupled state equations for entropy Family 4.

Residual dissipation inequality: j� � e� � 1
h

q � gradh P 0

Entropy potential State equations

gPhpm ¼ g� e
h
þ 1

qR
F � P

h e ¼ h2 @gPhpm

@h
þ 1

qR
P � F

F ¼ qRh
@gPhpm

@P
e� ¼ �h

@gPhpm

@ðp�q Þ
h� ¼ � h

lo

@gPhpm

@ðm�

q Þ

gPhem ¼ g� e
h
þ 1

qR
F � P

h
þ p�

q
� e
�

h e ¼ h2 @gPhem

@h
þ 1

qR
P � Fþ 1

q
e� � p�

F ¼ qRh @gPhem

@P p� ¼ qh
@gPhem

@e�
h� ¼ � h

lo

@gPhem

@ðm�

q Þ

gPhph ¼ g� e
h
þ 1

qR
F � P

h
þ lo

m�

q
� h
�

h
e ¼ h2 @gPhph

@h
þ 1

qR
P � Fþ lo

q
m� � h�

F ¼ qRh
@gPhph

@P
e� ¼ �h

@gPhph

@ðp�q Þ
m� ¼ qh

lo

@gPhph

@h�

gPheh ¼ g� e
h
þ 1

qR
F � P

h
þ p�

q
� e
�

h
þ lo

m�

q
� h
�

h
e ¼ h2 @gPheh

@h
þ 1

qR
P � Fþ lo

q
m� � h� þ 1

q
e� � p�

F ¼ qRh
@gPheh

@P
p� ¼ qh

@gPheh

@e�
m� ¼ qh

lo

@gPheh

@h�

Table 12
Fully coupled state equations for entropy Family 3.

Residual dissipation inequality: j� � e� � 1
h

q � gradh P 0

Entropy potential State equations

gPepm ¼ gþ 1
qR

F � P
h F ¼ qR

@gPepm

@ðPhÞ
1
h
¼ @g

Pepm

@e

e� ¼ �h
@gPepm

@ðp�q Þ
h� ¼ � h

lo

@gPepm

@ðm�

q Þ

gPeem ¼ gþ 1
qR

F � P
h
þ p�

q
� e
�

h F ¼ qR
@gPeem

@ðPhÞ
1
h
¼ @g

Peem

@e

p� ¼ q
@gPeem

@ðe�h Þ
h� ¼ � h

lo

@gPeem

@ðm�

q Þ

gPeph ¼ gþ 1
qR

F � P
h
þ lo

m�

q
� h
�

h
F ¼ qR

@gPeph

@ðPhÞ
1
h
¼ @g

Peph

@e

e� ¼ �h
@gPeph

@ðp�q Þ
m� ¼ q

lo

@gPeph

@ðh
�

h Þ

gPeeh ¼ gþ 1
qR

F � P
h
þ p�

q
� e
�

h
þ lo

m�

q
� h
�

h
F ¼ qR

@gPeeh

@ðPhÞ
1
h
¼ @g

Peeh

@e

p� ¼ q
@gPeeh

@ðe�h Þ
m� ¼ q

lo

@gPeeh

@ðh�h Þ
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