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ABSTRACT

A fully-coupled and 3-D model for induction and strain
of cubic magnetostrictive materials is presented whiclotipc-
rates geometry dependent demagnetizing fields, currentét
fields, and stress dependent permeability. Maxwell's eéqost
are coupled with a nonlinear constitutive model deriveduigh
thermodynamics. Discretization of the nonlinear probleithw
a known reference configuration yields a piecewise lineateho
ideal for transducer design.

NOMENCLATURE

A Magnetic potential

B Magnetic induction

b2 Magnetoelastic coupling coefficients
c Stiffness matrix

d; Linear stress-induction matrix

d, Linear strain-field matrix

F Body force

H Magnetic field

K, Fourth-order anisotropy constant
K, Domain pinning constant

M Magnetization

m Magnetic domain orientation

M, Saturation magnetization

S Total strain

S. Elastic strain

S..e Magnetoelastic strain

T Stress

u Displacement

A100,111  Magnetostriction coefficients
n Entropy

0 Temperature

¢ Domain family volume fraction
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INTRODUCTION

Magnetostrictive materials exhibit coupling between mag-
netic and mechanical states. Galfenol (Ge; .., 13 < x < 29
at%) is a new magnetostrictive material which exhibits mede
ate magnetostriction (strain due to magnetoelastic cogpand
steel-like structural properties [1]. Its mechanical s al-
low it to be machined, rolled, deposited, and welded. Galfen
capable of bearing compressive, tensile, bending, torsiod
shock loads. This unique combination of robust mechanical
properties and moderate magnetostriction makes Galfeabl w
suited for creating adaptive, load-bearing structure$ wim-
plex geometries. This has motivated the development of 3-D
magnetomechanical models [2-4]. The existing models @ie ty
cally implemented with the finite element method and corudist
a set of Maxwell's equations coupled to the law of conseovati
of momentum through a material constitutive law. An effitien
and accurate framework is desirable for use as a tool fogdesi
and control of Galfenol devices that can be utilized in thigé fu
nonlinear regime.

Oates [2] extended the 1-D homogenized energy framework
of Smith et al. [5] to 3-D by including the effect of multi-aati
magnetic moment switching in the macroscopic magnetizatio
Demagnetizing fields dependent on transducer geometrycare a
counted for by coupling the constitutive model with Gauas!.|
The framework is implemented with negligible magnetoétast
coupling and in the absence of applied currents. Mudivathi
al. [3] include magnetoelastic coupling with no current slen
ties by using the magnetomechanical constitutive modelrof-A
strong [6] to couple Gauss’ law with the law of conservatién o
momentum where Gauss law accounts for the geometry depen-
dent demagnetizing fields and the coupling with momentum con
servation accounts for stress dependent magnetizatiorgeba
Kiefer et al. [4] include Ampre’s law with Gauss’ law and mo-
mentum conservation. A nonlinear numerical solution tégpie
using the finite element method and Newton-Raphson iter&io

Copyright © 2008 by ASME



developed. The framework is implemented with a linear denst
tutive law in the absence of current densities.

This work develops a magnetomechanical modeling frame-
work which includes current density induced magnetic fields
through Amgere’s law, demagnetizing fields from Gauss’ law,
and magnetomechanical coupling. A computationally efficie
and nonlinear constitutive model is used to couple the &mp
and Gauss laws with momentum conservation. Piecewise lin-
earization of the constitutive model starting from a knovam-c
figuration over the boundary value problem is used to aveid it
ation which is necessary when solving nonlinear problems.

MAGNETIC BOUNDARY VALUE PROBLEM

When motion and applied currents are quasi-static,
Maxwell's electromagnetic equations reduce to the two lafvs
magnetostatics

V-B=0,
V xH=1J.

@
@)

Gauss’ law (1) accounts for demagnetizing fields and Arajs
law (2) accounts for current-induced magnetic fields. The ve
tor magnetic potential is introduced wilB = V x A in order
to identically satisfy (1). To solve the magnetic problencoa-
stitutive relationB = puo [H+ M (H, T)] is needed to refor-
mulate (2) in terms of the vector magnetic potential; thesstr
dependence is a result of the intrinsic magnetomechanical ¢
pling present in magnetostrictive materials. A typicaldemn
geometry consists of a magnetic material surrounded byran ai
volume which is sufficiently large so th& = 0 on the bound-
ary. Additionally, a conductor with current density geriesaa
magnetic field.

MECHANICAL BOUNDARY VALUE PROBLEM

Force balance dictates that the body force be balanced by the

divergence of the stress

F=-V-T. 3)

Since the boundary often consists of fixed or free conditfons
displacement, the mechanical boundary value problem is typ
cally reformulated in terms of displacements; this is doge b
relating stress to strain and strain to displacement. Faali
elastic materials under the small displacement assumptien
total strain is the sum of the elastic strain and the magieoe
tic strain: S = S, + S,,..(H, T), the elastic strain is given by
Hooke’s lawS, = ¢~ !'T, and the displacement is related to the
strain byS = Vu. The form of stiffness tensar depends on
the material symmetry. The stress and field dependence in the
magnetoelastic strain or magnetostriction and in the magne
induction couple the magnetic and mechanical boundaryevalu
problems.

CONSTITUTIVE MODEL

A constitutive model relating stress and magnetic field to
magnetic induction and strain is needed to solve the coupled
magnetic and mechanical boundary value problem. Ferromag-
netic materials consist of regions of uniform magnetizatio
or domains. For cubic materials with a positive fourth-orde
anisotropy constant, there are six possible domain otientg
for thermodynamic equilibrium to be achieved. These odent
tions are near thé100) crystal directions and depend on stress
and magnetic field. The macroscopic magnetization and mag-
netostriction are the sum of the contributions of the six diom
families

6
(M, Sye) = Y (MF,8F)) 4)
k=1

The stress and field dependent magnetization and magnetostr
tion of each domain family can be found from the Gibbs free
energy of a domain. This is obtained by subtracting the magne
toelastic and mechanical work energies from the internatgn
For cubic magnetostrictive materials the energy is

G(H, T) :K4 (m1m2 + moms + W’L3ml)

S . (5)
— POme _MOM'Hv

whereM = M, [m1 mz mg | . The first term is the internal en-
ergy due to magnetocrystalline anisotropy which for > 0 is
minimum in the six(100) directions. Rotation away from these
directions requires work from applied stress or field whhg-
counted for in the second two energy terms. The dependent var
able is magnetic domain orientation and independent Vasab
are stress and field. The magnetostriction is only a funaifon
stress and field through its dependencenomvhich for the lon-
gitudinal components is

Smei = gA0om;, i=1,2,3 (6)
and shear components
Sme,a = 3A111mima,
Sme,5 = 3A111mams, (7)

Sme,6 = 3A111Mm3Mm.

A derivation of these expressions from energy principles ha
been given by Kittel [7]. The six equilibrium domain orienta
tions are calculated frofiG /0m = 0.

The stress and field dependent domain volume fractions can
be found from the Gibbs energy of a collection of domains Wwhic
includes an ordering term due to entropy

6
G=-nf+» &G
k=1

(8)
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whereG¥ is the Gibbs free energy of thé" equilibrium domain
orientation. The entropy of a system having six possiblegne
states can be formulated from statistical mechanics [8]i&nd

©)

kg <
2z kngr.
ngg né

The equilibrium domain configuratiogl® is obtained from the
equilibrium condition®)G'/d¢* = 0, constrained t§0_, ¢k =
1, which yields

e—G*V/kpo

 EE——
Ze GIV/kpo

Jj=1

¢ = (10)

Expressions (6), (7) and (10), along with the six equilibrido-
main orientationan” calculated from the domain level Gibbs
free energy are substituted into (4) to yield the macroscogig-
netization and magnetostriction.

The stress and field dependence of the macroscopic magneti-

zation and magnetostriction as given by (4) is shown in Edur
Smooth and nonlinear constitutive behavior is achievetiout
using homogenization techniques which involve integratibis
computational efficiency is advantageous for the finite eleim

solution of the magnetic and mechanical boundary value-prob

lems where the constitutive model is evaluated at each node.
Hysteresis can be incorporated into the constitutive biehav

by accounting for the delay in domain volume fraction change

due to domain wall pinning; domain wall motion is a mecha-
nism for volume fraction changes. According to Armstrong [9
the evolution of volume fractions in the presence of domaat w
pinning is

d&k

= (&an— ")/ Ky, (11)

where¢k, is the anhysteretic volume fraction from (10).

PIECE-WISE LINEAR MODEL

From (4) the stress and field dependent differentials

OB/OH = p, 0B/0T = d;, anddS/0H = d, can be cal-
culated. For small changes in the stréss= T — T, and field
H = H — H,, the induction and strain are then given by

B = By + u(Hy, To)H + d; (Hy, To) T, (12)
S=Sy+ c'T + dQ(Ho, To)ﬁ

Deflnlng the quantltleB B - By, S=S-Sy,A=A—a,,
i=u-uy F=F-—Fy andJ = J — J,, the following
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Figure 1. SIMULATED (a) MAGNETIZATION AND (b) MAGNETOELAS-

TIC STRAIN RESPONSE TO MAGNETIC FIELD AND BIAS STRESS OF
0, -5, -15,-25, and -40 MPa.

relations hold since all operators involved are linear

B=VxA, (13)
VxH=1J, (14)
-V.-T=F, (15)

S =Vi (16)

The constitutive equations (12) and relations (13)- (16) lba
combined into the linear, coupled boundary value problem

Vx (€MV x A) +V x (P Vi) =T,
17)

~V- (CPVaE) - V- (V< A) = F.

The coefficient matrice§ are functions of the initial magnetic
field and stress. In the absence of magnetomechanical ogupli
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Figure 2. GEOMETRY OF BOUNDARY VALUE PROBLEM.

CM reduces tqu~!, the inverse of the permeabilit¢” reduces

to c, the mechanical stiffness and the remaining coefficientimat

ces are zero. Boundary conditions include zero magnetanpot

tial on the air boundary, fixed and natural boundary conadion

the mechanical boundary, and continuity at material iata$.
Simulation of the magnetic induction and strain response to

a current density and body force begins from a known induc-

tion, strain, stress, and field condition (e.g., zero forqakhnti-

ties.) The change in magnetic potential and displacememtalu

a change in current density and force are first calculatealyy s

ing (17). The change in induction is then calculated accgydi

to (13), the strain according to (16), and the stress and atagn

field according to (12). Finally, the total quantities arelated

by adding the change to the initial quantities, the coefficiaa-

trices are calculated with the new stress and field valuestran

process is repeated for the next current density and foraegeh

SIMULATIONS

The boundary value problem (17) was solved for the 2-D
case with a uniform compressive stress along the activeriakte
length, starting from an initial configuration of zero matice
field, induction, and current density. Material propertessis-
tent with Galfenol were used. The Galfenol sample is mechan-
ically unconstrained. Th@10] crystal orientation is oriented
along the Galfenol length directed up and {h@0] is along the
Galfenol width directed to the right. The problem was solwad
merically with the finite element method (FEM) using the PDE
toolbox in Matlab. The geometry of the boundary value prob-
lem is shown in Figure 2. To analyze the effect of geometry
and stress on the induction, magnetostriction, and domalin v
ume fractions, simulations were performed with and withedut
gaps between the steel flux path and Galfenol and with and with
out stress applied to the Galfenol sample.

Figure 3 depicts measurable quantities that were calcllate
from the simulations. Figure 3(a) is the average magnétizat
over the cross-section of the Galfenol sample at its cetdéted
against the magnetic field located 3.2 mm from the surfadeeat t
rod center. Both quantities are for tf@L0] direction. For an
actual system, the magnetization would be calculated fitwen t
induction (measured with a pickup coil) and the magnetidfiel
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Figure 3. (a) MAGNETIZATION AND (b) FIELD SIMULATIONS FOR

APPLIED CURRENT WITH AND WITHOUT STRESS AND AIR GAPS.

shear the induction versus field behavior. Stress impedesito
rotation and favors th@00] and[100] directions which are per-
pendicular to the stress. Air gaps result in flux-leakagectvhi
shears the curve. This causes a change in the current-field be
havior as well (see Figure 3(b)) where more current is ne@ded
the presence of air gaps. Stress changes the current-fielelscu
because it changes the permeability of Galfenol. This neali
behavior as well as saturation result in a nonlinear cufietd
relationship. The relationship is hysteretic as a resuthefhys-
teresis in Galfenol’s constitutive behavior which giveserto a
hysteretic permeability.

The cause of the sheared field-magnetization behavior for
simulations with air gaps is illustrated in Figure 4 whicbtglthe
FEM solution for the norm of the induction at saturation. &ler
saturation is defined as the point where the average magnetiz
tion over the cross-section (Figure 3) reaches the matesiat-
uration magnetization. The difference in permeabilitywstn

(measured with a Hall probe.) Both air gaps and stress tend to the air, steel and Galfenol regions gives a nonuniform itidac

4
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Figure 4. NORM OF INDUCTION AT SATURATION (a) WITHOUT AND
(b) WITH AIR GAPS.

Figure 5.  NORM OF STRAIN AT SATURATION WITH NO APPLIED
STRESS.

from Gauss’ law which can also be interpreted as the presance
a demagnetizing field which must be overcome by the current in
duced field. The nonuniformity for the case without air gagese(
Figure 4(a)) is much less because steel and Galfenol hayaisim
permeability. This results in negligible demagnetizinddseand
the Galfenol sample is easier to magnetize. Demagnetiziasfi

5

[010] [010] [100] [100]
()

Figure 6.  DOMAIN VOLUME FRACTIONS IN GALFENOL AT SATURA-
TION (a) WITHOUT AND (b) WITH AIR GAPS.

[010] [0T0] [100] [T0O]
(b)

from Gauss’ law also result in a nonuniform domain configu-
ration. Although the modeling framework presented heresdoe
not encompass a microscopic description of domains inetudi
domain size, domain wall width and closure domains, the vol-
ume fraction of energetically favorable domain orientasion

the material is calculated (see Figure 6.) Figure 6(a) stk
mogeneous domain distribution at saturation when theraare
air gaps. The Galfenol consists almost entirelyodf] oriented
domains except for the ends whéi€0] and[100] domains are
present to channel the flux through the steel return path. When
air gaps are present (Figure 6(b)) the domain distribudess
homogeneous. Although saturation has been achieved atithe ¢
ter of the Galfenol sample, the rest of the material is ndyful
saturated as evidenced by the presence of domain oriergatio
other than[010]. Because of the magnetomechanical coupling
and nonuniformity in the magnetic state, the strain is ndfioum
even though the stress is uniform (see Figure 5.)

Hysteresis in the domain volume fraction evolution mod-
eled by Equation (11) results in a remanent induction and-mag
netostriction when the current is removed (see Figure 7.} De
magnetizing fields from air gaps and application of stregh bo
tend to reduce the remanent induction. With no stress or air
gaps, the remanent state has a significant fraction of damain
in the [010] orientation (see Figure 8(a)) resulting in a net in-
duction at remanence following a magnetization cycle. Agapl
stress tends to favor tHe00] and[100] directions equally (see
Figure 8(b) and 8(d)) resulting in negligible net inductiatre-
manence. Figure 8(c) shows a decrease in the volume fraction
of [010] oriented domains at remanence resulting in less induc-
tion. The norm of the magnetostriction exhibits behavidr di
ferent from the norm of the induction because the magnétestr
tion of opposing directions (e.g100] and[100]) does not can-
cel. Demagnetizing fields result in less domain alignmeritivh
yields less magnetostriction (see Figure 7(b).) Howeympliea-
tion of stress results in a high degree of alignment irfthe] and
[100] directions which have the same magnetostriction and thus a
net magnetostriction or widening and simultaneous shorgesf
the Galfenol region occurs. Thus the remanent magnetbstric
in the case of applied stress is not due to the magnetic lepster
but rather to stress-induced domain alignment.
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Figure 8. DOMAIN VOLUME FRACTIONS IN GALFENOL AT REMA-
NENCE WITH (a) NO STRESS AND NO GAP (b) -20 MPa STRESS AND
NO GAP (c) NO STRESS AND 6.35 mm GAPS (d) -20 MPa STRESS

(b)

Figure 7.  REMANENT (a) INDUCTION AND (b) STRAIN NORMS IN
GALFENOL WITH AND WITHOUT STRESS AND AIR GAPS.

[1]

CONCLUSION
[2]

A framework has been developed to model the 3-D coupled
induction and strain response of cubic magnetostrictiveeria
als to current and force. Thermodynamics was used to develop 3]
a computationally efficient constitutive model which inbhs
the effects of intrinsic magnetomechanical coupling, nedign
anisotropy, saturation, and hysteresis. This constéutiodel
couples the magnetic and mechanical behavior of general mag [4]
netostrictive transducers which is described by Maxweltjsa-
tions and Newton’s second law. The framework was imple-
mented for a 2-D geometry with uniform stress to show the ef- [5]
fects of geometry and stress on the induction and magnietostr
tion of Galfenol. Future work will include 3-D implementati
and nonuniform stress due to material constraints and egpli
traction forces.
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[9]
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