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ABSTRACT 

 

Our communities have been designed for human movement; therefore, the development of 

machines that locomote like humans is a natural approach to mechanical locomotion. Two 

problems in developing autonomous versions of these machines are energy consumption and the 

risks associated with the possible impact of robotic components with the humans around them. 

Research has shown that using variable compliance, or elasticity, in robotic joints can decrease 

both of these factors. This project is focused on the development of a variable compliance 

robotic transmission based on Magneto-Rheological (MR) fluid for increasing biped walking 

efficiency and decreasing the impact forces associated with a possible collision. The results of 

this study are important in developing autonomous robots that can safely interact with humans 

for an extended period of time. 
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Chapter 1 INTRODUCTION 
 

1.1 Objective 

The objective of this study is to develop a method of numerically analyzing rotary Magneto-

Rheological (MR) fluid dampers, and using this method to analyze a MR fluid damper with non-

linear damping surfaces. Such a damper could then be put in parallel with a compliant element 

and controlled properly to produce effective variable compliance. 

 

1.2 Motivation 

As tens of millions of Baby Boomers retire in the coming years, attending to their medical needs 

will constitute one of the biggest challenges of American society. The issue of attending to aging 

populations is not unique to America as it already is an important issue in countries such as 

Japan and France. Autonomous biped robots that can safely function in our societies may be used 

to increase our quality of life and may be the key to serving aging populations around the world. 

Most of the physical components in our communities have been designed for human movement 

(i.e., stairs or curbs). Therefore, the development of machines that locomote like humans is a 

natural approach to mechanical locomotion. One of the greatest challenges in this process has 

been energy efficiency, which is important in the development of autonomous robots. For 

example Honda’s ASIMO is currently one of the most advanced autonomous biped robots in the 

world, yet it has a battery life of only 25 minutes (Honda Motor Co. Ltd., 2007). One way of 

improving the energetic efficiency of a bipedal robot is to add compliance in the robot’s 

transmission system. Further details of this phenomenon as well as the importance of variable 

compliance in the transmission system is provided in Section 1.3. In addition, new robots have 
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increasingly been designed with very stiff transmission systems in order to improve their 

accuracy and reduce the amount of time required for the acceleration or deceleration of the 

robotic component. While these systems meet the stated needs if contact between the robotic arm 

and a human occurs, the stiffness in their transmission can lead to injury of the human or it can 

damage the robot. Adding variable compliance to the robotic transmission system can ensure the 

effectiveness and accuracy of a robot as well as its safe operation. Further details of this 

phenomenon have been provided in Section 1.3. 

 

Because of this need for variable compliance robotic transmission systems the Locomotion and 

Biomechanics Lab at The Ohio State University studied one way of producing such systems 

through several undergraduate and graduate projects. To produce such a device the lab placed a 

spring in parallel with an MR damper and controlled the system to produce robotic transmissions 

with effective variable compliance. Multiple students at that lab had worked on projects to 

improve the design of MR dampers used for such a purpose. This work was completed both on 

linear MR dampers and springs for linear robotic actuation systems, as well as on rotary MR 

dampers and torsion springs for rotary transmission systems. This research is a continuation of 

the effort to improve the effectiveness of these devices. As a part of this evolutionary process 

this project added protrusions to the damping surfaces of the device designed by a previous 

student. Further details of previous students’ efforts are provided in Section 1.3. 

 

1.3 Background 

Low energetic efficiency is a major hurdle in the widespread adoption of bipedal robots as 

assistants in our society. Using springs in robotic transmission systems can be one way of 
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alleviating this problem. Alexander suggests increasing biped energy efficiency by using springs 

to store and then release energy in the cyclic up-and-down and back-and-forth leg movements 

inherent to walking and running (Alexander, 1990). The inspiration for these devices is based on 

their biological counterparts in humans and animals in the form of tendons and ligaments, which 

often act as springs to store mechanical energy. The ability of tendons and ligaments to act as 

springs is especially important in running, as running gaits are heavily dependent on the biped’s 

(or quadruped’s) ability to store and release bursts of mechanical energy in a short time period 

(McMahon, 1984). Yang et al. have shown that using compliance in parallel with the 

transmission at the knee joint reduces the energy use of the bipedal robot ERNIE (Yang, 

Westervelt, & Schmiedeler, 2007). They found that softer springs lead to greater efficiency of 

slow gaits, while stiffer springs lead to even greater efficiency of fast gaits. Therefore, in order 

for a bipedal robot to change the speed of its gait while maintaining high energetic efficiency, it 

must employ variable compliance in its transmission. 

 

Many new robots have been designed with very stiff transmissions to improve the robotic arm’s 

ability to accelerate or decelerate rapidly, and to allow for greater accuracy when the arm is 

reaching for an item. The drawback of stiff transmission systems is that contact between the 

robotic arm and a human or object in the vicinity can either injure the human or damage the 

robot. Bicchi et al. consider the importance of joint compliance in robotic transmissions to ensure 

the safety of the robot by reducing the impact forces of collision (Bicchi & Tonietti, 2004). They 

note that transmission compliance causes robotic joints to accelerate more slowly and decreases 

accuracy by increasing vibrations while decelerating. They propose the use of variable 

compliance in transmissions instead. The ability to vary transmission compliance allows for low 
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transmission compliance while accelerating, decelerating or at points in the arm’s trajectory 

where a high level of accuracy is required. Yet transmission compliance may be increased at 

high speeds when the greatest chance of a dangerous collision exists.  

 

Various methods have been suggested to produce variable compliance in robotic joints. 

Westervelt et al. show that by placing a MR fluid damper in parallel with a compliant element in 

an actuation system the effective compliance can be controlled to vary from highly compliant to 

essentially rigid (Westervelt, Schmiedeler, & Washington, 2004). When the damper is turned on 

the transmission is rigid, whereas when the device is turned off the transmission is highly 

compliant with low damping. The compliance range between the two extremes is realized 

through control algorithms that include switching. This behavior is achieved by exploiting the 

properties of the MR fluid in the damper. 

 

The force required to deform an elastic solid is proportional to the amount of deformation, with 

the proportionality constant being the elastic modulus of the material. However, to better 

understand how effective variable compliance may be achieved using a variable damper in 

parallel with a compliant element such as a spring one must consider a viscoelastic model 

instead. Figure  1.1 presents the visual model for a viscoelastic material. 



 

Figure  1.1: Model of a Viscoelastic Material 

 

Equation  1.1 presents the mathematical model of a viscoelastic material in Laplace domain. This 

mathematical model corresponds to the visual model presented in Figure  1.1. This model refers 

to the stiffness of the material, which is inversely related to the compliance of that material. 

 1.1 

 

 
 

 
 
 

 

The effective stiffness of a viscoelastic material is not only a function of the amount of 

elongation of that material, but also it is a function of the rate at which this elongation is taking 

place. The effective stiffness of a variable compliance robotic transmission may similarly be 

changed using an MR damper. In such a case, the amount of damping provided by the damper is 

varied to obtain an effective variable compliance. 
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Bunting developed an experimental apparatus and control algorithm for developing variable 

compliance in a rotary robotic transmission system (Bunting, 2005). Bunting’s setup used a 

commercially available MR disk clutch (model MRB-2107-3) designed and manufactured by Lord 

Corporation. Preliminary testing, however, showed that this device exhibited a significant 

amount of backlash that made it difficult to properly and accurately position the device. This 

problem led to the development of a new MR disk clutch that avoided such a backlash, and one 

that could be used within the experimental apparatus already designed and built by Bunting. 

 

Sabatka designed and built a new MR disk clutch for this experiment. Savatka’s device was 

designed in a way to avoid the backlash present in Bunting’s commercially acquired device, and 

it was dimensioned so that it could be used in the experimental setup created by Bunting 

(Sabatka, 2006). Sabatka’s device used a steel shaft, piston, and cylinder, 1210 rounds of wire in 

its coil, and an MR foam to contain the MR fluid in the device. MR foam was useful in avoiding 

one of the main shortcomings of MR dampers, which is the leakage of the MR liquid. However, 

the foam has been designed in a way to avoid any interference with the fluid shearing process to 

such a point that it does not need to be accounted for when modeling the behavior of the device.  

 

The two most important variables in this study are the size of the gap between the piston and the 

cylinder and the magnetic flux density within the MR fluid. A small gap results in a greater 

magnetic flux density within the fluid and a higher on-state holding torque; however, such a 

design choice also increases the off-state damping coefficient, which is undesirable. The opposite 

of these conditions is true for a large gap. The non-linear nature of magnetic flux may be used to 

overcome this inverse relationship between gap size and off-state damping. As an analogy, one 
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may consider the magnetic flux lines between two parallel plates, which are almost straight lines; 

however, a protrusion on one of the plates causes the flux lines in that area to congregate around 

the protrusion and fringe flux lines will emanate from the sides of the protrusion. Therefore, for 

the same average gap between two sets of parallel plates, the set with the protrusions will 

produce a greater amount of magnetic flux density in the gap.  

 

The novel approach of this project is to apply this principle to the MR damper. This project 

modified the design created by Sabatka by adding rectangular non-linearities along the 

circumference of the piston surface while keeping the average gap the same as the simple case 

studied by Sabatka. This setup should allow for an increase in the range of damping possible 

using this device as the non-linearities will increase the maximum magnetic flux density possible 

in the gap. Keeping the average gap constant will allow for the lower end of the damping 

coefficient to remain roughly the same. This project is focused on studying the effects of these 

non-linearities on the behavior of the device, and whether an increase in the bandwidth of the 

system is possible when using them. 
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Chapter 2 METHODOLOGY 

 

2.1 MR Fluid 

A Newtonian fluid is one that strains continuously when a shear stress is applied to it, and the 

applied shear stress is linearly related to the strain rate. This linear relationship is called 

viscosity. Inactivated MR fluid (no magnetic field acts on the fluid) essentially behaves 

Newtonian, and it has a viscosity equal to that of its base fluid, which is usually a hydrocarbon-

based fluid. Activated MR fluid (a magnetic field acts on the fluid) is not a Newtonian fluid 

because of two reasons: (i) at very high shear rates the fluid exhibits a shear-thinning behavior 

(e.g., the fluid behaves less viscous at higher shear rates than at lower shear rates) (Farjoud, 

Vahdati, & Fook Fah, 2008); (ii) activated MR fluid does not strain continuously under shear 

stress, and a minimum or yield shear stress must be applied to it before it begins to strain 

(Dapino, 2008).  

 

The damper designed for this study is not operated at very high frequencies; therefore, the shear 

thinning effects mentioned are negligible and need not be included in the model. It is emphasized 

that the yield stress associated with an activated MR fluid depends on the magnetic flux density 

through the fluid. The yield stress increases as the magnetic flux density through the fluid is 

increased, and the yield stress decreases as the magnetic flux density is lowered. As a matter of 

fact, the designation of MR fluid as a “Smart Material” with dynamic material properties is 

because of this change in the yield stress of the activated fluid.MR fluid exhibits these properties 

because it contains micron-sized ferrous particles, usually iron, that align to increase the apparent 
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viscosity of the fluid when placed in a magnetic field. Higher magnetic flux densities lead to 

greater alignment of these particles, which in turn increases fluid viscosity. Certain chemicals are 

added to the base fluid to avoid the sedimentation of these particles. The small size of these 

particles allows them to align quickly, which gives MR fluid a rapid response time (on the order 

of milliseconds). This short response time is very beneficial for effective control of a system 

containing this fluid. 

 

Knowledge of the physical principles that lead to the behavior of MR fluid allows us to better 

understand two more properties of this material: saturation and hysteresis. Greater magnetic flux 

densities lead to a greater alignment of the ferrous particles in the fluid, which leads to a greater 

viscosity. However, one can imagine how gradually increasing levels of magnetic flux density 

will be required to produce the same increase in the level of particle alignment. In addition, one 

can also imagine how there will be a limit to this alignment and after some point increasing 

levels of magnetic flux density will not lead to any increase in the fluid’s viscosity. Furthermore, 

the magnetic characteristics of these particles mean that after alignment, some extra effort must 

be exerted to return these particles to their original position. This extra effort makes MR fluid a 

hysteretic material. 

 

2.2 MR Fluid Model 

These material behaviors are also evident in the equations used to mathematically model this 

material. As previously noted inactivated MR fluid acts like a Newtonian fluid; therefore, its 

behavior may be modeled using Equation  2.1. 



 2.1 

 
 

  
 

 
 

However, this model cannot be used for an activated MR fluid because it does not capture the 

fact that a yield, or minimum, stress is required before an activated MR fluid begins to strain. 

The activated MR fluid may be modeled as a Bingham fluid instead. The mathematical model of 

a Bingham fluid has been presented as Equation  2.2. 

 2.2 

 
 

  
 

 
 

 
 

The yield stress is a function of the magnetic flux density in the MR fluid. Further details of the 

relationship between the yield stress and the magnetic flux density will be provided in later 

sections. Figure  2.1 presents a graphical representation of this phenomenon. The first solid line 

represents the model of a Newtonian or inactivated MR fluid, the second solid line represents the 

model of an activated MR fluid, and the dashed line represents the effective viscosity of the 

activated MR fluid at a particular shear rate.  
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Figure  2.1: Activated MR Fluid and Yield Stress 

 

Using the concept of effective viscosity, the behavior of MR fluid may be mathematically 

formulated through Equation  2.3. 

 2.3 

 

 

The effective viscosity is dependent on the yield stress and shear rate, and it has been 

mathematically formulated in Equation  2.4. 

 2.4 

 

Understanding the issue of effective viscosity is important in understanding the behavior of the 

activated MR fluid. The effective viscosity means that for each combination of yield stress and 
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shear rate the activated MR fluid will behave similar to a Newtonian fluid with a viscosity equal 

to the effective viscosity of the MR fluid. Therefore, one way to ease the modeling of this 

material will be to specify the yield stress and shear rate, and use the effective viscosity model to 

treat the material like a Newtonian fluid. Treating the activated MR fluid as a Newtonian fluid 

allows one to take advantage of the various analytical solutions that exist for devices that 

incorporate Newtonian fluids. 

 

2.3 Device 

The MR damper designed was a rotary damper based on the design created by Kyle Sabatka. The 

decision to follow that design was based on the expectation that if a prototype of the new design 

was produced the experimental setup of Bunting could be used to test the new device. 

 

 

Figure  2.2: Side Cross-sectional View of Rotary Damper 

 

 Figure  2.2 presents the side cross-sectional view of a general rotary damper. The arrows in this 

figure represent the path of the magnetic flux lines based on the position of the coil, the rotor, 

and the stator. The magnetic flux lines travel perpendicular to the surface of the rotor, through 

the MR fluid, through the stator, back through the MR fluid, and finally complete the circuit in 
18 

 



the rotor. Figure  2.3 presents a more detailed cross-sectional and side view of one of the two 

piston sections of the classic damper designed by Sabatka. The radius of the piston in this model 

is 34.9 mm, the length of each piston section is 9.1 mm, the inside radius of the cylinder is 37.9 

mm, and the outside radius of the cylinder is 42.7 mm. Figure  2.4 presents a more detailed cross-

sectional and side view of one of the two piston sections of the non-linear damper designed for 

this study. The radius and length of the piston as well as the outside radius of the cylinder in this 

model have remained the same. The inside radius of the cylinder has been increased to 38.2 mm, 

while small rectangular protrusions with a height of 0.80 mm and a width of 0.76 mm have been 

added at even intervals to the circumference of that surface. The average gap of the non-linear 

model has remained the same as the gap in the classic model developed by Sabatka. 

 

 

Figure  2.3: Cross-sectional and Side Views of Classic Damper 

 

 

Figure  2.4: Cross-sectional and Side Views of Non-linear Damper 
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The viscosity of the MR fluid depends on the Magnetic flux density B, which is measured in 

Tesla, and is defined as the amount of magnetic flux through a particular surface area. This 

relationship has been presented in Equation  2.5. Note that this equation assumes that the surface 

area through which magnetic flux lines travel is constant, but in this case that area increases. 

Furthermore, it assumes that the flux density throughout the area is a constant, whereas one must 

integrate magnetic flux over the entire surface to obtain the correct value. 

 2.5 

 

 
 

 
 

The relationship for the surface area of the piston has been presented in Equation  2.6. 

 2.6 

 

 
 

 

 2.7. The expression for the magnetic flux has been presented as Equation 

 2.7 
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The magnetic reluctance defined in Equation  2.7 is a function of the structure of the damper and 

the materials used in the damper, and it cannot be changed after the device has been built. In 

addition, the coil turns in the device are also difficult to change after the damper has been built. 

Therefore, based on Equations  2.5 and  2.7 the only realistic way to change the magnetic flux 

density, thus the viscosity of the MR fluid, is to change the current through the coil. 

 

2.4 Analysis 

The manufacturer of the MR fluid provides information about the relationship of the yield stress 

of that fluid and the magnetic flux density in the fluid. Figure  2.5 presents the typical magnetic 

properties of MRF-122EG MR fluid (courtesy of Lord Corporation). Figure  2.6 presents the 

yield stress versus the magnetic field strength of MRF-122EG MR fluid (courtesy of Lord 

Corporation). Figure  2.7 presents the shear stress versus shear rate for the MRF-122 MR fluid 

with no magnetic field applied (courtesy of Lord Corporation). 

 

 

Figure  2.5: Magnetic Properties of MR Fluid (Courtesy of Lord Corp) 
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Figure  2.6: Yield Stress vs. Magnetic Field Strength of MR Fluid (Courtesy of Lord Corp) 

 

 

Figure  2.7: Shear Stress vs. Shear Rate of Inactivated MR Fluid (Courtesy of Lord Corp) 
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Using the data provided by the manufacturer, Equation  2.5, and Equation  2.7 one can relate the 

yield stress of the activated MR fluid to the current in the coil. This fact means that the only 

input required in calculating the yield stress component of Equation  2.2 is the current through 

the damper coil. The second term in Equation  2.2

23 

 

 and a fluid 

component allows each part to be modeled in a separate numerical analysis program. Equation 

 2.8 presents the decoupled view of the Bingham model for the activated MR fluid. 

 2.8 

 is dependent on the viscosity of the inactivated 

MR fluid, which is a constant, and the shear rate of the fluid, which is related to the angular 

velocity of the device. In other words, based on the Bingham model of the activated MR fluid, 

the total shear stress on the damper wall has two components, and each component is a function 

of a single input. Having realized this fact, one can decouple this model into a magnetic 

component dependent on the current through the coil, and a fluid component dependent on the 

angular velocity of the rotor. This decoupling of the problem into a magnetic

 

 
 

 
 

 
 

 Based on Equation  2.8 the device was analyzed using two different Finite Element Analysis 

(FEA) programs. The freeware program Finite Element Method Magnetics (FEMM) was used to 

analyze the magnetic component. To allow for repeatability of the analysis the OctaveFEMM 

component of FEMM was used. Instead of the Graphic User Interface (GUI) provided by 

FEMM, OctaveFEMM provides a text-based interface through the MATLAB computer program. 

The analysis of the fluid component was achieved through the FLOTRAN component of the 
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NSYS FEA program. The text-based interface of ANSYS instead of the GUI interface was 

late the maximum 

torque produced by the device at a particular coil current and angular velocity. The expression 

for this torque has been presented as Equation  2.9. 

 2.9 

A

used to allow for repeatability of the analysis of the fluid component. 

 

Adding these two components yields the total shear stress. The total shear stress at the piston 

wall can then be multiplied by the surface area and radius of the piston to calcu

 

 

As seen in Equation  2.9 the torque produced by the damper is a function of the shear stress on 

the surface of the piston, the radius of the piston, and the length of the piston. Please note that the 

surface area of the piston has been doubled to account for the fact that two separate surface areas 

t with the MR fluid, and the fluid exerts a shear stress on each one. 

 

2

in Octav  classic 

case rotary MR damper, and Figure  2.9 presents the OctaveFEMM model of 

of the piston come into contac

.5 OctaveFEMM Model 

Chapter 3 The magnetic component of this decoupled problem was analyzed 

eFEMM. Figure  2.8 presents the OctaveFEMM model of the

the MR damper with non-linear surfaces. CONCLUSIONS 
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his project 

tudied the effect of adding non-linearities to the inside surface of the cylinder in these dampers 

es in the shear stress on the piston surface. This 

Designing robotic joints with effective variable compliance is an important technology in 

developing autonomous, safe, and energetically efficient robots. Effective variable compliance 

may be produced by putting a compliant element such as a spring in parallel with a variable 

damper such as an MR damper. Effective variable compliance is then achieved through the 

proper control of this mechanism, which will include switching. Because of this principle many 

students at OSU’s Locomotion and Biomechanics Lab worked to develop linear and rotary MR 

dampers to be used in robotic transmissions with effective variable compliance. T

s

in order to increase the magnetic flux density in the fluid gap, while keeping the average fluid 

gap constant. Such a change was intended to increase the bandwidth of these devices. 

 

This problem was decoupled into a magnetic component and a fluid component. The magnetic 

component was numerically analyzed in the FEA environment of OctaveFEMM, and the fluid 

component was analyzed using in the FLOTRAN environment of the computer code ANSYS. 

Using this setup the magnetic flux density in the gap increased by 21.9%, while the shear stress 

on the piston wall increased by 10.1%. These results suggest that adding non-linearities to the 

inside surface of the cylinder while maintaining the same average gap leads to a greater increase 

in the magnetic flux density in the gap than it do

fact should allow for the design and development of effective variable compliance robotic 

transmissions with a greater bandwidth. Such a development in turn will allow for safer and 

more energetically efficient autonomous robots. 

There are further steps that may be taken in improving this analysis. This problem was decoupled 

into magnetic and fluid components to simplify the analysis; however, by avoiding this 
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f the damper may be analyzed by designing multiple classic and 

on-linear MR dampers with varying overall dimensions but constant relative dimensions. This 

uture work will be important in more conclusively determining the effect of non-linearities on 

e behavior of MR dampers. 

symmetric cylinders; therefore, they have been modeled as axis-symmetric devices in a two 

decoupling a more accurate study may be possible. Computer programs such as COMSOL allow 

for the fluid and magnetic components to be analyzed simultaneously, which will avoid the 

decoupling of this problem. Furthermore, a full analysis of the effect of non-linearities on the 

performance of this device must include an experimental component to compare the classic MR 

damper to the non-linear version. In addition, instead of rectangular non-linearities other studies 

could add semi-circular, triangular, or trapezoidal non-linearities as well. Finally, the effect of 

damper size on the behavior o

n

f

th

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A includes the code used to create these two models. Both designs are axis-



dimensional R-Z cylindrical coordinate system. Table  
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ility presented in this table is essentially a measure 

of a particular material’s abil  it is inversely related to the 

magnetic reluctance variable defined earlier.  

Table  3.1: Material Properties of Components 

3.1 presents the material properties used 

for this magnetic circuit. The relative permeab

ity to conduct magnetic flux lines, and

Material Component Relative Permeability 
(Unitless)

Air Air 1
Aluminum Outside Flanges 1

Copper Coil 1
MR Fluid MR Fluid 3.5

Steel Rotor, Stator, Shaft 2000  

 

 

Figure  3.1: OctaveFEMM Model of the Classic Case MR Damper 



 

Figure  3.2: OctaveFEMM Model of MR Damper with Rectangular Cutouts 

 

The line of symmetry in this model was given axis-symmetric boundary properties, and the 

semicircle around the device was modeled as a series of points so far away from the device that 

the magnetic field at those points is zero. Based on Sabatka’s device the coil region was modeled 

with 1210 rounds of copper wire. 

    

2.6 ANSYS Model 

The fluid component of this device was modeled in the FLOTRAN environment of the computer 

code ANSYS. The fluid component of a classic case MR damper may simply be defined as a 

cylindrical Couette flow problem, which can be solved analytically. However, the FLOTRAN 

program is required in solving the non-linear case. Example 46 of the ANSYS Verification 

Manual (VM46.dat) solves a Couette flow problem presented on page 110 of Frank White’s 

28 
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Viscous Fluid Flow (White, 2005). This example was modified to fit the classic case damper 

model, and it was further modified to match the non-linear damper model. Figure  3.10 presents 

the isometric view of the ANSYS model of the classic case rotary MR damper, and Figure  3.11 

presents the top view of this model. Figure  3.12 presents the isometric view of the ANSYS 

model of the MR damper with non-linear surfaces, and Figure  3.13 presents the top view of this 

model. APPENDIX B includes the code used to create these two models. 

 

The fluid component in each case is simply a ring of fluid, which may be modeled as a series of 

fluid “wedges” that appear with periodicity to form the entire ring. Modeling the ring as a series 

of wedges is possible because of the periodicity of the fluid flow pattern, and it allows the 

problem to be solved much faster in ANSYS even with a relatively fine mesh. Based on this 

principle wedges with a thickness of only 10 degrees out of the 360 degrees of the ring were 

created in ANSYS. Based on the data provided by the MR fluid manufacturer the viscosity of the 

fluid model was set to 0.042 Pa-s and the density of the fluid model was set to 2380 Kg/m3. The 

top and bottom surfaces of the wedges in Figure  3.10 and Figure  3.12 have been given periodic 

boundary conditions. The front and back surfaces in these figures have been given symmetry 

boundary conditions, which means that they extend infinitely long. The output of interest for this 

program is wall shear stress, which is defined as force per surface area, and will not be affected 

by how long the model is. The right surface, which comes into contact with the cylinder, was 

given the boundary condition of a moving wall with a velocity of zero in all directions. The left 

surface, which comes into contact with the piston, was given the boundary condition of a moving 

wall with a velocity of zero in all directions except one. In the θ direction the surface was give a 

velocity equal to the product of the piston radius and the angular velocity. 



 

 

Figure  3.3: Isometric View of ANSYS Model of MR Damper (Classic Case) 

 

 

Figure  3.4: Top View of ANSYS Model of MR Damper (Classic Case) 
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Figure  3.5: Isometric View of ANSYS Model of MR Damper (Non-linear Case) 

 

 

Figure  3.6: Top View of ANSYS Model of MR Damper (Non-linear Case) 
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Chapter 4 RESULTS 

 

3.1 OctaveFEMM Results 

Figure  4.1 presents the output of OctaveFEMM for the classic case damper model. Figure  4.2 

presents the output of OctaveFEMM for the non-linear case damper model. Since OctaveFEMM 

is run through MATLAB the magnetic flux density throughout the MR fluid for each model can 

be calculated and averaged. The average magnetic flux density within the MR fluid in the classic 

case MR fluid damper is 0.825 T, and the average magnetic flux density within the MR fluid in 

the non-linear case MR fluid damper is 1.006 T. These results were obtained for a coil with 1210 

rounds of wire, an electric current of 1.0 Amp, and different results should be expected for a 

different coil size or electric current. Therefore, the design change represents an increase of 

21.9% in the magnetic flux density within the MR fluid. 

 

 

Figure  4.1: OctaveFEMM Results for the Classic Case MR Damper 
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Figure  4.2: OctaveFEMM Results for the non-linear case MR Damper 

 

3.2 ANSYS Results 

Figure  4.3 presents an isometric view of the fluid velocity profile for the classic damper.  Figure 

 4.4 presents a top view of the fluid velocity profile for the classic damper. Figure  4.5 presents an 

isometric view of the shear stress profile for the classic damper. Figure  4.6 presents the shear 

stress profile on the piston of the classic damper. Figure  4.7 presents isometric view of the fluid 

velocity profile for the non-linear damper. Figure  4.8 presents a top view of the fluid velocity 

profile for the non-linear damper. Figure  4.9 presents an isometric view of the shear stress 

profile for the non-linear damper.  Figure  
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4.10 presents the shear stress profile on the piston of 

the non-linear damper. The average shear stress on the piston for the classic damper was 55.4 Pa, 

and the average shear stress on the piston for the non-linear damper was 61.0 Pa. In other words 

this design change led to an increase of 10.1% in the off-state damping of the MR Fluid damper. 

These results were obtained for an angular velocity of 100 rad/s or 955 rpm, and they will be 

different for other values of angular velocity. 



 

 

Figure  4.3: Isometric View of Velocity Profile (Classic Case) 

 

 

Figure  4.4: Top View of Velocity Profile (Classic Case) 
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Figure  4.5: Isometric View of Shear Stress Profile (Classic Case) 

 

 

Figure  4.6: Shear Stress on Piston Wall (Classic Case) 
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Figure  4.7: Isometric View of Velocity Profile (Non-linear Case) 

 

 

Figure  4.8: Top View of Velocity Profile (Non-linear Case) 
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Figure  4.9: Isometric View of Shear Stress Profile (Non-linear Case) 

 

 

Figure  4.10: Shear Stress Profile on Piston Wall (Non-linear Case) 
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Chapter 5 CONCLUSIONS 

 

Designing robotic joints with effective variable compliance is an important technology in 

developing autonomous, safe, and energetically efficient robots. Effective variable compliance 

may be produced by putting a compliant element such as a spring in parallel with a variable 

damper such as an MR damper. Effective variable compliance is then achieved through the 

proper control of this mechanism, which will include switching. Because of this principle many 

students at OSU’s Locomotion and Biomechanics Lab worked to develop linear and rotary MR 

dampers to be used in robotic transmissions with effective variable compliance. This project 

studied the effect of adding non-linearities to the inside surface of the cylinder in these dampers 

in order to increase the magnetic flux density in the fluid gap, while keeping the average fluid 

gap constant. Such a change was intended to increase the bandwidth of these devices. 

 

This problem was decoupled into a magnetic component and a fluid component. The magnetic 

component was numerically analyzed in the FEA environment of OctaveFEMM, and the fluid 

component was analyzed using in the FLOTRAN environment of the computer code ANSYS. 

Using this setup the magnetic flux density in the gap increased by 21.9%, while the shear stress 

on the piston wall increased by 10.1%. These results suggest that adding non-linearities to the 

inside surface of the cylinder while maintaining the same average gap leads to a greater increase 

in the magnetic flux density in the gap than it does in the shear stress on the piston surface. This 

fact should allow for the design and development of effective variable compliance robotic 

transmissions with a greater bandwidth. Such a development in turn will allow for safer and 

more energetically efficient autonomous robots. 
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There are further steps that may be taken in improving this analysis. This problem was decoupled 

into magnetic and fluid components to simplify the analysis; however, by avoiding this 

decoupling a more accurate study may be possible. Computer programs such as COMSOL allow 

for the fluid and magnetic components to be analyzed simultaneously, which will avoid the 

decoupling of this problem. Furthermore, a full analysis of the effect of non-linearities on the 

performance of this device must include an experimental component to compare the classic MR 

damper to the non-linear version. In addition, instead of rectangular non-linearities other studies 

could add semi-circular, triangular, or trapezoidal non-linearities as well. Finally, the effect of 

damper size on the behavior of the damper may be analyzed by designing multiple classic and 

non-linear MR dampers with varying overall dimensions but constant relative dimensions. This 

future work will be important in more conclusively determining the effect of non-linearities on 

the behavior of MR dampers. 
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Chapter 6 APPENDIX A 

 

OctaveFEMM Classic Case Code 

 

%Smart Materials and Structures Laboratory 
%Magneto-Rheological Damper side view (default) 
% 
%January 19, 2009 
% 
%Ehsan Sadeghipour 
%Dr. Marcelo Dapino 
  
clear all; clc; close all; 
  
inches_to_meters = 0.0254; 
air_sphere_radius = 5*inches_to_meters; 
cylinder_length = 2.415*inches_to_meters; 
cylinder_side_thickness = .375*inches_to_meters; 
cylinder_outside_radius = 3.361/2*inches_to_meters  ;
cylinder_inside_radius = 2.986/2*inches_to_meters; 
coil_length = (1.08-.36)*inches_to_meters; 
coil_radius = 1.33/2*inches_to_meters; 
coil_outside_limit = 2/2*inches_to_meters; 
coil_turns = 1210; 
coil_current = 1; 
axle_sleve_length = .475*inches_to_meters; 
axle_sleve_radius = 1/2*inches_to_meters; 
axle_length = 8.5*inches_to_meters; 
axle_radius = .625/2*inches_to_meters; 
piston_thickness = .36*inches_to_meters; 
piston_radius = 2.75/2*inches_to_meters; 
blocklabel_tolerance = .001; 
data_acquisition_tolerance = .005; 
inside_cylinder_tolerance = .05; 
arc_tolerance = 2.5; 
mesh_tolerance = .01; 
minimum_mesh_angle = 30; 
  
openfemm; 
  
newdocument(0); 
  
mi_probdef(60, 'meters', 'axi', 1e-15, 0, minimum_mesh_angle); 
  
mi_drawarc([0 -air_sphere_radius; 0 air_sphere_radius], 180, arc_tolerance); 
mi_addblocklabel(blocklabel_tolerance, air_sphere_radius - 
blocklabel_tolerance); 
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mi_drawrectangle(cylinder_inside_radius, -cylinder_length/2, 
cylinder_outside_radius, cylinder_length/2); 
mi_addblocklabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
  
mi_drawrectangle(0, cylinder_length/2, cylinder_outside_radius, 
cylinder_length/2 + cylinder_side_thickness); 
mi_addblocklabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 + cylinder_side_thickness - blocklabel_tolerance); 
  
mi_drawrectangle(0, -cylinder_length/2, cylinder_outside_radius, -
cylinder_length/2 - cylinder_side_thickness); 
mi_addblocklabel(cylinder_outside_radius - blocklabel_tolerance, -
cylinder_length/2 - cylinder_side_thickness + blocklabel_tolerance); 
  
mi_drawrectangle(0, coil_length/2 + piston_thickness, axle_sleve_radius, 
cylinder_length/2); 
mi_addblocklabel(axle_radius + blocklabel_tolerance, coil_length/2 + 
piston_thickness + blocklabel_tolerance); 
  
mi_drawrectangle(0, -axle_length/2, axle_radius, axle_length/2); 
mi_addblocklabel(axle_radius - blocklabel_tolerance, axle_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(0, -coil_length/2, coil_radius, coil_length/2); 
mi_addblocklabel(coil_radius - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(0, -coil_length/2-piston_thickness, piston_radius, -
coil_length/2); 
mi_addblocklabel(coil_radius - blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(0, coil_length/2, piston_radius, 
coil_length/2+piston_thickness); 
mi_addblocklabel(coil_radius - blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
  
mi_drawrectangle(cylinder_inside_radius, -coil_length/2-piston_thickness, 
piston_radius, -coil_length/2); 
mi_addblocklabel(piston_radius + blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(cylinder_inside_radius, coil_length/2, piston_radius, 
coil_length/2+piston_thickness); 
mi_addblocklabel(piston_radius + blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
  
mi_drawrectangle(0, -coil_length/2, coil_outside_limit, coil_length/2); 
mi_addblocklabel(coil_outside_limit - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
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mi_addblocklabel(cylinder_inside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
mi_addblocklabel(cylinder_inside_radius - blocklabel_tolerance, coil_length/2 
- blocklabel_tolerance); 
mi_addblocklabel(cylinder_inside_radius - blocklabel_tolerance, -
coil_length/2 - piston_thickness - blocklabel_tolerance); 
  
mi_selectsegment(axle_radius/2, coil_length/2); 
mi_selectsegment(axle_radius/2, -coil_length/2); 
mi_selectsegment(axle_radius/2, coil_length/2+piston_thickness); 
mi_selectsegment(axle_radius/2, -coil_length/2-piston_thickness); 
mi_selectsegment(axle_radius/2, cylinder_length/2); 
mi_selectsegment(axle_radius/2, -cylinder_length/2); 
mi_selectsegment(axle_radius/2, cylinder_length/2+cylinder_side_thickness); 
mi_selectsegment(axle_radius/2, -cylinder_length/2-cylinder_side_thickness); 
mi_selectnode(0, coil_length/2); 
mi_selectnode(0, -coil_length/2); 
mi_selectnode(0, coil_length/2+piston_thickness); 
mi_selectnode(0, -coil_length/2-piston_thickness); 
mi_selectnode(0, cylinder_length/2); 
mi_selectnode(0, -cylinder_length/2); 
mi_selectnode(0, cylinder_length/2+cylinder_side_thickness); 
mi_selectnode(0, -cylinder_length/2-cylinder_side_thickness); 
mi_deleteselected; 
  
mi_addsegment([0 -air_sphere_radius; 0 air_sphere_radius]); 
  
% Define an "asymptotic boundary condition" property.  This will mimic 
% an "open" solution domain 
  
%muo = pi*4e-7; 
  
mi_addboundprop('Asymptotic', 0, 0, 0, 0, 0, 0, 0, 0, 0); 
  
mi_addcircprop('coil', coil_current, 1); 
  
% Apply the "Asymptotic" boundary condition to the arc defining the 
% boundary of the solution region 
  
mi_selectarcsegment(air_sphere_radius,0); 
mi_setarcsegmentprop(2.5, 'Asymptotic', 0, 0); 
mi_clearselected 
  
mi_addmaterial('Air', 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0); 
mi_addmaterial('MR_Fluid', 3.5, 3.5, 0, 0, 0, 0, 0, 1, 0, 0, 0); 
mi_addmaterial('Steel', 2000, 2000, 0, 0, 0, 0, 0, 1, 0, 0, 0); 
mi_addmaterial('Copper', 1, 1, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, .001); 
mi_addmaterial('Aluminum', 1, 1, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, .001); 
  
mi_selectlabel(blocklabel_tolerance, air_sphere_radius - 
blocklabel_tolerance); 
mi_setblockprop( ir', 0, mesh_tolerance, '<None>', 0, 0, 0); 'A
mi_clearselected 
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mi_selectlabel(cylinder_inside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
mi_setblockprop( ir', 0, mesh_tolerance, '<None>', 0, 0, 0); 'A
mi_clearselected 
  
mi_selectlabel(cylinder_inside_radius - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Air', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(cylinder_inside_radius - blocklabel_tolerance, -coil_length/2 
- piston_thickness - blocklabel_tolerance); 
mi_setblockprop('Air', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(piston_radius + blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('MR_Fluid', 0, mesh_tolerance/10, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(piston_radius + blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
mi_setblockprop('MR_Fluid', 0, mesh_tolerance/10, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(coil_outside_limit - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Copper', 0, mesh_tolerance, 'coil', 0, 0, coil_turns); 
mi_clearselected; 
  
mi_selectlabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 + cylinder_side_thickness - blocklabel_tolerance); 
mi_setblockprop('Aluminum', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(cylinder_outside_radius - blocklabel_tolerance, -
cylinder_length/2 - cylinder_side_thickness + blocklabel_tolerance); 
mi_setblockprop('Aluminum', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(axle_radius + blocklabel_tolerance, coil_length/2 + 
piston_thickness + blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(axle_radius - blocklabel_tolerance, axle_length/2 - 
blocklabel_tolerance); 
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mi_setblockprop('Aluminum', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(coil_radius - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(coil_radius - blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(coil_radius - blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
% Now, the finished input geometry can be displayed. 
  
mi_zoomnatural 
  
v=ver; 
mi_saveas([cd,'/ClassicCase.fem']); 
  
% Now,analyze the problem and load the solution when the analysis is finished 
  
mi_analyze 
mi_loadsolution 
  
y1_i = linspace(coil_length/2,coil_length/2+piston_thickness, 50); 
y2_i = linspace(-coil_length/2-piston_thickness,-coil_length/2, 50); 
  
x_i = linspace(piston_radius,cylinder_inside_radius); 
  
b1 = zeros(length(x_i), length(y1_i)); 
b2 = zeros(length(x_i), length(y2_i)); 
x = zeros(length(x_i), length(y2_i)); 
y1 = zeros(length(x_i), length(y2_i)); 
y2 = zeros(length(x_i), length(y2_i)); 
  
for i = 1:length(x_i) 
    for j = 1:length(y1_i) 
        b = mo_getb(x_i(i), y1_i(j)); 
        b1(i,j) = sqrt(b(1).^2+b(2).^2); 
        x(i,j) = x_i(i); 
        y1(i,j) = y1_i(j); 
    end 
     
    for k = 1:length(y2_i) 
        b = mo_getb(x_i(i), y2_i(k)); 
        b2(i,k) = sqrt(b(1).^2+b(2).^2); 
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        y2(i,k) = y2_i(k); 
   nd  e
end 
  
b1_mean = mean(mean(b1)); 
b2_mean = mean(mean(b2)); 
  
%The following are material properties for DS7012 from Lord Corp 
BH_B = [0 .5 1 1.5]; 
BH_H = [0 65 200 500]; 
TH_T = [3 10 20 30 40 50 57 59]*1000; 
TH_H = [2 20 40 60 90 125 175 195]; 
H = polyval(polyfit(BH_B, BH_H, 2), (b1_mean+b2_mean)/2); 
tau_y = sqrt(polyval(polyfit(TH_H, TH_T.^2, 1), H)); 
mu = 0.28; 
  
figure 
contour(x, y1, b1); colorbar 
print -dpng Figure1 
  
figure 
contour(x(.05*length(x_i):.95*length(x_i),.05*length(y1_i):.95*length(y1_i)), 
... 
    y1(.05*length(x_i):.95*length(x_i),.05*length(y1_i):.95*length(y1_i)), 
... 
    b1(.05*length(x_i):.95*length(x_i),.05*length(y1_i):.95*length(y1_i))); 
colorbar; 
print -dpng Figure2 
  
figure 
contour(x, y2, b2); colorbar 
print -dpng Figure3 
  
figure 
contour(x(.05*length(x_i):.95*length(x_i),.05*length(y2_i):.95*length(y2_i)), 
... 
    y2(.05*length(x_i):.95*length(x_i),.05*length(y2_i):.95*length(y2_i)), 
... 
    b2(.05*length(x_i):.95*length(x_i),.05*length(y2_i):.95*length(y2_i))); 
colorbar; 
print -dpng Figure4 
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OctaveFEMM Rectangular Cutouts Code 

 

%Smart Materials and Structures Laboratory 
%Magneto-Rheological Damper side view (rectangular fins) 
% 
%February 5, 2009 
% 
%Ehsan Sadeghipour 
%Dr. Marcelo Dapino 
  
clear all; clc; close all; 
  
inches_to_meters = 0.0254; 
air_sphere_radius = 5*inches_to_meters; 
cylinder_length = 2.415*inches_to_meters; 
cylinder_side_thickness = .375*inches_to_meters; 
cylinder_outside_radius = 3.361/2*inches_to_meters; 
coil_length = (1.08-.36)*inches_to_meters; 
coil_radius = 1.33/2*inches_to_meters; 
coil_outside_limit = 2/2*inches_to_meters; 
coil_turns = 1210; 
coil_current = 1; 
axle_sleve_length = .475*inches_to_meters; 
axle_sleve_radius = 1/2*inches_to_meters; 
axle_length = 8.5*inches_to_meters; 
axle_radius = .625/2*inches_to_meters; 
piston_thickness = .36*inches_to_meters; 
piston_radius = 2.75/2*inches_to_meters; 
fin_width = .03*inches_to_meters; 
fin_gap = (piston_thickness - 4*fin_width)/3; 
fin_extension = .000533; 
cylinder_inside_radius = 
2.986/2*inches_to_meters+4*fin_extension*fin_width/3/fin_gap; 
fin_height = fin_extension+4*fin_extension*fin_width/3/fin_gap; 
blocklabel_tolerance = .0001; 
data_acquisition_tolerance = .005; 
inside_cylinder_tolerance = .01; 
arc_tolerance = 2.5; 
mesh_tolerance = .05; 
minimum_mesh_angle = 30; 
  
openfemm; 
  
newdocument(0); 
  
mi_probdef(0, 'meters', 'axi', 1.e-15, 0, minimum_mesh_angle); 
  
mi_drawarc([0 -air_sphere_radius; 0 air_sphere_radius], 180, arc_tolerance); 
mi_addblocklabel(blocklabel_tolerance, air_sphere_radius - 
blocklabel_tolerance); 
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mi_drawrectangle(cylinder_inside_radius, -cylinder_length/2, 
cylinder_outside_radius, cylinder_length/2); 
mi_addblocklabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
  
mi_drawrectangle(0, cylinder_length/2, cylinder_outside_radius, 
cylinder_length/2 + cylinder_side_thickness); 
mi_addblocklabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 + cylinder_side_thickness - blocklabel_tolerance); 
  
mi_drawrectangle(0, -cylinder_length/2, cylinder_outside_radius, -
cylinder_length/2 - cylinder_side_thickness); 
mi_addblocklabel(cylinder_outside_radius - blocklabel_tolerance, -
cylinder_length/2 - cylinder_side_thickness + blocklabel_tolerance); 
  
mi_drawrectangle(0, coil_length/2 + piston_thickness, axle_sleve_radius, 
cylinder_length/2); 
mi_addblocklabel(axle_radius + blocklabel_tolerance, coil_length/2 + 
piston_thickness + blocklabel_tolerance); 
  
mi_drawrectangle(0, -axle_length/2, axle_radius, axle_length/2); 
mi_addblocklabel(axle_radius - blocklabel_tolerance, axle_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(0, -coil_length/2, coil_radius, coil_length/2); 
mi_addblocklabel(coil_radius - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(0, -coil_length/2-piston_thickness, piston_radius, -
coil_length/2); 
mi_addblocklabel(coil_radius - blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(0, coil_length/2, piston_radius, 
coil_length/2+piston_thickness); 
mi_addblocklabel(coil_radius - blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
  
mi_drawrectangle(cylinder_inside_radius, -coil_length/2-piston_thickness, 
piston_radius, -coil_length/2); 
mi_addblocklabel(piston_radius + blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
  
mi_drawrectangle(cylinder_inside_radius, coil_length/2, piston_radius, 
coil_length/2+piston_thickness); 
mi_addblocklabel(piston_radius + blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
  
mi_drawrectangle(0, -coil_length/2, coil_outside_limit, coil_length/2); 
mi_addblocklabel(coil_outside_limit - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
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mi_drawrectangle(cylinder_inside_radius, coil_length/2, 
cylinder_inside_radius-fin_height, coil_length/2+fin_width); 
mi_drawrectangle(cylinder_inside_radius, coil_length/2+fin_width+fin_gap, 
cylinder_inside_radius-fin_height, coil_length/2+2*fin_width+fin_gap); 
mi_drawrectangle(cylinder_inside_radius, coil_length/2+2*fin_width+2*fin_gap, 
cylinder_inside_radius-fin_height, coil_length/2+3*fin_width+2*fin_gap); 
mi_drawrectangle(cylinder_inside_radius, coil_length/2+3*fin_width+3*fin_gap, 
cylinder_inside_radius-fin_height, coil_length/2+4*fin_width+3*fin_gap); 
  
mi_drawrectangle(cylinder_inside_radius, -coil_length/2, 
cylinder_inside_radius-fin_height, -coil_length/2-fin_width); 
mi_drawrectangle(cylinder_inside_radius, -coil_length/2-fin_width-fin_gap, 
cylinder_inside_radius-fin_height, -coil_length/2-2*fin_width-fin_gap); 
mi_drawrectangle(cylinder_inside_radius, -coil_length/2-2*fin_width-
2*fin_gap, cylinder_inside_radius-fin_height, -coil_length/2-3*fin_width-
2*fin_gap); 
mi_drawrectangle(cylinder_inside_radius, -coil_length/2-3*fin_width-
3*fin_gap, cylinder_inside_radius-fin_height, -coil_length/2-4*fin_width-
3*fin_gap); 
  
mi_addblocklabel(cylinder_inside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
mi_addblocklabel(cylinder_inside_radius - blocklabel_tolerance, coil_length/2 
- blocklabel_tolerance); 
mi_addblocklabel(cylinder_inside_radius - blocklabel_tolerance, -
coil_length/2 - piston_thickness - blocklabel_tolerance); 
  
mi_selectsegment(axle_radius/2, coil_length/2); 
mi_selectsegment(axle_radius/2, -coil_length/2); 
mi_selectsegment(axle_radius/2, coil_length/2+piston_thickness); 
mi_selectsegment(axle_radius/2, -coil_length/2-piston_thickness); 
mi_selectsegment(axle_radius/2, cylinder_length/2); 
mi_selectsegment(axle_radius/2, -cylinder_length/2); 
mi_selectsegment(axle_radius/2, cylinder_length/2+cylinder_side_thickness); 
mi_selectsegment(axle_radius/2, -cylinder_length/2-cylinder_side_thickness); 
  
mi_selectsegment(cylinder_inside_radius, coil_length/2+fin_width/2); 
mi_selectsegment(cylinder_inside_radius, 
coil_length/2+fin_width/2+fin_gap+fin_width); 
mi_selectsegment(cylinder_inside_radius, 
coil_length/2+fin_width/2+2*fin_gap+2*fin_width); 
mi_selectsegment(cylinder_inside_radius, 
coil_length/2+fin_width/2+3*fin_gap+3*fin_width); 
  
mi_selectsegment(cylinder_inside_radius, -coil_length/2-fin_width/2); 
mi_selectsegment(cylinder_inside_radius, -coil_length/2-fin_width/2-fin_gap-
fin_width); 
mi_selectsegment(cylinder_inside_radius, -coil_length/2-fin_width/2-
2*fin_gap-2*fin_width); 
mi_selectsegment(cylinder_inside_radius, -coil_length/2-fin_width/2-
3*fin_gap-3*fin_width); 
  
mi_selectnode(0, coil_length/2); 
mi_selectnode(0, -coil_length/2); 
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mi_selectnode(0, coil_length/2+piston_thickness); 
mi_selectnode(0, -coil_length/2-piston_thickness); 
mi_selectnode(0, cylinder_length/2); 
mi_selectnode(0, -cylinder_length/2); 
mi_selectnode(0, cylinder_length/2+cylinder_side_thickness); 
mi_selectnode(0, -cylinder_length/2-cylinder_side_thickness); 
mi_deleteselected; 
  
mi_addsegment([0 -air_sphere_radius; 0 air_sphere_radius]); 
  
% Define an "asymptotic boundary condition" property.  This will mimic 
% an "open" solution domain 
  
muo = pi*4e-7; 
  
mi_addboundprop('Asymptotic', 0, 0, 0, 0, 0, 0, 0, 0, 0); 
  
mi_addcircprop('coil', coil_current, 1); 
  
% Apply the "Asymptotic" boundary condition to the arc defining the 
% boundary of the solution region 
  
mi_selectarcsegment(air_sphere_radius,0); 
mi_setarcsegmentprop(2.5, 'Asymptotic', 0, 0); 
mi_clearselected 
  
mi_addmaterial('Air', 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
mi_addmaterial('MR_Fluid', 3.5, 3.5, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
mi_addmaterial('Steel', 2000, 2000, 0, 0, 10.44, 0, 0, 0, 0, 0, 0); 
mi_addmaterial('Copper', 1, 1, 0, 0, 59.6, 0, 0, 0, 0, 0, 0, 1, .0040386); 
mi_addmaterial('Aluminum', 1, 1, 0, 0, 35.38, 0, 0, 0, 0, 0, 0, 0, 0); 
  
mi_selectlabel(blocklabel_tolerance, air_sphere_radius - 
blocklabel_tolerance); 
mi_setblockprop('Air', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(cylinder_inside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
mi_setblockprop('Air', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(cylinder_inside_radius - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop( ir', 0, mesh_tolerance, '<None>', 0, 0, 0); 'A
mi_clearselected 
  
mi_selectlabel(cylinder_inside_radius - blocklabel_tolerance, -coil_length/2 
- piston_thickness - blocklabel_tolerance); 
mi_setblockprop( ir', 0, mesh_tolerance, '<None>', 0, 0, 0); 'A
mi_clearselected 
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mi_selectlabel(piston_radius + blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('MR_Fluid', 0, mesh_tolerance/10, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(piston_radius + blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
mi_setblockprop('MR_Fluid', 0, mesh_tolerance/10, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(coil_outside_limit - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Copper', 0, mesh_tolerance, 'coil', 0, 0, coil_turns); 
mi_clearselected; 
  
mi_selectlabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 - blocklabel_tolerance); 
mi_setblockprop( teel', 0, mesh_tolerance, '<None>', 0, 0, 0); 'S
mi_clearselected 
  
mi_selectlabel(cylinder_outside_radius - blocklabel_tolerance, 
cylinder_length/2 + cylinder_side_thickness - blocklabel_tolerance); 
mi_setblockprop('Aluminum', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(cylinder_outside_radius - blocklabel_tolerance, -
cylinder_length/2 - cylinder_side_thickness + blocklabel_tolerance); 
mi_setblockprop('Aluminum', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(axle_radius + blocklabel_tolerance, coil_length/2 + 
piston_thickness + blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(axle_radius - blocklabel_tolerance, axle_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Aluminum', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(coil_radius - blocklabel_tolerance, coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected; 
  
mi_selectlabel(coil_radius - blocklabel_tolerance, -coil_length/2 - 
blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
mi_clearselected 
  
mi_selectlabel(coil_radius - blocklabel_tolerance, coil_length/2 + 
blocklabel_tolerance); 
mi_setblockprop('Steel', 0, mesh_tolerance, '<None>', 0, 0, 0); 
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mi_clearselected; 
  
% Now, the finished input geometry can be displayed. 
  
mi_zoomnatural 
  
v=ver; 
mi_saveas([cd,'/RectangularCase.fem']); 
  
% Now,analyze the problem and load the solution when the analysis is finished 
  
mi_analyze 
mi_loadsolution 
  
y1_i = linspace(coil_length/2,coil_length/2+piston_thickness); 
y2_i = linspace(-coil_length/2-piston_thickness,-coil_length/2); 
  
x_i = linspace(piston_radius,cylinder_inside_radius-fin_height); 
  
b1 = zeros(length(x_i), length(y1_i)); 
b2 = zeros(length(x_i), length(y2_i)); 
x = zeros(length(x_i), length(y2_i)); 
y1 = zeros(length(x_i), length(y2_i)); 
y2 = zeros(length(x_i), length(y2_i)); 
  
for i = 1:length(x_i) 
    for j = 1:length(y1_i) 
        b = mo_getb(x_i(i), y1_i(j)); 
        b1(i,j) = sqrt(b(1).^2+b(2).^2); 
        x(i,j) = x_i(i); 
        y1(i,j) = y1_i(j); 
    end 
     
    for k = 1:length(y2_i) 
        b = mo_getb(x_i(i), y2_i(k)); 
        b2(i,k) = sqrt(b(1).^2+b(2).^2); 
        y2(i,k) = y2_i(k); 
    end 
end 
  
b1_mean = mean(mean(b1)); 
b2_mean = mean(mean(b2)); 
  
%The following are material properties for DS7012 from Lord Corp 
BH_B = [0 .5 1 1.5]; 
BH_H = [0 65 200 500]; 
TH_T = [3 10 20 30 40 50 57 59]*1000; 
TH_H = [2 20 40 60 90 125 175 195]; 
H = polyval(polyfit(BH_B, BH_H, 2), (b1_mean+b2_mean)/2); 
tau_y = sqrt(polyval(polyfit(TH_H, TH_T.^2, 1), H)); 
mu = 0.28; 
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figure 
contour(x, y1, b1); colorbar 
print -dpng Figure1 
  
figure 
contour(x(.05*length(x_i):.95*length(x_i),.05*length(y1_i):.95*length(y1_i)), 
... 
    y1(.05*length(x_i):.95*length(x_i),.05*length(y1_i):.95*length(y1_i)), 
... 
    b1(.05*length(x_i):.95*length(x_i),.05*length(y1_i):.95*length(y1_i))); 
colorbar; 
print -dpng Figure2 
  
figure 
contour(x, y2, b2); colorbar 
print -dpng Figure3 
  
figure 
contour(x(.05*length(x_i):.95*length(x_i),.05*length(y2_i):.95*length(y2_i)), 
... 
    y2(.05*length(x_i):.95*length(x_i),.05*length(y2_i):.95*length(y2_i)), 
... 
    b2(.05*length(x_i):.95*length(x_i),.05*length(y2_i):.95*length(y2_i))); 
colorbar; 
print -dpng Figure4 
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Chapter 7 APPENDIX B 

 

ANSYS Classic Case Code 

 

!Smart Materials and Structures Laboratory 
!MR Damper - Classic Case 
! 
!April 19, 2009 
! 
!Ehsan Sadeghipour 
!Dr. Marcelo Dapino 
! 
! 
/VERIFY,ClassicCase 
/TITLE, ClassicCase, FLOW BETWEEN ROTATING CONCENTRIC CYLINDERS   
! 
! -- PARAMETERS -- 
R1    = .0349                         ! RADIUS OF INNER CYLINDER 
R2    = .0379                         ! RADIUS OF OUTER CYLINDER 
NX    = 30                            ! NUMBER OF X DIVISIONS 
THETA = 10                            ! CYLINDER ENDING ANGLE 
NY    =  10                           ! NUMBER OF Y DIVISIONS 
LZ    = .0092                         ! LENGTH IN Z DIRECTION 
NZ    =  92                           ! NUMBER OF Z DIVISIONS 
OMEGA = 100                           ! ANGULAR VELOCITY 
RHO   = 2380                          ! FLUID DENSITY 
MU    = .042                          ! FLUID VISCOSITY 
! -- MODEL -- 
/PREP7 
smrt,off 
ET,1,FLUID142,,,3                     ! 3D RTZ SYSTEM 
MSHK,1                                ! MAPPED VOLUME MESH 
MSHA,0,3D                             ! USING HEX   
 
CYLIND,R1,R2,,LZ,,THETA 
LSEL,S,,,1,8,7 
LSEL,A,,,3,6,3 
LESIZE,ALL,,,NX 
LSEL,S,,,2,7,5 
LSEL,A,,,4,5 
LESIZE,ALL,,,NY 
LSEL,S,,,9,12 
LESIZE,ALL,,,NZ 
ALLSEL 
VMESH,1 
 
ASEL,S,,,4                            ! INNER CYLINDER BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
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D,ALL,VY,-R1*OMEGA 
D,ALL,VZ 
D,ALL,PRES 
D,ALL,ENKE,-1 
 
ASEL,S,,,3                            ! OUTER CYLINDER BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
D,ALL,VY 
D,ALL,VZ 
 
ASEL,S,,,5                            ! PERIODIC BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
D,ALL,VX 
PERI,,THETA                           ! PERIODIC BC MACRO 
 
ASEL,S,,,1,2                          ! SYMMETRY BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
D,ALL,VZ 
 
ALLSEL 
FINISH   
! -- SOLUTION -- 
/SOLU 
FLDATA,ITER,EXEC,5000                 ! NUMBER OF GLOBAL ITERATIONS 
FLDATA,NOMI,DENS,RHO                  ! NOMINAL DENSITY 
FLDATA,NOMI,VISC,MU                   ! NOMINAL VISCOSITY 
FLDATA,OUTP,TAUW,T                    ! OUTPUT WALL SHEAR STRESS 
CGOMGA,,,OMEGA                        ! ANGULAR VELOCITY OF ROTATING CS 
SAVE 
/OUTPUT,SCRATCH                       ! DIVERT OUTPUT  
SOLVE 
/OUTPUT 
FINISH  
! 
 

ANSYS Rectangular Cutouts Code 

 

!Smart Materials and Structures Laboratory 
!MR Damper w/ Rectangular Cutouts 
! 
!April 19, 2009 
! 
!Ehsan Sadeghipour 
!Dr. Marcelo Dapino 
! 
! 
/TITLE, RectangularCase, FLOW BETWEEN ROTATING CONCENTRIC CYLINDERS 
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! 
! -- PARAMETERS -- 
R1    = .0349                   ! RADIUS OF INNER CYLINDER 
R2    = .0382                   ! RADIUS OF OUTER CYLINDER 
FH    = .0008         ! FIN HEIGHT 
FW    = .0008         ! FIN wIDTH 
PT    = .0092         ! PISTON THICKNESS 
GT    = .0020         ! GAP THICKNESS 
XT    = .0001                       ! X THICKNESS 
THETA = 10                          ! CYLINDER ENDING ANGLE 
YT    =  1                          ! Y THICKNESS 
ZT    = .0001                       ! Z THICKNESS 
OMEGA = 100                         ! ANGULAR VELOCITY 
RHO   = 2380                        ! FLUID DENSITY 
MU    = .042                        ! FLUID VISCOSITY 
! -- MODEL -- 
/PREP7 
smrt,off 
ET,1,FLUID142,,,3                   ! 3D RTZ SYSTEM 
MSHK,1                              ! MAPPED VOLUME MESH 
MSHA,0,3D                           ! USING HEX   
 
 
CYLIND,R1,R2,,PT,,THETA   ! CREATING THE VOLUME 
CYLIND,R2-FH,R2,,FW,,THETA 
CYLIND,R2-FH,R2,FW+GT,2*FW+GT,,THETA 
CYLIND,R2-FH,R2,2*FW+2*GT,3*FW+2*GT,,THETA 
CYLIND,R2-FH,R2,PT-FW,PT,,THETA 
VSBV,1,2,DELETE,DELETE 
VSBV,6,3,DELETE,DELETE 
VSBV,1,4,DELETE,DELETE 
VSBV,2,5,DELETE,DELETE 
 
LSEL,S,,,11,12    ! Z AXIS DIVISIONS 
LSEL,A,,,23,59,12 
LSEL,A,,,24,60,12 
LSEL,A,,,4,9,5 
LSEL,A,,,15,16 
LSEL,A,,,21,22 
LESIZE,ALL,ZT 
 
LSEL,S,,,61,62    ! X AXIS DIVISIONS 
LSEL,A,,,1,3,2 
LSEL,A,,,49,51,2 
LSEL,A,,,42,44,2 
LSEL,A,,,37,39,2 
LSEL,A,,,30,32,2 
LSEL,A,,,25,27,2 
LSEL,A,,,18,20,2 
LESIZE,ALL,XT 
 
LSEL,S,,,2,14,12    ! Y AXIS DIVISIONS 
LSEL,A,,,17,19,2 
LSEL,A,,,26,28,2 
LSEL,A,,,29,31,2 
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LSEL,A,,,38,40,2 
LSEL,A,,,41,43,2 
LSEL,A,,,50,52,2 
LSEL,A,,,7,55,48 
LESIZE,ALL,,YT 
 
VSWEEP,1,15,6,1 
 
ASEL,S,,,4                            ! INNER CYLINDER BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
D,ALL,VY,-R1*OMEGA 
D,ALL,VZ 
D,ALL,PRES 
D,ALL,ENKE,-1 
 
ASEL,S,,,10,28,3                      ! OUTER CYLINDER BOUNDARY CONDITIONS 
ASEL,A,,,8,20,6 
ASEL,A,,,3,5,2 
ASEL,A,,,9 
NSLA,S,1 
D,ALL,VX 
D,ALL,VY 
D,ALL,VZ 
 
ASEL,S,,,6                       ! PERIODIC BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
D,ALL,VZ 
PERI,,THETA                        ! PERIODIC BC MACRO 
 
ASEL,S,,,1,31,30                      ! SYMMETRY BOUNDARY CONDITIONS 
NSLA,S,1 
D,ALL,VX 
D,ALL,VZ 
 
ALLSEL 
FINISH 
 
! -- SOLUTION -- 
/SOLU 
FLDATA,ITER,EXEC,5000                  ! NUMBER OF GLOBAL ITERATIONS 
FLDATA,NOMI,DENS,RHO                   ! NOMINAL DENSITY 
FLDATA,NOMI,VISC,MU                    ! NOMINAL VISCOSITY 
FLDATA,OUTP,TAUW,T                     ! OUTPUT WALL SHEAR STRESS 
CGOMGA,,,OMEGA                         ! ANGULAR VELOCITY OF ROTATING CS 
SAVE 
/OUTPUT,SCRATCH                        ! DIVERT OUTPUT  
SOLVE 
/OUTPUT 
FINISH  
! 
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