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ABSTRACT
A fully-coupled and 3-D model for induction and strain

of cubic magnetostrictive materials is presented which incorpo-
rates geometry dependent demagnetizing fields, current induced
fields, and stress dependent permeability. Maxwell’s equations
are coupled with a nonlinear constitutive model derived through
thermodynamics. Discretization of the nonlinear problem with
a known reference configuration yields a piecewise linear model
ideal for transducer design.

NOMENCLATURE
A Magnetic potential
B Magnetic induction
b1,2 Magnetoelastic coupling coefficients
c Stiffness matrix
d1 Linear stress-induction matrix
d2 Linear strain-field matrix
F Body force
H Magnetic field
K4 Fourth-order anisotropy constant
Kp Domain pinning constant
M Magnetization
m Magnetic domain orientation
Ms Saturation magnetization
S Total strain
Se Elastic strain
Sme Magnetoelastic strain
T Stress
u Displacement
λ100,111 Magnetostriction coefficients
η Entropy
θ Temperature
ξ Domain family volume fraction
ress all correspondence to this author.
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INTRODUCTION

Magnetostrictive materials exhibit coupling between mag-
netic and mechanical states. Galfenol (FexGa1−x, 13 ≤ x ≤ 29
at%) is a new magnetostrictive material which exhibits moder-
ate magnetostriction (strain due to magnetoelastic coupling) and
steel-like structural properties [1]. Its mechanical properties al-
low it to be machined, rolled, deposited, and welded. Galfenol is
capable of bearing compressive, tensile, bending, torsion, and
shock loads. This unique combination of robust mechanica
properties and moderate magnetostriction makes Galfenol well
suited for creating adaptive, load-bearing structures with com-
plex geometries. This has motivated the development of 3-D
magnetomechanical models [2–4]. The existing models are typi-
cally implemented with the finite element method and consistof
a set of Maxwell’s equations coupled to the law of conservation
of momentum through a material constitutive law. An efficient
and accurate framework is desirable for use as a tool for design
and control of Galfenol devices that can be utilized in the full
nonlinear regime.

Oates [2] extended the 1-D homogenized energy framework
of Smith et al. [5] to 3-D by including the effect of multi-axial
magnetic moment switching in the macroscopic magnetization.
Demagnetizing fields dependent on transducer geometry are ac-
counted for by coupling the constitutive model with Gauss’ law.
The framework is implemented with negligible magnetoelastic
coupling and in the absence of applied currents. Mudivarthiet
al. [3] include magnetoelastic coupling with no current densi-
ties by using the magnetomechanical constitutive model of Arm-
strong [6] to couple Gauss’ law with the law of conservation of
momentum where Gauss law accounts for the geometry depen
dent demagnetizing fields and the coupling with momentum con-
servation accounts for stress dependent magnetization changes.
Kiefer et al. [4] include Amp̀ere’s law with Gauss’ law and mo-
mentum conservation. A nonlinear numerical solution technique
using the finite element method and Newton-Raphson iteration is
Copyright c© 2008 by ASME
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developed. The framework is implemented with a linear consi-
tutive law in the absence of current densities.

This work develops a magnetomechanical modeling fram
work which includes current density induced magnetic fiel
through Amp̀ere’s law, demagnetizing fields from Gauss’ law
and magnetomechanical coupling. A computationally efficient
and nonlinear constitutive model is used to couple the Ampère
and Gauss laws with momentum conservation. Piecewise
earization of the constitutive model starting from a known con-
figuration over the boundary value problem is used to avoid iter-
ation which is necessary when solving nonlinear problems.

MAGNETIC BOUNDARY VALUE PROBLEM
When motion and applied currents are quasi-sta

Maxwell’s electromagnetic equations reduce to the two lawsof
magnetostatics

∇ · B = 0, (1)

∇× H = J. (2)

Gauss’ law (1) accounts for demagnetizing fields and Ampère’s
law (2) accounts for current-induced magnetic fields. The vc-
tor magnetic potential is introduced withB = ∇ × A in order
to identically satisfy (1). To solve the magnetic problem, acon-
stitutive relationB = µ0 [H + M (H,T)] is needed to refor-
mulate (2) in terms of the vector magnetic potential; the stress
dependence is a result of the intrinsic magnetomechanical cou-
pling present in magnetostrictive materials. A typical problem
geometry consists of a magnetic material surrounded by anr
volume which is sufficiently large so thatA = 0 on the bound-
ary. Additionally, a conductor with current density generates a
magnetic field.

MECHANICAL BOUNDARY VALUE PROBLEM
Force balance dictates that the body force be balanced by

divergence of the stress

F = −∇ · T. (3)

Since the boundary often consists of fixed or free conditionsfor
displacement, the mechanical boundary value problem is tyi-
cally reformulated in terms of displacements; this is doney
relating stress to strain and strain to displacement. For linear
elastic materials under the small displacement assumption, the
total strain is the sum of the elastic strain and the magnetoelas-
tic strain: S = Se + Sme(H,T), the elastic strain is given by
Hooke’s lawSe = c

−1
T, and the displacement is related to th

strain byS = ∇u. The form of stiffness tensorc depends on
the material symmetry. The stress and field dependence in
magnetoelastic strain or magnetostriction and in the magntic
induction couple the magnetic and mechanical boundary vae
problems.
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CONSTITUTIVE MODEL
A constitutive model relating stress and magnetic field to

magnetic induction and strain is needed to solve the couple
magnetic and mechanical boundary value problem. Ferromag
netic materials consist of regions of uniform magnetization
or domains. For cubic materials with a positive fourth-order
anisotropy constant, there are six possible domain orientations
for thermodynamic equilibrium to be achieved. These orienta-
tions are near the〈100〉 crystal directions and depend on stress
and magnetic field. The macroscopic magnetization and mag
netostriction are the sum of the contributions of the six domain
families

(M,Sme) =
6

∑

k=1

(

M
k,Sk

me

)

ξk. (4)

The stress and field dependent magnetization and magnetostric-
tion of each domain family can be found from the Gibbs free
energy of a domain. This is obtained by subtracting the magne-
toelastic and mechanical work energies from the internal energy.
For cubic magnetostrictive materials the energy is

G(H,T) =K4 (m1m2 + m2m3 + m3m1)

− Sme · T − µ0M · H,
(5)

whereM = Ms

[

m1 m2 m3

]

. The first term is the internal en-
ergy due to magnetocrystalline anisotropy which forK4 > 0 is
minimum in the six〈100〉 directions. Rotation away from these
directions requires work from applied stress or field which is ac-
counted for in the second two energy terms. The dependent vari-
able is magnetic domain orientation and independent variables
are stress and field. The magnetostriction is only a functionof
stress and field through its dependence onm which for the lon-
gitudinal components is

Sme,i =
3

2
λ100m

2

i , i = 1, 2, 3 (6)

and shear components

Sme,4 = 3λ111m1m2,

Sme,5 = 3λ111m2m3,

Sme,6 = 3λ111m3m1.

(7)

A derivation of these expressions from energy principles has
been given by Kittel [7]. The six equilibrium domain orienta-
tions are calculated from∂G/∂m = 0.

The stress and field dependent domain volume fractions ca
be found from the Gibbs energy of a collection of domains which
includes an ordering term due to entropy

Ḡ = −ηθ +

6
∑

k=1

ξkGk, (8)
Copyright c© 2008 by ASME
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whereGk is the Gibbs free energy of thekth equilibrium domain
orientation. The entropy of a system having six possible energy
states can be formulated from statistical mechanics [8] andis

η = −
kB

V

6
∑

k=1

ξk ln ξk. (9)

The equilibrium domain configurationξk is obtained from the
equilibrium conditions∂Ḡ/∂ξk = 0, constrained to

∑

6

k=1
ξk =

1, which yields

ξk =
e−GkV/kBθ

6
∑

j=1

e−GjV/kBθ

. (10)

Expressions (6), (7) and (10), along with the six equilibrium do-
main orientationsmk calculated from the domain level Gibbs
free energy are substituted into (4) to yield the macroscopic mag-
netization and magnetostriction.

The stress and field dependence of the macroscopic magn
zation and magnetostriction as given by (4) is shown in Figure 1.
Smooth and nonlinear constitutive behavior is achieved without
using homogenization techniques which involve integration; this
computational efficiency is advantageous for the finite element
solution of the magnetic and mechanical boundary value pro-
lems where the constitutive model is evaluated at each node.

Hysteresis can be incorporated into the constitutive behavior
by accounting for the delay in domain volume fraction chang
due to domain wall pinning; domain wall motion is a mecha
nism for volume fraction changes. According to Armstrong [9]
the evolution of volume fractions in the presence of domain wall
pinning is

dξk

dH
= (ξk

an− ξk)/Kp, (11)

whereξk
an is the anhysteretic volume fraction from (10).

PIECE-WISE LINEAR MODEL
From (4) the stress and field dependent differentia

∂B/∂H = µ, ∂B/∂T = d1, and∂S/∂H = d2 can be cal-
culated. For small changes in the stressT̃ = T − T0 and field
H̃ = H − H0, the induction and strain are then given by

B = B0 + µ(H0,T0)H̃ + d1(H0,T0)T̃,

S = S0 + c
−1

T̃ + d2(H0,T0)H̃.
(12)

Defining the quantities̃B = B−B0, S̃ = S−S0, Ã = A−a0,
ũ = u − u0, F̃ = F − F0, and J̃ = J − J0, the following
3
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Figure 1. SIMULATED (a) MAGNETIZATION AND (b) MAGNETOELAS-

TIC STRAIN RESPONSE TO MAGNETIC FIELD AND BIAS STRESS OF

0, -5, -15,-25, and -40 MPa.

relations hold since all operators involved are linear

B̃ = ∇× Ã, (13)

∇× H̃ = J̃, (14)

−∇ · T̃ = F̃, (15)

S̃ = ∇ũ. (16)

The constitutive equations (12) and relations (13)- (16) can be
combined into the linear, coupled boundary value problem

∇×
(

CM∇× Ã

)

+ ∇×
(

CME
M ∇ũ

)

= J̃,

−∇ ·
(

CE∇ũ
)

−∇ ·
(

CME
E ∇× Ã

)

= F̃.
(17)

The coefficient matricesC are functions of the initial magnetic
field and stress. In the absence of magnetomechanical coupling,
Copyright c© 2008 by ASME
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Figure 2. GEOMETRY OF BOUNDARY VALUE PROBLEM.

CM reduces toµ−1, the inverse of the permeability,CE reduces
toc, the mechanical stiffness and the remaining coefficient mari-
ces are zero. Boundary conditions include zero magnetic poten-
tial on the air boundary, fixed and natural boundary conditions on
the mechanical boundary, and continuity at material interfaces.

Simulation of the magnetic induction and strain response
a current density and body force begins from a known indu
tion, strain, stress, and field condition (e.g., zero for allquanti-
ties.) The change in magnetic potential and displacement due to
a change in current density and force are first calculated by solv-
ing (17). The change in induction is then calculated according
to (13), the strain according to (16), and the stress and magnetic
field according to (12). Finally, the total quantities are updated
by adding the change to the initial quantities, the coefficient ma-
trices are calculated with the new stress and field values, and the
process is repeated for the next current density and force change.

SIMULATIONS
The boundary value problem (17) was solved for the 2-

case with a uniform compressive stress along the active material
length, starting from an initial configuration of zero magnetic
field, induction, and current density. Material propertiesconsis-
tent with Galfenol were used. The Galfenol sample is mecha
ically unconstrained. The[010] crystal orientation is oriented
along the Galfenol length directed up and the[100] is along the
Galfenol width directed to the right. The problem was solvednu-
merically with the finite element method (FEM) using the PD
toolbox in Matlab. The geometry of the boundary value pro
lem is shown in Figure 2. To analyze the effect of geomet
and stress on the induction, magnetostriction, and domain vol-
ume fractions, simulations were performed with and withoutair
gaps between the steel flux path and Galfenol and with and wi-
out stress applied to the Galfenol sample.

Figure 3 depicts measurable quantities that were calculad
from the simulations. Figure 3(a) is the average magnetization
over the cross-section of the Galfenol sample at its center plotted
against the magnetic field located 3.2 mm from the surface athe
rod center. Both quantities are for the[010] direction. For an
actual system, the magnetization would be calculated fromhe
induction (measured with a pickup coil) and the magnetic fied
(measured with a Hall probe.) Both air gaps and stress tend
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Figure 3. (a) MAGNETIZATION AND (b) FIELD SIMULATIONS FOR

APPLIED CURRENT WITH AND WITHOUT STRESS AND AIR GAPS.

shear the induction versus field behavior. Stress impedes domain
rotation and favors the[100] and[1̄00] directions which are per-
pendicular to the stress. Air gaps result in flux-leakage which
shears the curve. This causes a change in the current-field-
havior as well (see Figure 3(b)) where more current is neededin
the presence of air gaps. Stress changes the current-field curves
because it changes the permeability of Galfenol. This nonlinear
behavior as well as saturation result in a nonlinear current-field
relationship. The relationship is hysteretic as a result ofthe hys-
teresis in Galfenol’s constitutive behavior which gives rise to a
hysteretic permeability.

The cause of the sheared field-magnetization behavior f
simulations with air gaps is illustrated in Figure 4 which plots the
FEM solution for the norm of the induction at saturation. Here,
saturation is defined as the point where the average magneta-
tion over the cross-section (Figure 3) reaches the material’s sat-
uration magnetization. The difference in permeability between
the air, steel and Galfenol regions gives a nonuniform induction
Copyright c© 2008 by ASME
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Figure 4. NORM OF INDUCTION AT SATURATION (a) WITHOUT AND

(b) WITH AIR GAPS.

Figure 5. NORM OF STRAIN AT SATURATION WITH NO APPLIED

STRESS.

from Gauss’ law which can also be interpreted as the presenceof
a demagnetizing field which must be overcome by the current in-
duced field. The nonuniformity for the case without air gaps (see
Figure 4(a)) is much less because steel and Galfenol have similar
permeability. This results in negligible demagnetizing fields and
the Galfenol sample is easier to magnetize. Demagnetizing fields
5
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Figure 6. DOMAIN VOLUME FRACTIONS IN GALFENOL AT SATURA-

TION (a) WITHOUT AND (b) WITH AIR GAPS.

from Gauss’ law also result in a nonuniform domain configu
ration. Although the modeling framework presented here does
not encompass a microscopic description of domains including
domain size, domain wall width and closure domains, the vo
ume fraction of energetically favorable domain orientations in
the material is calculated (see Figure 6.) Figure 6(a) showsa ho-
mogeneous domain distribution at saturation when there areno
air gaps. The Galfenol consists almost entirely of[010] oriented
domains except for the ends where[100] and[1̄00] domains are
present to channel the flux through the steel return path. Wh
air gaps are present (Figure 6(b)) the domain distribution is less
homogeneous. Although saturation has been achieved at the cen-
ter of the Galfenol sample, the rest of the material is not fully
saturated as evidenced by the presence of domain orientations
other than[010]. Because of the magnetomechanical couplin
and nonuniformity in the magnetic state, the strain is nonuniform
even though the stress is uniform (see Figure 5.)

Hysteresis in the domain volume fraction evolution mod
eled by Equation (11) results in a remanent induction and ma-
netostriction when the current is removed (see Figure 7.) D-
magnetizing fields from air gaps and application of stress both
tend to reduce the remanent induction. With no stress or a
gaps, the remanent state has a significant fraction of domas
in the [010] orientation (see Figure 8(a)) resulting in a net in
duction at remanence following a magnetization cycle. Applied
stress tends to favor the[100] and [1̄00] directions equally (see
Figure 8(b) and 8(d)) resulting in negligible net inductionat re-
manence. Figure 8(c) shows a decrease in the volume fracti
of [010] oriented domains at remanence resulting in less indu
tion. The norm of the magnetostriction exhibits behavior dif-
ferent from the norm of the induction because the magnetostric-
tion of opposing directions (e.g.,[100] and[1̄00]) does not can-
cel. Demagnetizing fields result in less domain alignment which
yields less magnetostriction (see Figure 7(b).) However, applica-
tion of stress results in a high degree of alignment in the[100] and
[1̄00] directions which have the same magnetostriction and thus
net magnetostriction or widening and simultaneous shortening of
the Galfenol region occurs. Thus the remanent magnetostriction
in the case of applied stress is not due to the magnetic hysteresis
but rather to stress-induced domain alignment.
Copyright c© 2008 by ASME
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Figure 7. REMANENT (a) INDUCTION AND (b) STRAIN NORMS IN

GALFENOL WITH AND WITHOUT STRESS AND AIR GAPS.

CONCLUSION

A framework has been developed to model the 3-D couple
induction and strain response of cubic magnetostrictive materi-
als to current and force. Thermodynamics was used to devel
a computationally efficient constitutive model which includes
the effects of intrinsic magnetomechanical coupling, magnetic
anisotropy, saturation, and hysteresis. This constitutive model
couples the magnetic and mechanical behavior of general ma-
netostrictive transducers which is described by Maxwell’sequa-
tions and Newton’s second law. The framework was imple
mented for a 2-D geometry with uniform stress to show the e
fects of geometry and stress on the induction and magnetostric-
tion of Galfenol. Future work will include 3-D implementation
and nonuniform stress due to material constraints and applied
traction forces.
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Figure 8. DOMAIN VOLUME FRACTIONS IN GALFENOL AT REMA-

NENCE WITH (a) NO STRESS AND NO GAP (b) -20 MPa STRESS AND

NO GAP (c) NO STRESS AND 6.35 mm GAPS (d) -20 MPa STRESS

AND 6.35 mm GAPS.

REFERENCES
[1] Clark, A. E., Restorff, J. B., Wun-Fogle, M., Lograsso, T. A.,

and Schlagel, D. L., 2000. “Magnetostrictive properties o
body-centered cubic Fe-Ga and Fe-Ga-Al alloys”.IEEE
Trans. Magn., 36(5), pp. 3238–3240.

[2] Oates, W. S., 2007. “Multiscale constitutive model develop-
ment and finite element implementation for magnetostrict
materials”. In Proceedings of IMECE.

[3] Mudivarthi, C., Datta, S., Atulasimha, J., and Flatau, A. B.,
2008. “A bidirectionally coupled magnetoelastic model and
its validation using a Galfenol unimorph sensor”.Smart Ma-
terials and Structures, 17.

[4] Kiefer, B., Rosato, D., and Miehe, C., 2008. “Modeling and
computational analysis of materials exhibiting intrinsicmag-
netomechanical coupling”. In SPIE.

[5] Smith, R. C., Dapino, M. J., Braun, T. R., and Mortensen
A. P., 2005. “A homogenized energy framework for ferro-
magnetic hysteresis”.IEEE Trans. Magn., 42(4), pp. 1747–
1769.

[6] Armstrong, W. D., 1997. “Magnetization and magne-
tostriction processes”.Journal of Applied Physics, 81(5),
pp. 23217–2326.

[7] Kittel, C., 1949. “Physical theory of ferromagnetic do-
mains”.Review of Modern Physics, 21(4), Oct, pp. 541–583.

[8] ter Haar, D., 1995.Elements of Statistical Mechanics, 3rd ed.
Butterworth-Heinemann, p. 158.

[9] Armstrong, W. D., 2003. “An incremental the-
Copyright c© 2008 by ASME



-
ory of magneto-elastic hysteresis in pseudo-cubic ferro
magnetostrictive alloys”.Journal of Magnetism and Mag-
netic Materials, 263, p. 208.
7 Copyright c© 2008 by ASME


