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Abstract
We consider the modeling of strains generated by magnetostrictive materials in response to applied magnetic

fields. The active or external component of the strain is due to the rotation of magnetic moments within the material
to align with the applied field. This is characterized through consideration of the Jiles-Atherton mean field theory for
ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. The second
component of the strain reflects the passive or internal dynamics of the rod as it vibrates. This is modeled through
force balancing which yields a wave equation with magnetostrictive inputs. The validity of a combined transducer
model is illustrated through comparison with experimental data.
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1. Introduction
This paper addresses the modeling of certain dynamics effects in magnetostrictive transducers. Such transducers

utilize core materials, such as Terfenol-D, which have stoichiometries that promote both actuation and sensing.
These capabilities are provided by the dual magnetostrictive effect; (i) stresses in the material produce measurable
magnetic fields and (ii) the application of magnetic fields generates large strains in the material. By utilizing these
properties, magnetostrictive transducers have been designed for applications ranging from ultrasonic transduction to
vibration control in heavy structures.

At low to moderate drive levels, the magnetostrictive effects are relatively linear, and linear models and control
laws have proven successful. At higher drive levels, however, the materials exhibit significant hysteresis and material
nonlinearities which must be quantified before the materials can be employed to their full capacity. In dynamics
applications, the materials also exhibit AC losses and resonance effects due to inherent magnetomechanical coupling
within the material.

To illustrate issues which must be considered when modeling magnetostrictive transducers, we consider the
prototypical transducer depicted in Figure 1. As detailed in [1], this design is typical for current control applications.
The primary components of the actuator consist of a cylindrical magnetostrictive rod, a wound wire solenoid, an
enclosing permanent magnet and a prestress mechanism. The rod is constructed so that magnetic moments are
primarily oriented perpendicular to the longitudinal rod axis. The number of perpendicular moments and compression
in the rod are further increased by the prestress mechanism. The application of current to the solenoid then produces
a magnetic field which causes the moments to rotate so as to align with the field. The resulting strains and forces
provide the actuator capabilities for the transducer. The capability for attaining bidirectional strains and forces is
provided by a magnetic bias generated by either the surrounding permanent magnet or an applied DC current to
the solenoid.

For control applications, it is necessary to accurately quantify the relationship between the current 1(t)applied
to the solenoid and the strains e(t) generated by the transducer. The strains contain two components which must
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be modeled. Active or external strains, which are generated when moments in the material rotate to align with an
applied field, provide the material with its actuator capabilities. We mode! this component iii two steps. in the first,
the Jiles—Atherton mean field theory for ferromagnetic hysteresis is modified to provide an energy—based relationship
between the current 1(t) applied to the solenoid and the resulting magnetization Al. A quadratic iiiouieiit rotation
model then yields the output magnetostriction (t). As demonstrated in [2], the magnetostriction provides adequate
fits to experimental strain data at low to moderate drive levels. At hugh input levels, however, it is inadequate
since it, incorporates only active strains and neglects material or passive strain effects. To model these effects, force
balancing is used to derive a dynamic model quantifying the rod dynamics. Tins PDE model has the form of a wave
equation with niagnetostrictive inputs and boundary conditions which model the prestress mechanism. Time solution
to this systeni provides the rod displacements and corresponding total strains. As demonstrated through comparison
with experimental data, this provides a model which characterizes the inherent magnetic hysteresis amid accurately
quantifies the strains and displacements output by the transducer.
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Figure 1. Cross section of a prototypical Terfenol-D magnetostrictive transducer.

2. Magnetization and Magnetostriction Models
The model which we employ for the magnetic component of the system is based upon the mean field theory of Jiles

and Atherton [3, 4, 5, 6]. This theory is based upon the observation that moments in ferromagnetic materials, such
as Terfenol-D, are highly aligned in regions termed domains at temperatures below the Curie point. Magnetization
in such materials can then be described through the quantification of moment distributions within domains and in
the transition regions between domains which are termed domain walls.

The reorientation of moments within domains produces a hysteresis-free (anhysteretic) magnetization Al7, which
is completely reversible. Such magnetization curves are rarely observed in laboratory materials, however, due to the
presence of defects or second-phase materials (e.g., Dysprosium in Terfenol-D) which 1)rovide niiiiiiiiuhii energy states
that impede domain wall movement and subsequent bulk moment reorientation. The theory of Jiles and Atherton
quantifies the observed magnetization in terms of reversible Mre,, and irreversible Aijrr magnetization coniponents
defined by the domain wall energy. For low field variations about an equilibrium level, the imiagnetizatioli is reverSil)le
since the domain walls remain pinned. At higher input levels, the walls attain sufficient energy to break time pilmnuig
sites (move out of the minimum energy state) and intersect remote pinning sites. This leads to an irreversible change
in magnetization and provides a significant mechanism for hysteresis. The reader is referred to [3, 7] for additional
details and discussion of other experimental phenomena, such as Barkhausen discontmuities, winch are attributed
to domain wall effects. This approach yris initially employed in [2, 8, 9] to model mnagnetostrictive transducers. We
summarize here pertinent details and indicate extensions from the original model.

To quantify Man, Mret and Alj,., it is necessary to first determine the effective field Hoff winch acts upon
imiagnetic moments in the Terfenol rod. As detailed in [3, 4], is (lependent upon the magnetic field generated
by tIme solenoid, magnetic moment interactions, crystal and stress anisotropies, temperature and time transducer
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architecture (e.g. , end effects) . In [2, 3] , it is illustrated that for large prestresses, stress anisotropies dominate
crystalline anisotropies; hence for this model, crystalline anisotropies are neglected. Under the assumption of fixed
temperature and quasi-static operating conditions, the effective field is then modeled by

Heff(t,X) = H(t,x) + aM(t,x) + H(t,x)

where x denotes the longitudinal coordinate. Here H is the field generated by a solenoid with n turns per unit length,
aM quantifies the field due to magnetic interactions between moments, and H is the field due to magnetoelastic
domain interactions. The parameter a quantifies the amount of domain interaction. For the prestress mechanism
under consideration, it is demonstrated in [2] that the approximation 14 = JM provides an adequate average
of the stress contributions to the effective field. Here A and M8 respectively denote the saturation magnetostriction
and magnetization while is the free space permeability. The magnetic interactions and stress coefficient can then
be combined into the single coefficient = a + which must be estimated for a given system.

Empirical studies have indicated that under a variety of operating conditions, a reasonable approximation to the
effective field is provided by

Hei1(t,) = nI(t)cp(x) + EM(t) (1)

where 1(t) is the current to the solenoid and '(x) is an empirically-determined function which incorporates transducer
anomalies, such as edge effects, that produce nonuniform field characteristics along the length of the rod. It should
be noted that while the expression (1) is time-dependent, it must be restricted to low frequencies since the present
model does not incorporate AC losses. The extension of this model to incorporate eddy current losses is under
investigation.

For a computed effective field Heff , Boltzmann statistics are used to quantify the anhysteretic magnetization in
terms of the Langevin function

Man(t,X) = M [coth (Heii(tX))
a ] (2)a Heff(t,X)

The constant a = where kB 5 Boltzmann's constant, N denotes the domain density and kBT represents the
Boltzmann thermal' energy, is treated as a parameter to be identified since N is unknown.

As detailed in [3, 4], quantification of the energy required to break pinning sites then yields the expression

8Mirr dl Man(t, x) — Mirr(t,x)
(t x) = —ço(x) . (3)at dt kS — r (+ \ M (t x1I an , / zrr , jj dM

for the differential susceptibility of the irreversible magnetization curve. The constant k has the form k = 2,t2c)
where (p) is the average density of pinning sites, (en) is the average energy for 1800 walls, c is a reversibility coefficient,
and m is the magnetic moment of a typical domain. This parameter provides a measure of the average energy required
to break pinning sites and is also treated as a parameter to be estimated since (p), c and are unknown. The
parameter 6 is defined to have the value +1 when > 0 and —1 when < 0 to guarantee that pinning always
opposes changes in magnetization.

The reversible magnetization quantifies the degree to which domain walls bulge before attaining the energy
necessary to break the pinning sites. To first approximation, the reversible magnetization is given by

Mrev(t,X) = C[Man(t,X) — Mirr(t,)] (4)

(see [4]). The reversibility coefficient c can be estimated from the ratio of the initial and anhysteretic differential
susceptibilities [5] or through a least squares fit to data.

The total magnetization is then given by

M(t,x) = Mrev(t,X) + Mirr(t,X) (5)

where Mirr and Mrev are defined in (3) and (4) and the anhysteretic magnetization is given by (2). For imple-
mentation purposes, it is necessary to numerically integrate the expression (3) to obtain Mjrr. For the results in
Section 4, this was accomplished via Euler's method. If higher accuracy is required, methods such as a trapezoid
rule or Runge-Kutta method can be employed.

200

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



The final aspect of the magnetization model concerns the characterization of the magnetostriction A in
terms of the magnetization M. Because the magnetostriction indicates the relative change in length of the material
from the ordered, but unaligned state, to the state in which domains are aligned, it provides a measure of the external
strains generated by the material. As detailed in [3], consideration of the potential energy for the system yields

A(t,x) = M2(t,x) (6)

as a first approximation to the relationship between the magnetization and magnetostriction. Because ) is dependent
upon the operating conditions (e.g. , the initial orientation of moments), it has sufficient variability to warrant
estimation for individual transducers.

3. Terfenol Rod Dynamics
The expression (6) quantifies the external strains generated by the Terfenol rod in response to an applied current.

In this section, we outline a model and approximation method for the rod dynamics with the strain A as an input.
This provides a partially coupled model which incorporates both structural dynamics and magnetic hysteresis.

3.1. Rod Model
For modeling purposes, we consider a rod of length L with cross section A and longitudinal coordinate x. The

density, Young's modulus and internal damping coefficient are denoted by p, E and CD, respectively, while u(t, x) is
used to denote inplane displacements in the longitudinal direction. The left end of the rod (x =0) is assumed fixed
while the prestress spring and attached mass at the opposite end are modeled by general elastic boundary conditions
with an attached point mass.

Force balancing yields the modeling equation
D2u

pA—i- =at ax
where N0 = — Next denotes the general inplane force resultant. Under the assumption of small displacement,
linear elasticity and Kelvin-Voigt damping, the passive (internal) and active (external) force resultants are given by

0u= EA— + CDA
ôx Dx0t

Next EAA,

respectively.
The fixed end condition is modeled by the boundary condition u(t, 0) = 0 . To obtain general elastic conditions at

x = L, we consider an infinitesimal section from the rod end having the orientation depicted in Figure 2. The attached
mass is denoted by ML while the translation spring has stiffness kL and internal damping CL . Force balancing for
the infinitesimal edge element then yields the elastic boundary condition

ôu
N0(t,L) + kLU(t,L) + CL—-(t,L) = —ML—-(t,L)

(a more general discussion regarding the derivation of general elastic boundary conditions can be found in [10]).
When combined, the strong form of the model, with boundary conditions, is

D2u 9N0
pA-=
( u(0,t)=0 (7)

= 92u
N0(L, t) kLu(t, L) CL (t, L) ML (t, L).

We point out that a similar modeling approach was employed by Horn and Shankar [11] for electrostrictive rods.
They employ Fourier analysis to approximate the solution while we consider a corresponding weak formulation and
finite element analysis to approximate the displacements.
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To define a weak or variational form of the model, the state u is considered iii the state space N = L2 (0, L) and
the space of test functions is taken to be V = H(0. L) E { H' (0, L) I 5(0) = 0). Multiplication by test functions
followed by integration then yields the weak form

1L 4d = — fLE4Duü 1 —
1L

(lx + f EA (IX
Ot— Dx Ox OOt dx Ox

(8)

—

[A;Ln(t
L) + cL (t, L) + ML (t, L)] (L)

for all E I . It should he noted that in this form, displacements and test functions are (liflerelitiated only once
compared with the second derivatives required in the strong form. Tins reduces the smoothness requiremiments on the
finite element basis when constructing an approximation method. Tins structural model is summarized along with
the previously—defined magnetization model in Algorithm 1.

+u 1

KLU

MLIN tot _____ _____Rod

x=L C1--

Figure 2. Orientation of spring forces, edge reactions and resultants for time Terfenol rod.

3.2. Approximation Method
To approximate the solution of (8), we consider a Galerkin discretization in space followed by a finite-difference

approximation of the resulting temporal system. To this end, we consider a uniform partition of the interval [0, L]
with points x = ih, i = 0, 1, . , N and stepsize ii = L/N where N denotes the nuniber of suhintervals. The spatial
basis {&}i is comprised of linear splines, or 'hat functions,' of the form

(x — x_,) , x,1 <x < x,
j(x) = (x — x) , x < x < xi , i 1,. . . , N — 1

0 , otherwise

1 1 (x — x_,) ,5z(x) = -
h 0 , otherwise

(see [12] for details). A general basis function g' and final btnsis function /N are plotted in Figure 3.
Time solution u(t, x) to (8) is then approximated by the expansion

uN(tx)

in the suhspace H' = span{ } . It should he noted that through tIme construction of time basis functions, the
approximate solution satisfies u''(t, 0) = 0 and allows arbitrary displacements at x = L.
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H(t, x) = nI(t)ço(x)

He1 f(t,X) = H(t,x) + aM(t)

Man(t,X) = M [coth (ff(tX)) — (He1t,X))]External Mag-
netization and ôMirr dl Man(t, x) — Mirr(t,x)

(x). 1 dM,.,.Magnetostric-
(t, x) = flftO k6 — &{Man(t, x) — Mirr(t,x)jr

tion
Mrev(t, x) = C[Man(t, x) —Mirr(t,x)}

M(t,x) = Mrev(t,X) + M(t,x)

A(t,x) = A
M2(t,x)

Dynamics of
1L pA dx = —

L
&2uaq51L EA dx — I CDA— dx +

J0 DxOx J axatax I E.j AA dxax
Terfenol rod

—
32u

[kLu(tfl+CL(tL)+ML(tL)] (L)

Algorithm 1. Time-dependent model quantifying the output magnetostriction A(t, x) and rod displacement u(t, x).

A semi-discrete matrix system is obtained by considering the approximate solution uN(t, x) in (8) with the basis
functions employed as test functions (this is equivalent to projecting the system (8) onto the finite dimensional
subspace HN). This yields the second-order time-dependent vector system

MtT(t) + Cit(t) + KfZ(t) = f(t) (9)

where iZ(t) = {u1 (t), • • • , UN(t)}. The mass, stiffness and damping matrices have the components

1L

I pAq5q dx , i Ti and j
[M] =

f pAçqdx+ML ,
0

J EAq5qdx , i ri and j
=

L

f EA dx + kL , i = n and j =
0

J CDAq5Zcb3 dx , i n and j
[C] = L

f CDA dx + CL , i = n and j =
0
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while the force vector is defined by

[f(t)] = / EAA(t,x)Ø(x) dx
Jo

(here' denotes a spatial derivative). With the definitions (t) = [i7(t), it(t)]T,

0 I
A = -M1K -M1C = -M'f(t)]'ff(t)

[

0

the second-order system (9) can be posed as the first-order system

ff(t) = Ag(t) + 1(t)
=

= A + P {Pt +
7o =

where t3 = jI.t and jj appoximates il(t3). The matrices

A=[I_A][I+A] , =t{I_A]

= A + JP(t)
=

Figure 3. Linear basis functions (a) çi5(x) and (b) q5N(x).

(10)

where the 2N x 1 vector 17o denotes the projection of the initial conditions into the approximation space.
The system (10) must be discretized in time to permit numerical or experimental implementation. The choice

of approximation method is dictated by accuracy and stability requirements, storage capabilities, sample rates, et
cetera. A trapezoidal method was employed when experimentally implementing the method since it is moderately
accurate, is A-stable, and requires minimal storage when implemented as a single step method. For temporal stepsizes
zt, a standard trapezoidal discretization yields the iteration

(11)

need only be created once when numerically or experimentally implementing the method. This yields approximate
solutions having 0 (h2 ,(t)2) accuracy. For applications in which data at future times ti is unavailable, the
algorithm (11) can be replaced by the modified trapezoidal iteration

While this decreases slightly the temporal accuracy, for large sample rates with correspondingly small stepsizes Lit,
the accuracy is still commensurate with that of the data.
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4. Experimental Validation
As summarized in Algorithm 1 , the magnetization model (5), magnetostriction model (6) and PDE (8) can be

combined to yield time-dependent displacement values of the Terfenol rod for all points along its length in response
to an input current 1(t) to the solenoid. This model incorporates magnetic hysteresis, nonlinear strain properties
and the coupling between the external strains generated by the material and the dynamics of the rod. In its present
form, however, the model is not fully coupled since it does not yet incorporate the dynamic stress effects on the
effective field and ensuing magnetization. This topic is under current investigation.

For the results which follow, experimental data was collected from a broadband transducer developed at Iowa State
University (the general configuration of the transducer can be noted in Figure 1). A solid Terfenol-D (Tb0.3 Dyo.7Fei.9)
rod having a length of 115 mm (4.53 in) and diameter of 12.7 mm (0.5 in) was employed in the transducer.
Mechanical prestresses to the rod were generated by a variable prestress bolt at one end of the transducer and
Belleville washers fitted at the opposite end of the rod. Surrounding the rod were two coils consisting of an inner
single layer 150-turn pickup coil and a multi-layer 900-turn drive coil. A current control amplifier (Techron 7780)
provided the input to the drive coil to produce an applied AC magnetic field and DC bias as necessary. The reference
signal to this amplifier was provided by a Tektronix spectrum analyzer and the applied magnetic field H generated
by the drive coil had a frequency of 0.7 Hz and magnitude up to 70 kA/m.

A cylindrical permanent magnet surrounding the coils provided the capability for generating additional DC bias
if necessary. This permanent magnet was constructed of Alnico V and was slit to reduce eddy current losses. Note
that for the experiments reported here, biases generated in this manner were unnecessary and the permanent magnet
was demagnetized to obtain unbiased data.

To determine a function p(x) (see (1)) which characterizes transducer anomalies, such as end effects, an axial
Hall effect probe was used to map the flux density and corresponding field along the length of the rod. The resulting
function (x) is plotted in Figure 4 with the predominance of end effects readily noted.

The measured output from the transducer during operation included the current and voltage in the drive coil,
the voltage induced in the pickup coil, and the mechanical output. The current 1(t) was used to compute the field
H(t, x) = nI(t)ço(x) applied to the rod. From the induced voltage in the pickup coil, the Faraday-Lenz law was
used to compute the temporal derivative of the magnetic induction B. Integration then yielded the induction and
magnetization M =B— H. Both the field and magnetization were numerically filtered to remove the small biases
due to instrumentation. A Lucas LVM-10 linear variable differential transformer, based upon changing reluctance,
was used to measure the displacement of the rod tip. Corresponding strains at this point were then computed
by dividing by the rod's length. The experimental data collected in this manner is plotted in Figures 5, 6 and 7.
Throughout the experiments, temperature was monitored using two thermocouples attached to the Terfenol-D sample
and maintained within 50 C of the ambient temperature (23° C).

Figure 4. Empirical function ço(x) used to qualify transducer effects.
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To employ the magnetization and structural model summarized in Algorithm 1, appropriate parameters must be
ascertained. These include the magnetization parameters &, c, k, a, A, M3, the structural parameters p, E, CD, the
spring constants kL , CL and the end mass ML . The values used here are summarized in Table 1 . The magnetization
parameters were estimated through a least squares fit to data as detailed in [2] • The values of p and E are published
specifications for Terfenol-D while the damping parameters CD and CL were chosen within a range typical for the
material. The spring stiffness coefficient kL was measured through a compression test while the end mass ML was
measured directly. We note that while the specification of parameters in this manner provided adequate model fits,
they are not optimal. To obtain optimal parameters and corresponding model fits, it is necessary to estimate all
parameters through a least squares fit to data.

The model summarized in Algorithm 1 characterizes two aspects of the strain for the Terfenol rod. The mag-
netostriction ) quantifies the external or active component of the strain while e = denotes the total strain for
the rod (the combination of active and passive strains) . It is necessary to consider the displacements u and total
strain e when modeling the transducer core since these are the quantities measured in experiments. To illustrate,
the magnetostriction ) and strain e given by the finite element approximation (11) to the model in Algorithm 1 are
compared with experimental data in Figure 5. In both cases, the field H measured at the drive coil was filtered with
the function depicted in Figure 4 and then used to compute the magnetization.

It is observed that some discrepancy occurs in both the magnetostriction and strain due to limitations in the
quadratic model (6). The total strain provided by the dynamic model does, however, include the hysteresis observed
in the experimental data. This is a significant advantage over the modeled magnetostriction which is single-valued.
This leads to the highly accurate model fit observed in Figure 6 where the relation between the input field H and
output strain is considered.

For comparison purposes, we include in Figure 7 the corresponding model fits obtained when the filtering function
ço(x) was omitted and direct field measurements were used to compute M and A. This was the regime considered
in [2] where it was demonstrated that use of magnetostriction rather than total strain led to an adequate model at
low to moderate drive levels but provided inadequate fits at high input levels. These conclusions are reiterated by
the model fits observed in Figure 7. It is noted that even when the saturation magnetostriction was scaled to the
maximum experimentally observed value, the lack of hysteresis in the relation between M and A led to an inadequate
characterization of A in terms of H. A comparison with Figures 5b and 6b again indicates the necessity of considering
the total strains.

x

0.8

0.6

0.4

0.2

—8 —6 —4 -2 0 2 4 6 8
M(A/m) x105

(a)

Figure 5. Experimental data (—— —) and model dynamics (—) with the magnetization M computed using filtered
magnetic field data H(t, x) = nI(t)ço(x); (a) Magnetostriction A, (b) Total strain e.
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Figure 6. Experimental data (— — —) and model dynamics (—) computed using filtered magnetic field data
H(t, x) = nI(t)ço(x); (a) Magnetostriction A, (b) Total strain e.

Figure 7. Experimental data (— — —) and model dynamics (—) computed using unfiltered magnetic field data
H(t) = nI(t) and scaled saturation magnetostriction A; (a) M — A relation, (b) H — A relation.

5. Concluding Remarks
A dynamic model for strains generated by a magnetostrictive transducer in response to applied magnetic fields

is presented in this paper. The external or applied strains are characterized through the ferromagnetic hysteresis
theory of Jiles and Atherton combined with a quadratic rotation model. The internal or passive strains are quantified
through a PDE model of the Terfenol rod dynamics. The combined model provided displacements and total strains
which very accurately modeled experimental strain data measured under quasi-static conditions. We note that this
approach for modeling the transducer output is similar in philosophy to that employed by Sablik and Jiles [6]. Our
approach differs, however, in the manner through which physical parameters are specified and damping and spring

(a)

H (A/rn)

x 10

(b)

'I

I,
0.8 \4 'I

\$
\'\

0.6 \\' Il/I
\%\
\%% ,//I

0.4 II,,ii
0.2 /

/ /'I
8 —6 —4 —2 0 2 4 6

M(A/rn( x10

(a) (b)
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- Magnetization Parameters Structural Parameters Spring and End Mass Dimension

M8 = 7.65 x iO A/rn p = 9250 kg/rn3 ML = 0.5 kg L = 115mm

= 1005 x 10—6 E = 3 x 1010 N/rn2 kL = 2 x 106 N/rn d = 12.7mm
a = 7012 A/rn CD = 3 x 106 Ns/m2 CL = 1 x i0 Ns/rn
k = 4000 A/rn

= —0.01

c=0.18

Table 1. Physical parameters and dimensions employed in the magnetization and structural models.

characteristics are incorporated. It also differs through the use of a weak formulation of the model for subsequent
approximation purposes.

The examples presented here demonstrate the accuracy of the model for characterizing major ioop strain dynamics.
Initial tests have demonstrated that the model also accurately characterizes harmonics due to the Terfenol rod. For
example, the calculated model value of 1282 Hz for the rod primary frequency is within 5% of the measured value
for the experimental system.

The current model is not fully coupled since it does not incorporate the effects of stress on the magnetization and
magnetostriction in the rod. While the model incorporates certain dynamic effects, it must currently be restricted
to low frequency regimes in which time-dependent AC losses are minimal. The extensions for including stress effects
and eddy current losses are under investigation.
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