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a b s t r a c t

A coupled axisymmetric finite element model is formulated to describe the dynamic performance of a

hydraulically amplified magnetostrictive actuator for active powertrain mounts. The formulation is

based on the weak form representations of Maxwell’s equations for electromagnetics and Navier’s

equation for mechanical systems coupled using a nonlinear magnetomechanical constitutive law for

terbium–dysprosium–iron (Terfenol-D). Fluid structure interaction is modeled by computing a bulk

fluid pressure based on the volumetric deformation of the fluid chamber and coupling the fluid pressure

to the structure through traction on the boundaries encompassing the fluid. Seal friction is quantified

using the LuGre friction model. The resulting model equations are coded into the commercial finite

element package COMSOL, which is used for meshing and global assembly of matrices. Results show

that the model accurately describes the dynamic mechanical and electrical responses of the actuator. A

parametric study performed using this model reveals that the actuator’s unloaded displacement can be

improved by up to 140% by doubling the thickness of the fluid chamber components and reducing seal

friction to a fourth of its original value. Other parameters such as permeability and conductivity of the

permanent magnet and fluid bulk modulus have a minor effect on actuator performance.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

A magnetostrictive material exhibits coupling between the
mechanical and magnetic states. Through this coupling, the material
deforms when exposed to magnetic fields and changes its magnetiza-
tion when stressed. Short response times and high displacement
resolution make magnetostrictive materials attractive for sensors and
actuators operating at kHz frequencies [1]. One such application is
active automotive engine mounts, in which an actuator is employed
to control the mount’s dynamic stiffness so as to effectively isolate
engine vibrations from the chassis.

Active mount actuators must produce approximately 71 mm
stroke to fully isolate engine vibrations at the idling frequency [2].
Because active-material drivers capable of sufficiently fast dynamic
response for mounts (such as piezoelectrics and magnetostrictives)
only produce about 0.1% strain, implementation of these materials in
an active mount actuator necessitates stroke amplification. Hydraulic
amplification [3,4] is attractive as it can generate large mechanical
gain in a compact package. The fluid used for amplification can be
either the same as the hydromount’s fluid [5] or isolated from it [6].
The former design is more attractive for its simplicity while the latter
All rights reserved.
is more efficient as the displacement of the smart material driver is
not degraded by the compliance of the mount. Chakrabarti and
Dapino [7] followed the second design principle and combined a
magnetostrictive Terfenol-D driver with a sealed hydraulic amplifica-
tion mechanism. The resulting actuator exhibits superior gain-band-
width characteristics and less power consumption than a commercial
electromagnetic mount actuator used for benchmarking.

Internal friction in fluid seals and fluid-chamber compliance have
a significant effect on the performance of smart hydraulically
amplified actuators. As a result, linear models considering 100%
energy transmission greatly overestimate the performance of these
actuators [3,8]. Chakrabarti and Dapino [9] developed a lumped
parameter model considering seal friction, nonlinear Terfenol-D
material response and compliance of the fluid chamber components
to model the dynamic mechanical response of a magneto-hydraulic
actuator. Despite the model’s value as an analysis tool, it is not
suitable for transducer design because fluid chamber compliance
and current–field relationships are difficult to accurately quantify in
lumped parameter models. A finite element model is more appro-
priate for design optimization as it can incorporate in greater detail
geometry and material constitutive parameters such as elastic
modulus, permeability, and electrical conductivity.

Significant effort has been concentrated on developing finite
element frameworks for magnetostrictive transducers. Benbouzid
[10] presented a 2D bidirectionally coupled magnetostatic model
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Fig. 2. Geometry of the transducer used in this study.
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with Terfenol-D constitutive behavior incorporated using surface
splines. Kannan and Dasgupta [11] formulated a 2D magnetostatic
model with bi-directionally coupled magnetomechanical relations,
current induced magnetic fields and electromagnetic body forces.
Zhou et al. [12] developed a 2D dynamic finite element model of a
unimorph actuator with one way magnetomechanical coupling. The
one-way coupled 3D model of Kim and Jung [13] describes force due
to magnetostriction driving a coupled fluid-structural model for a
sonar transducer. Aparicio and Sosa [14] developed a 3D, fully
coupled finite element model including dynamic effects along with
validation on a simple one-dimensional example. Mudivarthi et al.
[15] utilized a fully coupled, magnetostatic formulation to describe
stress-induced flux density changes in Galfenol with no current-
induced fields. An updated version of the model includes current-
induced magnetic fields but not eddy current losses [16]. Evans and
Dapino [17] presented a fully coupled dynamic model for 3D
magnetostrictive transducers simultaneously incorporating the
effects of eddy currents, structural dynamics, and flux leakage on
transducer performance.

This paper couples the weak form equations presented by Evans
and Dapino [18] with a nonlinear energy-averaged constitutive model
for Terfenol-D to describe the response of the magneto-hydraulic
mount actuator developed by Chakrabarti and Dapino [7]. In order to
exploit the axisymmetric geometry of the device, the equations are
reduced to a 2D axisymmetric form. Vector magnetic potential A and
current density J are reduced to scalars defined in the out-of-plane
direction. Fluid pressure in the actuator is computed as a product of
the volumetric change of the fluid chamber and the bulk modulus of
the fluid. The computed pressure is coupled to the structural model as
applied traction on the edges exposed to the fluid. Friction at the
o-ring seals is described using the LuGre friction model which
describes friction as an interaction force between microscopic bristles
present on the sliding surfaces in contact. The complete system of
equations is coded into COMSOL (a commercial finite element
package) using the weak form application mode. It is then exported
as a Matlab script and executed from the Matlab command line. The
Terfenol-D constitutive law and the nonlinear time dependent solver
are coded up as Matlab functions. Built-in COMSOL functions are
called for meshing and global assembly of system matrices.

Section 2 briefly revisits the design of the modeled actuator.
Section 3 describes the finite element formulation in detail while
Fig. 1. Assembled and exploded view of the hydr
Section 4 discusses the Terfenol-D constitutive law and its imple-
mentation. Section 5 describes the time-integration scheme used to
solve the nonlinear coupled system. This is followed in Section 6 by a
comparison of modeled responses to measurements and a parametric
study highlighting the sensitivity of the dynamic performance of the
actuator to different design parameters.
2. Actuator design

Fig. 1 shows the actuator’s geometry; its main components are a
fluid chamber with a large-diameter piston at one end driven by a
Terfenol-D rod and a small-diameter driven piston at the other end.
The magnetic circuit consists of a permanent magnet to provide
magnetic bias, a coil to generate the dynamic fields with Terfenol-D at
its core, and iron pieces for flux return. Fig. 2 shows the 2D
axisymmetric version used for modeling. Some components like the
aulically amplified magnetostrictive actuator.
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stainless steel body and the preload plate have not been modeled as
they only serve a geometrical purpose. The device is surrounded by
air so that the magnetic potential boundary condition can be applied
to the outer boundary of air. In general, flux density measurements
are taken by winding a pick-up coil around the middle of the rod and
strain measurements are taken by bonding a strain gage close to the
midpoint of the rod. Breaking the magnetostrictive rod domain into
three areas allows us to evaluate the variables in the central region
separately and compare the behavior of the model against measure-
ments. In this actuator all components are considered to be magne-
tically active, hence the magnetic degree of freedom (A) is calculated
in all the domains. Of these, the base plate, Terfenol-D rod, end caps,
pistons, and casing are structurally active, thus the mechanical
degrees of freedom u are calculated only in these components. This
partitioning of the solution domain reduces the total degrees of
freedom, thus reducing the computation time.
3. Model formulation

3.1. Global relationships and weak form equations

As is the case with many Terfenol-D transducers, the actuator is
axisymmetric with the magnetostrictive driver at the core sur-
rounded by a concentric drive coil, permanent magnets, and flux
return components. An axisymmetric formulation efficiently
describes the actuator without significant loss of accuracy. The
current density J and magnetic potential A are defined as having
only an out-of-plane component (Jf and Af, denoted as J and A

for convenience). To avoid singularities in computation, the vari-
ables used in the formulation are the modified magnetic potential
(A0 ¼ A=r), modified radial displacement (u0 ¼ u=r), and axial dis-
placement (w). The magnetic flux density vector (B) and the strain
vector (S) are kinematically related to A0, u0, and w by

B¼ ½Br ,Bz�
T ¼ �r

@A0

@z
,r
@A0

@r
þ2A0

� �T

, ð1Þ

S¼ ½Srr ,Szz,Srz,Sff�
T ¼ r
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@r
þu0,

@w
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: ð2Þ

The corresponding work conjugates magnetic field (H) and stress (T)
have the form

H¼ ½Hr Hz�
T, ð3Þ

T¼ ½Trr Tzz Tff Trz�
T, ð4Þ

and are related to B and S through constitutive laws. Since the
actuator works primarily under axial loading, the main quantity of
interest is the axial deformation w. Thus, w is calculated in all
structurally active domains. In the casing and the large piston, radial
deformation may occur due to the fluid pressure. Thus, in these two
components, radial deformation is also computed. This implies that
the casing and the large piston are both axially active and radially
active. Domains that are only axially active have a reduced stress
and strain vector with only two components, axial and in-plane
shear. This reduction significantly simplifies the Terfenol-D consti-
tutive law inversion process. It is emphasized that neglecting the
transverse strains does not imply that those strains are zero but
rather, they do not contribute to the strain energy density of the
material as the corresponding transverse stresses are negligible.

The weak form equations for a generalized magnetostrictive
system can be derived from Maxwell’s and Navier’s equations
using the method of weighted residuals [17]. Assuming negligible
displacement currents and Lorentz forces, the weak form equa-
tions are obtained in terms of the mechanical displacement field u
and the vector magnetic potential A:Z
VB
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Z
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For an axisymmetric problem the volume integrals can be
transformed to area integrals usingZ

Ve

ðFÞ dV ¼ 2p
Z
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ðrFÞ dr dz, ð7Þ
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The weak form equations can be entered in COMSOL using (8) and
(9) as a function of A, u, w, and the corresponding test variables
even though the solution variables are A0, u0, and w. This is done
by adding global expressions relating A and u to A0 and u0.

3.2. Fluid domain

Due to the extremely small volume of fluid contained in the
actuator, inertial effects in the fluid are neglected. Also, since the
seal friction forces are much higher compared to viscous forces in
the fluid, damping in the fluid is assumed to be negligible. Thus,
only fluid compliance is modeled. The change in volume of the
fluid domain DVf can be written as a sum of contributions from
the driver piston DVP , the driven piston DVL, and the casing DVC

as

DVf ¼�DVPþDVLþDVC , ð10Þ

where each of these volume changes is calculated using the
integral

DVi ¼

Z
li

2prw dr, ð11Þ

over the length of the edge li exposed to the fluid domain. The
pressure change in the fluid is

Dp¼�
b

Vref
DVf , ð12Þ

which is coupled to the structural model through traction on the
edges exposed to the fluid. The model describes the effect of
compliance of the fluid chamber components. Here, b is the effective
bulk modulus of the fluid, while in the lumped parameter model [9],
beff represented an effective modulus describing the combined
compliance of the fluid and fluid chamber components.

3.3. Friction model

Friction forces are present at the o-ring seals in the two pistons.
At the small (driven) piston seal, actuation forces are low and
velocities are high. Hence, even a small friction force at this seal has
a significant impact on the dynamic performance of the actuator. On
the other hand at the large (drive) piston, actuation forces are high
and velocities are low. A small frictional force at this end does not
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affect the dynamic response of the actuator. Thus, friction has been
modeled only at the small piston seal.

In the LuGre model [19], friction between two sliding
surfaces in contact is described as an interaction force between
microscopic bristles on both surfaces. The bristle deflection
state ZL is governed by a nonlinear first order differential
equation,

_ZLþs0
9vL9
gðvLÞ

ZL�vL ¼ 0, ð13Þ

where vL is the relative sliding velocity between the two surfaces,
which in this case is the average velocity of the driven piston
calculated by integrating 2pr _w over the edge of the piston
adjacent to the casing, divided by the area of that surface.
Function gðvLÞ is given by

gðvLÞ ¼ FcþðFs�FcÞe
�ðvL=vsÞ

2

, ð14Þ

where Fs and Fc are the static and Coulomb friction forces and vs is
the Stribeck velocity. The friction force is given by

FRL ¼ s0ZLþs1
_ZLþs2vL, ð15Þ

where s0 and s1 are the bristle stiffness and bristle damping
coefficient, respectively. This force is applied as traction on the
boundary of the small piston adjacent to the casing.
3.4. Boundary conditions

Boundary conditions for an axisymmetric problem must be
implemented such that none of the variables become infinite at the
r¼0 boundary. In this case, the axial symmetry condition is enforced
using ð@A=@rÞðr ¼ 0Þ ¼ 0 in the magnetically active domains, uðr ¼ 0Þ ¼ 0
in the radially active domains, and ð@w=@rÞðr ¼ 0Þ ¼ 0 in the axially
active domains. These conditions remove shear stresses and constrain
the radial displacement at the r¼0 boundary. The magnetostrictive
system is encapsulated by a large volume of air. At the outer
boundaries of this air volume, the magnetic potential is set to zero.
The bottom face of the base plate and the casing are considered
to be mechanically fixed. The top face of the small piston is spring
loaded. Fig. 3 illustrates the boundary conditions used to analyze the
actuator.
Fig. 3. Mesh and boundary conditions used for finite element analysis of the

mount actuator.
4. Constitutive laws

4.1. Terfenol-D constitutive model

Modeling the constitutive behavior of Terfenol-D has been tradi-
tionally difficult. The presence of a large magnetostriction anisotropy,
low magnetocrystalline anisotropy, and a twinned dendritic structure
gives rise to complex domain level processes which are not com-
pletely understood [20]. The Jiles–Atherton model [21] quantifies the
total magnetization of a ferromagnetic material as the sum of an
irreversible component due to domain wall motion and a reversible
component due to domain wall bowing. Due to its ease of imple-
mentation it has been commonly used to model actuators based on
Terfenol-D loaded unidirectionally [22,23]. Another approach to
modeling Terfenol-D was formulated by Armstrong et al. [24] where
bulk magnetization and magnetostriction are derived from an
expected value of a large number of moments. The model was later
extended to include magnetomechanical hysteresis and its efficiency
was improved by restricting the choice of moment orientations to the
easy magnetization axes [25] (8 /111S directions for Terfenol-D).
This restricted choice of moment orientations, however, caused
inaccuracies in the models especially in the domain rotation region.
Atulasimha et al. [26] improved the accuracy of these models at the
cost of increased computational load by tracking the volume fractions
of domains aligned along 98 crystallographic orientations for Galfe-
nol. Evans and Dapino [18] developed a constitutive model for
Galfenol by choosing orientations which minimize an energy func-
tional locally defined about each easy axis direction. This eliminated
the loss in accuracy in the Armstrong model caused by the restricted
choice of moment orientations without adding significant computa-
tional burden.

Chakrabarti and Dapino [27] showed that conventional energy
averaging with eight easy axis orientations yields an unphysical kink
in the magnetization response and fails to describe the gradual
approach to saturation present in Terfenol-D magnetostriction. They
found that the unphysical kink in the response can be eliminated by
superposition of an empirically weighted global anisotropy energy
and an anisotropy energy locally defined around each easy axis.
The total free energy of a domain close to the kth easy axis ck is
formulated as the sum of the anisotropy energy GA

k, magnetomecha-
nical coupling energy GC

k and the Zeeman energy GZ
k as

Gk
¼wkGk

A0
þ1

2KkJmk�ckJ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gk

A

�Sk
m � T|fflffl{zfflffl}
Gk

C

�m0Msm
k �H|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Gk
Z

, ð16Þ

where Gk
A0

is the global anisotropy energy and wk is an empirical
weighting factor which adjusts the anisotropy energy along
the kth easy axis. Minimization of the energy functional and
linearization of a unity norm constraint on the orientation vectors
(mk �mk ¼ 1� ck �mk ¼ 1) yields the following expression for the
kth local minimum

mk ¼ ðKk
Þ
�1 Bk

þ
1�ck � ðKk

Þ
�1Bk

ck � ðKk
Þ
�1ck

ck

" #
, ð17Þ

where the magnetic stiffness matrix Kk and force vector Bk are

Kk
¼

Kk
�3l100T1 �3l111T4 �3l111T6

�3l111T4 Kk
�3l100T2 �3l111T5

�3l111T6 �3l111T5 Kk
�3l100T3

2
64

3
75, ð18Þ

Bk
¼ ½ck

1Kk
þm0MsH1 ck

2Kk
þm0MsH2 ck

3Kk
þm0MsH2�

T: ð19Þ

The anhysteretic volume fractions nan are calculated using Boltz-
mann-type averaging,

xk
an ¼

expð�Gk=OÞPr
j ¼ 1 expð�Gj=OÞ

, ð20Þ
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where O is an averaging factor defined as a function of the deviation
of the anhysteretic domain volume fractions nan from a homogeneous
distribution n as

O¼ a0þa1Jnan�nJ2: ð21Þ

This implicit definition for O enables the model to describe the slow
approach to saturation in Terfenol-D magnetostriction. However, the
implicit relationship demands a suitable iterative solution scheme to
converge to consistent values of O and nan which simultaneously
satisfy (20) and (21). Fig. 4 shows the performance of the model in
describing measurements presented by Moffett et al. [28].

4.1.1. Model inversion and coordinate transformation

As is common with vector magnetic potential based formulations,
a constitutive model inversion is required such that flux density and
strain are known inputs, and stress and field are calculated outputs.
Moreover, since commercially available Terfenol-D rods have their
½112� crystal orientation aligned with the sample axis (which is the Z
axis of the global coordinate system), a coordinate transformation is
required to integrate the constitutive law with the finite element
model. Magnetic flux density and field are first-order tensors and
transform according to

Xm ¼UXG, XG ¼UTXm, ð22Þ

while stress and strain being second-order tensors transform accord-
ing to

Xm ¼UTXGU, XG ¼UXmUT: ð23Þ

Here, the subscripts m and G respectively denote the ‘material’ and
‘global’ coordinate system. The transformation matrix U is formed
using the normalized direction vectors in the material coordinate
system that are aligned with the global coordinate axes;

U¼
uR

JuRJ
,

uf

JufJ
,

uZ

JuZJ

" #
: ð24Þ

The direction vector uZ ¼ ½112�; the vectors uR and uf change with
the circumferential angle f. However, since the Terfenol-D driver
has an aspect ratio of 4:1, the radial and circumferential components
of stresses and fields are expected to be much smaller than the axial
components. In that case, considering uR and uf to be fixed should
not have a noticeable effect on the accuracy of the model. In this
paper uR and uf are selected as ½111� and ½110� respectively.
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Fig. 5 shows a flow chart for the constitutive model. The inputs to
the constitutive law are the flux density and strain tensors calculated
kinematically from the vector magnetic potential and displacement
values at the integration points. The algorithm starts with an initial
guess of zero stress and field and converges to the correct values
through Quasi-Newton iterations. In every iteration, first the stress
and field vectors are transformed from the global to the material
coordinate system; then the response of the material to this input
stress and field is computed using the energy-averaged constitutive
model, and finally the computed flux density BðkÞm and strain SðkÞm (k
being the iteration index) are transformed back to the global
coordinate system (BðkÞG , SðkÞG ) to be compared with the input vectors
(BG,SG). In case the difference is greater than the tolerance, a revised
stress and field (Hðkþ1Þ

G and Tðkþ1Þ
G ) is estimated based on the SR1

update formula and the process is repeated until convergence is
achieved. The SR1 formula directly approximates the material Jaco-
bian inverse which is used by COMSOL to assemble the tangent
stiffness matrix during the dynamic solution process. Since the
Terfenol-D rod is considered to be axially active only, a reduced
strain vector is fed into the inversion algorithm. The inversion routine
forces the radial and circumferential stresses to be zero after each
iteration such that the final converged solution at the kth step
includes T ðkÞzz and T ðkÞrz which yield input strains Szz and Srz along with
non-zero values of transverse strains. However, we are only inter-
ested in accurately reproducing the axial and in-plane shear
components.

4.2. Constitutive laws for passive materials

The stress-strain laws for passive structural materials (such as
steel) can be written as shown by Chandrupatla and Belegundu [29]

Trr
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For domains that are axially active only, the axial stress is computed
using the Hooke’s law for a uniaxial state of stress, Tzz ¼ ESzz. The
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Fig. 5. Flowchart showing the process followed to incorporate the Terfenol-D constitutive law in the model.
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shear stress is computed using Trz ¼ E=½2ð1þnÞ�Srz. Constitutive laws
for passive magnetic materials have been modeled using the linear
isotropic relationship H¼ m�1B where m is the constant permeabil-
ity of the material. For permanent magnets this law is modified to
include the residual induction Bres in the relevant direction. For
example, if the residual induction is along the z direction, the
constitutive law can be written as

Hr ¼
1

m
Br , ð26Þ

Hz ¼
1

m ðBz�BresÞ: ð27Þ

Electrically conducting materials have been modeled using a con-
stant conductivity.

5. Nonlinear dynamic solution procedure

Solution of nonlinear dynamic systems is a particularly chal-
lenging task as even unconditionally stable schemes for linear
systems may become unstable. In this work an implicit time
integration scheme is followed based on the trapezoidal rule as
described by Bathe [30]. The governing equations for the coupled
finite element system can be written as

M €UþD _U ¼RðtÞ�FðU,tÞ, ð28Þ

where the mass matrix M, damping matrix D and state vector U
are of the form

M¼
0 0

0 Mu

� �
, D¼

DA 0

0 Du

" #
, U¼

Q A

Q u

 !
: ð29Þ

The superscripts A and u denote quantities related to the mag-
netic and mechanical degrees of freedom, respectively. The vector
of externally applied forces RðtÞ includes contributions from the
coil source current density, tangential applied fields, point forces,
and traction on certain boundaries. FðU,tÞ is the internal nodal
force vector whose derivative with respect to the state vector U
yields the stiffness matrix. Since F contains contributions from



Table 1
Parameter values for the fluid and friction models.

Parameter Value Description

b=Vref 12 �1013 N/m5 Ratio of bulk modulus to volume of

hydraulic fluid

kpre (N/m) 3.5 �103 Stiffness of the preload spring

s0 (N/m) 0.34 �105 LuGre bristle stiffness coefficient

s1 (Ns/m) 35 LuGre viscous damping coefficient

s2 (Ns/m) 5.2 Lugre viscous damping coefficient

vs (m/s) 0.0009 Stribeck velocity

Fc (N) 3.25 (for v40) Coloumb friction force for positive

relative sliding velocity

1.75 (for vo0) Coloumb friction force for negative

relative sliding velocity

Fs (N) 3.25 (for v40) Static friction force for positive

relative sliding velocity

1.75 (for vo0) Static friction force for negative

relative sliding velocity

Table 2
Terfenol-D constitutive model parameters.

Parameter Value Parameter Value

K � 105 (J/m3) 4.189 a1 � 103 (J) 48.18

m0Ms (T) 0.99415 wð1;2Þ 1.147

l100 � 103 0.104 wð3;4Þ 1.058

l111 � 103 1.486 wð5;6,7;8Þ 0.958

a0 � 103 (J) 3.428 Es (GPa) 115
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field and stress which are nonlinearly dependent on U, the
stiffness matrix K is also state dependent. Bathe [30] suggested
various time-integration schemes for nonlinear structural pro-
blems of similar form. Explicit methods are ruled out since the
mass matrix is singular. An implicit scheme based on the
trapezoidal rule is implemented, combined with equilibrium
iterations. At the kth iteration the system equations can be
written as

M €U
ðkÞ
þD _U

ðkÞ
þ

tþDtK
ðk�1Þ

DUðkÞ ¼ tþDtR�tþDtF
ðk�1Þ

, ð30Þ

tþDtU
ðkÞ
¼

tþDtU
ðk�1Þ
þDUðkÞ: ð31Þ

According to the trapezoidal rule of time integration, the follow-
ing assumptions are used

tþDtU ¼ tUþ
Dt

2
ð
t _Uþ tþDt _U Þ, ð32Þ

tþDt _U ¼ t _Uþ
Dt

2
ð
t €Uþ tþDt €U Þ: ð33Þ

The vectors €U
ðkÞ

and _U
ðkÞ

can be written using (31) to (33) as

tþDt €U
ðkÞ
¼

4

Dt2
ð
tþDtU

ðk�1Þ
�

tUþDUðkÞÞ�
4

Dt
t _U�t €U , ð34Þ

tþDt _U
ðkÞ
¼

2

Dt
ð
tþDtU

ðk�1Þ
�

tUþDUðkÞÞ�t _U : ð35Þ

Substitution in (30) yields the equation of motion for the system;

tþDtK
ðk�1Þ
þ

4M

Dt2
þ

2D

Dt

� �
DUðkÞ

¼
tþDtR�M

4

Dt2
ð
tþDtU

ðk�1Þ
�tUÞ�

4

Dt
t _U�t €U

� �

�D
2

Dt
ð
tþDtU

ðk�1Þ
�

tUÞ�t _U

� �
�

tþDtF
ðk�1Þ

: ð36Þ

The starting values for the first iteration in a time step are
obtained from the values in the final iteration of the previous
time step.

tþDtF
ð0Þ
¼

tF, tþDtU
ð0Þ
¼

tU: ð37Þ

The convergence criteria used in this work are based on energy
and the norm of the out-of-balance load vector [30]. Mathema-
tically they can be written as

JtþDtR�tþDtF
ðk�1Þ
�MtþDt €U

ðk�1Þ
�DtþDt _U

ðk�1Þ
J

RNORM
rRTOL, ð38Þ

DUðkÞ � ðtþDtR�tþDtF
ðk�1Þ
�MtþDt €U

ðk�1Þ
�DtþDt _U

ðk�1Þ
Þ

DUð1Þ � ðtþDtR�tF�Mt €U�Dt _U Þ
rETOL:

ð39Þ

The mass and damping matrix are state-independent and hence
are assembled only once for the entire simulation. The internal
nodal force vector F and the tangential stiffness matrix K are
assembled in every iteration as they are state-dependent. Evalua-
tion of F requires computation of the total stress and field for a
given flux density and strain distribution, for which the Terfenol-
D constitutive law is inverted using the Quasi-Newton SR1
formula as discussed in Section 4. The SR1 formula updates the
Jacobian inverse directly, eliminating the need for matrix inver-
sion within the iteration loop. Moreover, the approximate Jaco-
bian inverse computed in the final iteration of the inversion
process is used for assembling the global stiffness matrix.
6. Model validation and parametric study

The numerical values of the model parameters were found using
analytical, experimental, and empirical procedures. Table 1 lists the
parameter values for the fluid and friction models. The preload
spring stiffness was measured in a tension–compression machine;
the rest of the fluid and friction model parameters were estimated
empirically. The LuGre model parameters are within the same order
of magnitude as those reported by Canudas de Wit et al. [31].

The constitutive model parameters for Terfenol-D were
obtained using a numerical optimization process to describe the
magnetomechanical behavior of commercially available Terfenol-
D as provided by ETREMA Products [32]. Table 2 lists the Terfenol-
D constitutive model parameters.

Finally, the electrical, mechanical and magnetic constitutive
parameters for the passive materials are listed in Table 3. This
also includes the passive properties of Terfenol-D such as density,
conductivity, and structural damping coefficient.

6.1. Obtaining the bias point

To calculate the dynamic response of the actuator, its bias
point needs to be accurately determined. The actuator is biased
both mechanically and magnetically. The mechanical bias is due
to the compression of the wave spring whose force is transmitted
(and amplified) through the fluid to the Terfenol-D rod. The stress
developed in the Terfenol-D under an axial load can be assumed
to be uniform. Therefore, this stress is superimposed directly on
the applied stress in the constitutive model. The magnetic bias is
due to the residual flux density in the permanent magnet. This
field depends on the geometry of the magnetic circuit and cannot
be assumed to be homogeneously distributed in the rod. The
magnetic bias point is obtained by increasing the residual flux
density of the magnet from zero to its actual value using a
hyperbolic tangent function and storing the solution from the
final step. Fig. 6 shows that the axial magnetic field at the bias



Table 3
Passive material parameters.

Parameter Description Air Al Cu Steel Alnico Terfenol-D

mr Relative permeability 1 1 1 4e3 5 Model-based

s� 106 (S/m) Electrical conductivity 0 35.8 59.6 5.96 2 1.7

r (kg/m3) Mass density NA 2594 NA 7860 NA 7870

n Poisson’s ratio NA 0.3 NA 0.3 NA Model-based

E (GPa) Young’s modulus NA 70 NA 200 NA Model-based

c (Ns/m4) Structural damping NA 0 NA 1e-2 NA 1�10�2

Fig. 6. Axial magnetic field distribution in the magnetic circuit due to the

permanent magnet.
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point is uniformly distributed in the central region of the rod with
a somewhat lower value at the ends. The average magnetic field
in the Terfenol-D rod is � 30 kA=m.

6.2. Response to harmonic inputs

Fig. 7 shows the actuator response at 20, 50, 100, and 200 Hz.
As expected the phase between voltage and displacement
increases with increasing frequency resulting in counter-clock-
wise rotation of the loops. One shortcoming of the model is the
assumed anhysteretic Terfenol-D behavior which causes a dis-
crepancy in the phase of the response. At lower frequencies this is
not visible but at 200 Hz the phase difference is significant.

It is observed in both the experimental and modeled voltage-
current loops that the actuator draws a biased current even
though it is driven with an unbiased sinusoidal voltage input.
This happens because of the nonlinear behavior of Terfenol-D.
Because the permeability of the material is field dependent, the
back emf in the coil also varies with voltage giving rise to an
asymmetric current signal. Such effects can only be described
accurately with models where electromagnetic and mechanical
responses are fully coupled.

6.3. Parametric study

The proposed finite element model can be a useful tool for
optimizing device geometry and material selection. To illustrate,
the effect on unloaded actuator displacement of fluid bulk
modulus, thickness of the fluid chamber components, conductiv-
ity and permeability of the permanent magnet, and seal friction
force are studied at 20, 50, 100 and 200 Hz.

The effective fluid bulk modulus affects the dynamic perfor-
mance of hydraulic devices. To investigate the effect of increased
fluid stiffness (by degassing), the model is run with b¼ 2b0 and
b¼ 4b0, where b0 is nominal bulk modulus of the fluid.
Fig. 8(a) shows that increasing the bulk modulus four times only
leads to a 2–3% increase in unloaded stroke below 100 Hz and a
modest 8.5% increase at 200 Hz. This weak dependence suggests
that the unloaded displacement is limited by structural compli-
ance and not fluid compliance, which is very low because of the
small volume of fluid used in this actuator (� 1:3 c.c).

Next, the effect of structural compliance of the fluid chamber
components on transducer performance is investigated. The
model is run with the thickness of the large piston and the casing
doubled. A 30–35% stroke increase is calculated in the
20–100 Hz range while a 143% increase is obtained at 200 Hz.
Thus, the primary sources of compliance in the transducer are the
components enclosing the fluid.

Another factor that influences the performance of hydraulic
devices is seal friction. The friction force at the small piston seal is
reduced to fr¼ 0:5 fr0 and fr ¼ 0:25 fr0, where fr0 is the nominal
friction force. With the friction force reduced by a half, the stroke
increases by 10–12% in the 20–100 Hz range while a 60% increase is
calculated at 200 Hz. With the friction force reduced to one fourth of
the original value, a 15–20% stroke increase is calculated below
100 Hz and an 85% increase is calculated at 200 Hz. As expected,
reduction in seal friction can create considerable improvements in
the unloaded stroke of the transducer.

Finally, to illustrate the advantages of a fully coupled model,
the effect of key electromagnetic parameters on the mechanical
performance of the actuator is studied. The permeability of the
permanent magnet is increased to twice and four times the initial
value while the conductivity of the permanent magnet is reduced
to zero to study the effect of eliminating eddy currents on the
permanent magnet. Neither parameter has an appreciable effect
on system performance. Increasing the permeability of the per-
manent magnet four times leads to a 4% stroke increase at 20 Hz
and reduces to a 0.25% increase at 200 Hz. Setting the conductiv-
ity of the permanent magnet to zero results in negligible
improvement at 20 Hz and gradually increases up to a 3.6% stroke
improvement at 200 Hz. These trends are expected because an
increase in magnetic permeability leads to a larger total flux in
the circuit. However, increased flux also results in higher eddy
currents as the drive frequency increases. Thus the advantage of a
higher permeability diminishes with increasing drive frequency.
Conversely, reducing the conductivity of the permanent magnet
has little effect at 20 Hz since eddy currents are negligible at low
frequencies. With increasing frequency the effect of reduced eddy
currents becomes more apparent (Fig. 8(b)).
7. Concluding remarks

This paper presents a coupled axisymmetric finite element model
of a Terfenol-D mount actuator. Maxwell’s equations and Navier’s
equations are coupled through a nonlinear magnetomechanical
constitutive law for Terfenol-D. The effects of eddy currents, flux
leakage, structural dynamics, fluid compliance, fluid-structure
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Fig. 7. Comparison of modeled voltage–displacement and voltage–current loops

with measurements at (a) 20 Hz, (b) 50 Hz, (c) 100 Hz, (d) 200 Hz.
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interaction, and nonlinear constitutive behavior are simultaneously
incorporated. This makes the model capable of accurately describing
the dynamic mechanical and electrical behavior of the actuator. At
high frequencies the model shows discrepancies in the phase of the
output due to the assumed anhysteretic Terfenol-D constitutive law.
A parametric study on the unloaded displacement response of the
actuator shows that significant performance improvements can be
achieved by stiffening the structural components enclosing the fluid
chamber and reducing seal friction. It is also found that the actuator’s
performance is not very sensitive to changes in fluid bulk modulus
due to the extremely small fluid volume contained in the hydraulic
chamber. Variation of the electrical and magnetic constitutive para-
meters (permeability and conductivity) of the permanent magnet
creates no appreciable improvements in transducer performance.
However, the example illustrates the utility of the fully coupled
modeling framework in describing the effects of electrical and
magnetic constitutive parameters on the mechanical performance
of the transducer.
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