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Abstract
This paper investigates the semi-active control of a magnetically-tunable vibration absorber’s
resonance frequency. The vibration absorber that is considered is a metal-matrix composite
containing the magnetostrictive material Galfenol (FeGa). A single degree of freedom model
for the nonlinear vibration of the absorber is presented. The model is valid under arbitrary
stress and magnetic field, and incorporates the variation in Galfenol’s elastic modulus
throughout the composite as well as Galfenol’s asymmetric tension–compression behavior.
Two boundary conditions—cantilevered and clamped–clamped—are imposed on the
composite. The frequency response of the absorber to harmonic base excitation is calculated
as a function of the operating conditions to determine the composite’s capacity for resonance
tuning. The results show that nearly uniform controllability of the vibration absorber’s
resonance frequency is possible below a threshold of the input power amplitude using weak
magnetic fields of 0–8 kA m−1. Parametric studies are presented to characterize the effect on
resonance tunability of Galfenol volume fraction and Galfenol location within the composite.
The applicability of the results to composites of varying geometry and containing different
Galfenol materials is discussed.

(Some figures may appear in colour only in the online journal)

1. Introduction

The incorporation of smart materials into control systems
can improve semi-active and active vibration control design.
The optimal smart material for a specific vibration control
system depends upon the operating conditions in service
and the performance requirements. For applications in which
the smart material is subject to appreciable stress, most
smart materials cannot be utilized, because only a few can
withstand tensile and shear loading or operate in harsh
mechanical environments. Shape memory alloys are robust,
but their bandwidth is limited to O(1) Hz due to their thermal
activation, and provide very limited sensing capabilities [1].
One attractive smart material for high stress applications is
iron–gallium (Galfenol, Fe100−xGax).

Galfenol’s structural-grade tensile strength (∼500
MPa) [2], ability to withstand torsion and impact, frequency

bandwidth on the order of 10 kHz, ability to be magnetized
easily, and very low hysteresis are beneficial for active
vibration reduction systems. This combination of properties
is not found in any other smart material. The main drawbacks
of Galfenol are its moderate magnetostriction (350 × 10−6

to 400 × 10−6 for single crystals) [2, 3] and its relatively
low energy density (∼3 kJ m−3) [4], which is about 10
times less than that of Terfenol-D (25 kJ m−3) [5] and
piezoceramics (∼31 kJ m−3) [6]. This limited work output
hinders active vibration control implementation. As such,
semi-active vibration reduction is considered in this paper.

Galfenol’s suitability for semi-active control derives from
the Delta E (1E) effect,

1E = (E(H,T)− E0) /E0, (1)

where E(H,T) is the elastic modulus at magnetic field H
and stress T , and E0 = E(0, 0). This definition is adapted
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Figure 1. Stress versus strain for (A) initially demagnetized and
(B) initially partially magnetized ferromagnetic materials with
positive maximum magnetostriction λs.

from Bozorth [7], and is a generalization of that presented
by Flatau et al [8]. The 1E effect is illustrated in figure 1.
When Galfenol is mechanically loaded from a state of zero
stress and magnetization (shown by path A in figure 1), both
purely mechanical and magnetoelastic strain occur until the
material becomes magnetically saturated, after which only
purely mechanical strain occurs. Thus, Galfenol’s effective
elastic modulus varies while its magnetic state changes.

Since Galfenol has structural strength, it can be located
in the load path. Methods for incorporating Galfenol into
load-carrying structures are needed. A powerful technique for
seamlessly embedding smart materials into metal matrices
is ultrasonic additive manufacturing (UAM), also known as
ultrasonic consolidation. UAM is a new rapid prototyping
process for creating solid-state, metallurgical welding at
the interface between a thin metallic tape and a metallic
substrate. This is accomplished by applying a static, normal
compressive force between a cylindrical welding horn and
the tape–substrate pair while vibrating the horn laterally at
ultrasonic frequencies, as shown in figure 2. Like all solid-
state welding processes, metallurgical welding occurs below
the melting temperatures of the respective metals—roughly
35% of the melting temperature for UAM [9]. UAM therefore
provides the unique ability to either weld or encapsulate smart
materials, electronics, and fiber optics inside a metal matrix. A
Galfenol-Al 3003 composite manufactured via UAM is shown
in figure 3.

System-level modeling of magnetostrictive-based struc-
tures in relation to vibration control has been documented.
Mudivarthi et al [10] presented a 3D finite element model to
calculate the bidirectionally coupled magnetoelastic response
of a Galfenol unimorph sensor, including the 1E effect.
The model is static and did not consider the asymmetry in
Galfenol’s tension–compression behavior. Braghin et al [11]
developed a 1D model of uniaxial, magnetostrictive-based
actuators using a linear model of the Terfenol-D behavior.
Although the model is claimed to be valid for an actuation
bandwidth of 2 kHz, its scope is restricted to operation in
linear constitutive regimes and for negligible eddy currents.
Shu et al [12] developed a 1D dynamic model of a Galfenol
unimorph by coupling Euler–Bernoulli beam theory with
a linear constitutive model of Galfenol. In addition to the

Figure 2. Schematic of the UAM process.

Figure 3. Al 3003 composite manufactured by UAM containing an
embedded 0.05 cm× 1.27 cm× 7.62 cm Galfenol sheet.

linearity assumption on Galfenol’s behavior, this model did
not consider the effect of stress on the magnetostrictive
response. Zhou and Zhou [13] modeled the 1D nonlinear
vibration of a carbon fiber reinforced plastic composite
containing layers of Terfenol-D particles by coupling
Euler–Bernoulli beam theory with a nonlinear constitutive
model of Terfenol-D. They quantified the vibration reduction
caused by velocity feedback, and investigated the effect
of material properties, lamination scheme, and location
of Terfenol-D layers. Optimal vibration control occurred
when the magnetostrictive layer was located away from
the neutral axis of the composite. The 1E effect was not
investigated. Further, the underlying constitutive model for the
magnetostrictive material is less accurate than that of Evans
and Dapino [14], because it relies on curve fits to experimental
data to develop expressions for both magnetostriction and
magnetization. Scheidler and Dapino [15] modeled the
1D nonlinear vibration of a Galfenol-based metal-matrix
composite under cantilevered boundary conditions. Frequency
responses were approximated to investigate the tunability
of the composite’s resonance through control of the bias
magnetic field. The expression used to calculate the strain
in the Galfenol element is applicable to axial vibration,
but not bending vibration. The asymmetry in Galfenol’s
tension–compression behavior and the variation in the
material’s elastic modulus along the length of the beam were
not considered.

In this paper, a metal-matrix composite, like that
shown in figure 3, containing an embedded sheet of
Galfenol is considered. The objective of the paper is
to assess the controllability of the composite’s resonance
through bias field tuning of Galfenol’s elastic modulus. The
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Figure 4. Comparison of experimental and calculated (a) sensing and (b) actuation responses (experimental data taken from [14]).

nonlinear bending vibration of the composite is modeled
to quantify changes in the composite’s frequency response
due to variations in the excitation power amplitude and
the bias magnetic field. For computational purposes, the
composite is approximated as a simple mass–spring–damper
system, where the spring behaves nonlinearly due to the
stress and magnetic field-dependent elastic modulus of
Galfenol. The approach has the following advantages: (i) it
incorporates a fully coupled, nonlinear constitutive model of
Galfenol that is accurate for arbitrary stress and magnetic
field, (ii) it considers the variation in Galfenol’s elastic
modulus along the length of the composite, and (iii) it
includes the asymmetric tension–compression behavior of
Galfenol. Two boundary conditions, clamped–free (C–F) and
clamped–clamped (C–C), are considered. To optimize the
composite geometry for resonance tuning, a parametric study
is presented to determine the effect of Galfenol volume
fraction and of the location of Galfenol elements within the
composite.

2. Model development

The frequency domain response of the composite’s vibration
is desired to quantify the tunability of the composite’s reso-
nance. However, an eigenvalue problem cannot be formulated
for it, because the composite’s stiffness nonlinearity is state
dependent. Consequently, the frequency response must be
approximated by calculating the steady-state vibration in
the time domain and extracting the vibration amplitudes
at discrete excitation frequencies. The number of time
domain responses required to approximate the frequency
responses for the parametric studies is O(104), because
(i) ∼30 discrete frequencies are needed for smoothness
of the frequency responses, (ii) both forward and reverse
frequency sweeps are required, (iii) a wide range of operating
conditions (excitation power amplitude and bias magnetic
field) must be considered, and (iv) the independent parameter
(Galfenol volume fraction or location) must be varied.
As such, the system must be simplified for computational
efficiency. To preserve the complex constitutive behavior of
Galfenol, the composite is approximated as a single lumped
mass with an equivalent bending stiffness and constant
damping.

2.1. Galfenol constitutive model

Due to the nonlinearities of magnetostrictive materials,
namely magnetic saturation, magnetic anisotropy, and a nearly
quadratic magnetostriction dependence on magnetization,
linear models are accurate only for small amplitude operation
about a bias point. To describe the full-scale Galfenol
behavior, the 1D anhysteretic formulation of the efficient,
fully coupled Evans–Dapino (ED) model [14, 16] is used. This
model has been successfully used to quantify the 3D nonlinear
dynamic actuation of a Galfenol unimorph [17, 18] and the
major and minor stress-magnetization loops of a Galfenol
rod [19, 20].

The ED model calculates Galfenol’s magnetization and
strain as functions of magnetic field H = (H1,H2,H3)

T

and stress T = (T1,T2,T3,T4,T5,T6)
T. The ED model

is summarized below, and a condensed derivation is
shown in the appendix. Energy functions accounting for
magnetoelastic, applied magnetic field, and crystalline
anisotropy contributions are locally defined about each of
the easy crystallographic directions. The orientation of each
preferred magnetization direction in response to applied
stresses and magnetic fields is then calculated through energy
minimization. The volume fraction of magnetic domains
oriented in each of the preferred directions is then calculated
by an energy-weighted average so that lower energy directions
are favored. Finally, the macroscopic magnetization and strain
are calculated as the sum of the contribution from each
orientation weighted by the volume fraction of domains in
each orientation. The accuracy of the model is illustrated in
figure 4, where a comparison to experimental measurements
of a 〈100〉 textured Fe81.5Ga18.5 rod is shown. The ED model
can also be analytically differentiated to provide expressions
for the elastic modulus of Galfenol, which is shown in figure 5
as a function of stress and magnetic field.

2.2. Bending vibration model

Following the standard application of Newton’s second law,
the governing ODE for the composite beam represented as a
single degree of freedom resonator is

mü+ cu̇+ Keq(Hbias,T)u = mω2U2eiωt, (2)

where u is defined as the relative displacement between mass
and base, and harmonic base excitation with amplitude U2 and
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Figure 5. Variation in Galfenol’s linear elastic modulus calculated
using the ED model.

frequency ω is used,

u = u1 − u2 = u1 − U2eiωt. (3)

In (2) the spring is nonlinear due to the dependence of
Galfenol’s elastic modulus on the bias magnetic field (Hbias)
and bending stress (T). The magnetic field is assumed
homogenous throughout the composite. The damping ratio,

ξ =
c

2mωn
=

c

2m

√
m

Keq
, (4)

was held constant for all simulations. Using results from
Meirovitch [21], the equivalent spring constants for a C–F
beam subject to a tip load and a C–C beam subject to midspan
load are

KCF
eq (Hbias,T) =

3Eeq(Hbias,T)I(Hbias,T)

L3 (5)

and

KCC
eq (Hbias,T) =

192Eeq(Hbias,T)I(Hbias,T)

L3 , (6)

respectively, where L is the length of the beam. As such, u
represents the tip deflection of the C–F beam and the midspan
deflection of the C–C beam. The equivalent elastic modulus
of the composite Eeq is calculated as a function of the matrix
and average Galfenol elastic moduli (EM and EG) and volume
fractions (ξM and ξG) using the rule of mixtures [22],

Eeq(Hbias,T) = EG(Hbias,T)ξG + EMξM. (7)

The area moment of inertia I is calculated in the standard
manner after first homogenizing the composite by scaling the
Galfenol width (WG) to yield an equivalent section of matrix
material,

WGeq =
EG(Hbias,T)

EM
WG. (8)

Considering the stress variation in the beam and the
asymmetry in the material’s tension–compression behavior,
an average elastic modulus for the Galfenol element is
calculated. As seen in figures 4(a) and 5, respectively, the
magnetic flux in Galfenol and its elastic modulus vary almost
exclusively in the compressive stress regime. Thus, even for
Galfenol located at the neutral axis, the symmetric (zero

Figure 6. Average elastic modulus through the thickness of a
Galfenol element located at the neutral axis with Hbias = 2 kA m−1

(calculated using the ED model).

average) bending stress will yield an asymmetric elastic
modulus distribution through the Galfenol thickness. This
asymmetric distribution will change as the stress magnitude
varies, leading to a non-constant average elastic modulus
through the Galfenol element’s thickness. An example of this
variation in elastic modulus is shown in figure 6 as a function
of the maximum bending stress in a Galfenol beam.

Galfenol’s elastic modulus varies along the length of the
beam due to the position-dependent stress in the Galfenol
element. This variation is incorporated in the single degree
of freedom model of the composite by using an average value
of the stress in the element. As will be discussed in section 3,
the stress acting on the Galfenol element is calculated from its
strain using a numerical inversion of the ED model. Thus, an
average value of the strain is required.

The strain in the Galfenol element at a distance y from the
neutral axis is calculated from mechanics of materials as

S = −y
∂2w

∂x2 , (9)

where w(x) is the transverse deflection of the beam along its
length. This strain is evaluated at each time step by assuming
that the instantaneous beam deflection is due to a virtual, static
force F at the tip (for the C–F beam) or the midspan (for the
C–C beam). Under these conditions, the elastic curves of the
C–F and C–C beams are

wCF(x) =
1

2EeqI

(
FLx2

−
1
3

Fx3
)

(10)

and

wCC(x)

=



(4EeqI)−1
(
−

1
3 Fx3

+
1
4 FLx2

)
0 ≤ x ≤

L

2

(4EeqI)−1
(

1
3 Fx3

−
3
4 FLx2

+
1
2 FL2x− 1

12 FL3
)

L

2
≤ x ≤ L,

(11)
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respectively. The average curvature of the C–F beam is(
∂2w

∂x2

)CF

avg
=

FL

2EeqI
. (12)

Setting x = L in (10) to relate the calculated tip deflection uCF

to the virtual tip force and using (12), the strain in the Galfenol
element (9) for the C–F beam can be rewritten as

SCF
= −

3uCFy

2L2 . (13)

For the C–C beam, the average curvature is zero. Despite this,
the average elastic modulus of the Galfenol element will still
vary even if it is also located at the beam’s neutral axis. For
the C–C beam, the average curvature over the middle half and
over the outer quarters of the beam,(

∂2w

∂x2

)CC

avg1
=
−FL

16EeqI
(14)

and (
∂2w

∂x2

)CC

avg2
=

FL

16EeqI
, (15)

respectively, are both used. Setting x = L/2 in (11) to relate
the calculated midspan deflection uCC to the virtual midspan
force and using (14) and (15), the strain in the Galfenol
element (9) over these sections of the C–C beam can be
rewritten as

SCC
1 =

12uCCy

L2 (16)

and

SCC
2 = −

12uCCy

L2 . (17)

In summary, the change in Galfenol’s elastic modulus along
the length of the beam is incorporated into the proposed model
using a single average strain (13) for the C–F beam and two
average strains (16) and (17) for the C–C beam.

The variation in Galfenol’s elastic modulus through the
element’s thickness is considered by averaging the elastic
moduli that are calculated at 2, 4, 6, 8, and 10 equally-spaced
locations through the thickness. The number of locations
necessary for an accurate approximation was determined
through a small parametric study. The independent variables
in the study were the bias magnetic field (values of 0, 2, and
4 kA m−1) and the location of the Galfenol element (at the
neutral axis, 75% of the element above the neutral axis, and
75% of the element below the neutral axis). For each case, the
force applied to the beams was varied such that the maximum
stress in the Galfenol element varied between 0 and 350 MPa.
A uniform grid of points was applied to the Galfenol element
(100 points through its thickness and 100 points along its
length). At each grid point, the strain was calculated using (9).
The true average elastic modulus in the Galfenol element was
taken as the average over this 100 × 100 grid. An example
comparison between the true average and the approximated

Figure 7. Average elastic modulus of a Galfenol element located at
the C–F beam’s neutral axis calculated from 2 (+), 6 (©), and 10
(�) locations through the element’s thickness compared to the true
average (—) (Hbias = 4 kA m−1; 4 and 8 location averages not
shown for clarity).

Table 1. Average RMS error for approximating the average elastic
modulus through the thickness and along the length of the Galfenol
element using 2, 4, 6, 8, and 10 equally-spaced locations through its
thickness.

Number of locations

Average RMS error (GPa)

C–F beam C–C beam

2 4.06 2.41
4 2.40 1.70
6 1.80 1.49
8 1.80 1.54

10 1.82 1.62

averages is shown in figure 7. For each case, the RMS error
was calculated relative to the true average. The average RMS
error over all of the test cases is tabulated in table 1 for each
approximation.

Note that the approximations for the C–C beam average
twice as many elastic moduli as for the C–F beam, because
two average strains (and therefore two elastic moduli) are
needed to describe the elastic modulus variation along the
C–C beam’s length. Considering accuracy and computational
efficiency of the composite’s vibration model, 6 and 4
averages through the Galfenol element’s thickness were used
for the C–F and C–C beams, respectively.

3. Nonlinear solution procedure

The solution procedure is graphically depicted in figure 8.
The inner loop approximates the nonlinear time domain
response of the composite beam through linearization of the
nonlinear ODE (2) by updating the equivalent stiffness for
each time step. The ED model is used to update Galfenol’s
elastic modulus, which requires knowledge of the stress and
magnetic field in the Galfenol element. The magnetic field
is a known input. However, due to the bidirectional coupling
present in the Galfenol element, direct calculation of the stress
from the beam deflection is not possible. Instead, stress must
be calculated from the bias magnetic field and strain in the
Galfenol element by numerically inverting the ED model. In
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Figure 8. Solution procedure to approximate a single, potentially
hysteretic frequency response.

this paper, the inversion is performed using the quasi-Newton
SR1 algorithm [17]. Therefore, for each time increment, the
strain, stress, and elastic modulus must be calculated at each
of the 6 and 8 averaging locations for the C–F and C–C beams,
respectively. Each cycle of the excitation is divided into 50
differential time steps to maintain accuracy and smoothness.
Solutions are obtained for 15 cycles of the base excitation,
which was determined a posteriori to ensure that the steady
state was reached.

The outer loop approximates the frequency response of
the composite’s nonlinear vibration. The amplitude ratio is
calculated as the steady-state tip or midspan displacement
divided by the excitation amplitude. Forward and reverse
excitation frequency sweeps are necessary due to the
nonlinearities in the system, which may result in multiple,
stable periodic orbits of the composite’s vibration for a single
set of operating conditions. When this occurs, it is seen in the
frequency response as hysteresis in the steady-state vibration
of the system. This also explains the need for enforcing
continuity of state (i.e., equating the initial state of the next
time domain response with the final state of the current
response) at the beginning of each time domain simulation.

A hysteretic frequency response obtained using the
proposed model is shown in figure 9. Throughout each
frequency sweep, the input power amplitude |P| = |Fv| is held

Figure 9. Hysteretic frequency response of the C–F Galfenol-Al
composite, Hbias = 1 kA m−1, |P| = 0.0119 J, and ξG = 0.82.

constant by defining the excitation amplitude as

U2 =

√
|P|

mω3 , (18)

which can be derived from (2) and (3). This is a more
physically accurate operating condition than that used by
Scheidler and Dapino [15]. This numerical simulation is
equivalent to a forward and reverse stepped sine experiment
that includes the first vibration mode.

4. Model results

The entire range of composite behavior is described by the
excitation magnitude and the bias magnetic field. Thus, a
complete characterization of the stiffness tuning behavior, and
therefore natural frequency tuning behavior, is obtained by
considering a range of input power amplitudes (1 × 10−3 to
1 × 104 J) that leads to Galfenol stresses between 50 and
−50 MPa and bias magnetic fields (0 to 13 kA m−1)
capable of magnetically saturating the Galfenol element over
this stress range. The 1D strain response of Galfenol is
symmetric with respect to magnetic field. Therefore, negative
bias magnetic fields do not need to be considered. To
accurately approximate the natural frequency for each case,
both the forward and reverse frequency sweeps were curve
fit with cubic splines. The natural frequency was taken as the
frequency at which the maximum amplitude ratio occurs in the
interpolated data. The natural frequency of vibration for every
combination of input power amplitude and bias magnetic
field was obtained in this manner. The resulting frequencies
were normalized with respect to the maximum frequency to
show the percentage changes in resonance frequency from the
saturated (stiff) case.

In order to determine the geometry that maximizes the
stiffness tunability of the composite, the Galfenol volume
fraction and its offset from the horizontal midplane of
the composite’s cross section were varied. Surface plots
of the normalized natural frequency were generated for
each case; these plots are presented as a top view of
the surface in figures 10, 11, 13, and 14. Results are
presented for the model parameters given in table 2; the
material properties for Galfenol were obtained through a
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Figure 10. Normalized natural frequency of the C–F composite as a function of the operating conditions for Galfenol volume fractions of
(a) 10%, (b) 28%, (c) 46%, (d) 64%, (e) 82%, and (f) 100% (top views shown, Galfenol embedded at the neutral axis). Natural frequencies
normalized with respect to the saturated (stiff) case.

Table 2. Model parameters.

FeGa Matrix (Al) Composite

Ms (T) λ100 (×10−6) Kk (kJ m−3) � (J m−3) E (GPa) ξ L (cm) m (kg) Width (cm) Thickness (cm)

1.3787 157 2.71× 104 776.73 68.9 0.1 2.54 0.058 1.65 0.0762

least squares optimization routine using the anhysteretic ED
model and experimental measurements of a highly-textured,
polycrystalline Fe81.6Ga18.4 Galfenol rod [20].

For the parametric study of Galfenol volume fraction,
the Galfenol element was located at the horizontal midplane
of the composite’s cross section, while its volume fraction
was varied between 10% and 100% (i.e., the limiting case
of no surrounding matrix). A surface plot of the composite’s
normalized natural frequency is shown for each case in
figures 10 and 11 for the C–F and C–C beams, respectively.
The surface plots for negative bias magnetic fields are simply
reflections about the Hbias = 0 line of those shown in

figures 10 and 11. The maximum resonance tunability as a
function of the volume fraction is summarized in figure 12.

The parametric study of Galfenol’s location was
conducted by holding the volume fraction of Galfenol
constant at 10%, while varying Galfenol’s location vertically
in the composite cross section. Four different cases
were modeled: (i) the reference case—Galfenol midplane
coincident with the composite midplane, (ii) Galfenol
midplane shifted upward 33% of the limiting value, (iii)
Galfenol midplane shifted upward 66% of the limiting value,
and (iv) the limiting case—top surface of Galfenol coincident
with the top surface of the composite. A surface plot of
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Figure 11. Normalized natural frequency of the C–C composite as a function of the operating conditions for Galfenol volume fractions of
(a) 10%, (b) 28%, (c) 46%, (d) 64%, (e) 82%, and (f) 100% (top views shown, Galfenol embedded at the neutral axis).

Figure 12. Effect of Galfenol volume fraction on the maximum
tunability of the vibration absorber’s resonance for C–F and C–C
boundary conditions (Galfenol embedded at the neutral axis).

the composite’s normalized natural frequency is shown for
each case in figures 13 and 14 for the C–F and C–C
beams, respectively. The maximum resonance tunability as a

function of Galfenol’s offset from the composite midplane is
summarized in figure 15.

5. Discussion

For a given input power amplitude, semi-active control
of the vibration absorber’s resonance is accomplished by
regulating the composite’s resonance between its minimum
and maximum frequencies through changes in the bias
magnetic field. The results show that nearly uniform
controllability occurs below a threshold of the input power
amplitude (i.e.,∼5×10−1 J for the C–F boundary conditions,
ξG = 0.1, and Galfenol located at the neutral axis). The
maximum tunability of the vibration absorber’s resonance
also occurs in this region, and can be achieved with relatively
weak magnetic fields of 8 kA m−1 or less.

Above the threshold of the input power amplitude,
the composite’s capacity for resonance tuning decreases,
and eventually the composite’s natural frequency becomes
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Figure 13. Normalized natural frequency of the C–F composite as a function of the operating conditions for Galfenol embedded at the
(a) reference or minimum, (b) 33%, (c) 66%, and (d) 100% or maximum locations (top views shown, ξG = 0.1).

Figure 14. Normalized natural frequency of the C–C composite as a function of the operating conditions for Galfenol embedded at the
(a) reference or minimum, (b) 33%, (c) 66%, and (d) 100% or maximum locations (top views shown, ξG = 0.1).

uncontrollable. Despite this, some controllability exists
over a wide range (∼3 to 5 orders of magnitude) of
the power amplitude of the excitation. The decrease in
controllability is attributed to the increased stress on the
Galfenol element as the power amplitude increases. Galfenol

becomes magnetically saturated when subject to sufficiently
large compressive stresses, causing the elastic modulus to
saturate (see figure 5). Thus, the expression,

lim
|T|→∞

EG(t) = Esaturated
G ≈ 58 GPa, (19)

9
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Figure 15. Effect of Galfenol’s vertical location in the composite
on the maximum tunability of the vibration absorber’s resonance for
the C–F and C–C boundary conditions (ξG = 0.1).

holds for 1D Galfenol elements. This tendency toward a
constant elastic modulus is slowed by increasing the bias
magnetic field to counteract increases in the stress amplitude.
This explains why the location of the minimum resonance in
figures 10 and 11 shifts to higher magnetic fields as the input
power amplitude increases above the threshold value.

From the above reasoning, it can be postulated that the
effect of the input power amplitude will depend upon the
composite’s geometry. The power amplitude threshold will be
lower for more compliant composites, and vice versa. This is
supported by the results of the parametric studies. As seen
in figures 10 and 11, the threshold decreases as Galfenol
volume fraction increases, because the aluminum matrix is
replaced with a softer material. Similarly in figures 13 and 14,
the threshold decreases as Galfenol is shifted away from the
neutral axis due to a decrease in the composite’s area moment
of inertia and an increased bending stress on the Galfenol
element. Thus, while the results are obtained for the single
set of composite parameters given in table 2, the topology of
the resonance surfaces for arbitrary composite geometries will
be equivalent to those presented in this paper, but scaled along
the input power axis.

The magnitude of the resonance tunability and the effect
of the bias magnetic field on the surfaces will be altered if the
Galfenol properties given in table 2 are modified. The material
anisotropy constants, Kk, and saturation magnetization, Ms,
have a minimal effect on Galfenol’s elastic modulus behavior
shown in figure 5. However, the averaging factor � (which
accounts for material imperfections) and the magnetostriction
constant λ100 directly control the 1E effect. Referring to
figure 1, the smoothness of the transition between the two
linear elastic branches is controlled by �, while λ100 controls
the width of the transition. As such, the 1E effect is
enhanced as the magnetostriction constant increases and as
the amount of material imperfections (�) decreases. Only
small improvements over the � value of 776.73 used in this
paper can be expected, as evidenced by the reported values
of � for Galfenol in the literature (500 to 2100 [14, 16, 23]).
A λ100 value of 157 × 10−6 is used in this paper, yielding
E0 = 28.6 GPa. From (1), this results in 1Emax ≈ 100%. If
the maximum λ100 value for polycrystalline Galfenol—187×
10−6 [3]—is instead used, then E0 = 23.5 GPa and 1Emax ≈

150%. Therefore, the resonance tunability results presented in
this paper are relatively conservative estimations of the true
potential of Galfenol-based active composites.

The effect of the boundary conditions on the natural
frequency surfaces is small for both parametric studies. The
thresholds of the input power amplitude are lower for the
C–F boundary condition due to the composite’s increased
compliance, as discussed above. As seen in figures 12 and
15, the boundary condition has an insignificant effect on
the maximum resonance tunability in all cases. For the C–C
beam, as the magnetic field increases a compressive blocking
stress develops to constrain the Galfenol element and prevent
magnetostriction along the axis of the beam. It is well known
that this will result in an effective softening of the beam with
respect to transverse vibration, and will thus contribute to
the resonance tuning response of the vibration absorber. This
effect is not included in the proposed model and should be
investigated in future studies.

6. Conclusions

This paper investigated the semi-active control of a
magnetically-tunable vibration absorber’s resonance fre-
quency. The vibration absorber that was considered is a
metal-matrix composite containing the magnetostrictive ma-
terial Galfenol with an aluminum matrix. For computational
purposes, the composite was modeled as a single degree
of freedom system. The complex constitutive behavior was
included by using a fully nonlinear, anhysteretic model of
Galfenol from the literature. Despite the one-dimensional sim-
plification, the variation in Galfenol’s elastic modulus along
the length and through the thickness of the Galfenol element
was retained by considering the stress distribution throughout
the element and the asymmetric tension–compression be-
havior of Galfenol. Two boundary conditions—cantilevered
and clamped–clamped—were imposed on the composite.
Resonance tunability of the absorber was investigated by
computing its frequency response to harmonic base excitation
as a function of the operating conditions—input power
amplitude and bias magnetic field. Parametric studies were
presented to characterize the effect on resonance tunability of
Galfenol volume fraction and Galfenol’s location within the
composite.

Results and conclusions from the study are summarized
as follows.

• Nearly uniform controllability of the vibration absorber’s
resonance frequency is possible below a threshold of
the input power amplitude. The resonance frequency is
modulated between its minimum and maximum using
weak magnetic fields of 0 to 8 kA m−1. As the input power
amplitude increases above the threshold, the controllability
decreases and stronger magnetic fields are required to
realize the control.
• The boundary condition imposed on the composite was

found to have a minimal effect on its resonance tuning
behavior. However, the model does not include the effect of
axial loading, which is well known to affect the resonance
frequency of transverse vibration in beams.

10



Smart Mater. Struct. 22 (2013) 085015 J J Scheidler and M J Dapino

• When the Galfenol element is located at the neutral axis,
the maximum resonance tunability varies between 2.5%
and 49% as Galfenol volume fraction increases from 10%
to 100%.
• When Galfenol volume fraction is fixed at 10%, the

maximum resonance tunability varies between 2.5% and
5.5% as the Galfenol element is offset from the composite’s
midplane.
• It was reasoned that the resonance tuning results presented

in this paper are conservative estimates of the true potential
of Galfenol-based vibration absorbers, and can be applied
to systems with differences in composite geometry and
certain Galfenol material properties.
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Appendix. Galfenol constitutive model (ED model)

In this model, energy expressions are derived to describe
the rotation of each magnetically easy crystal direction, or
direction in which the material prefers to magnetize, resulting
from application of stress T and magnetic field H. Table A.1
summarizes the energy terms for the kth magnetic domain
orientation [14], where ck are the magnetically easy crystal
directions in the zero stress and zero magnetic field state, Kk

and Kk
0 are material anisotropy constants, Ms is the saturation

magnetization for the material, and µ0 is the magnetic
permeability of free space.

The total free energy Gk is represented in matrix form as

Gk
=

1
2 mk

· Kkmk
−mk

· Bk
+

1
2 Kk
+ Kk

0, (A.1)

where the magnetic stiffness matrix Kk and force vector Bk

are

Kk
=

Kk
− 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 Kk
− 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 Kk
− 3λ100T3

 , (A.2)

Bk
=

[
ck

1Kk
+ µ0MsH1 ck

2Kk
+ µ0MsH2 ck

3Kk
+ µ0MsH3

]T
,

(A.3)

Table A.1. Energies of the magnetic domain orientations in the ED
model.

Anisotropy
Magnetomechanical
coupling

Zeeman
(magnetic field)

1
2 Kk
|mk
− ck
|
2
+Kk

0 −Sk
m · T −µ0Msmk · H

and λ100 and λ111 are magnetostriction constants. Magnetic
domain orientations mk are calculated by minimizing each
energy expression while constraining mk to have unity norm,
resulting in

mk
= (Kk)−1

[
Bk
+

1− ck · (Kk)−1Bk

ck · (Kk)−1ck
ck
]
. (A.4)

The anhysteretic volume fractions ξ k
an of idealized magnetic

domains oriented along each of the easy directions is then
calculated by an energy-weighted average,

ξ k
an =

exp(−Gk/�)∑r
k=1 exp(−Gk/�)

, (A.5)

where � is the experimentally-derived averaging factor to
account for material defects, and r is the number of easy
crystal directions, which depends upon crystal symmetry.
Finally, bulk magnetization M and magnetostriction Sm are
calculated as the sum of the contribution from each orientation
(i.e., Msmk) weighted by the volume fraction of domains in
each orientation ξ k

an,

M = Ms

r∑
k=1

ξ k
anmk, Sm =

r∑
k=1

ξ k
anSk

m. (A.6)

The bulk strain S is then calculated as the sum of
magnetostriction and mechanical strain.
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