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This article addresses the development of a free energy model for magnetostrictive transducers
operating in hysteretic and nonlinear regimes. Such models are required both for material and
system characterization and for model-based control design. The model is constructed in two steps.
In the first, Helmholtz and Gibbs free energy relations are constructed for homogeneous materials
with constant internal fields. In the second step, the effects of material nonhomogeneities and
nonconstant effective fields are incorporated through the construction of appropriate stochastic
distributions. Properties of the model are illustrated through comparison and prediction of data
collected from a typical Terfenol-D transducer. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1524312#

I. INTRODUCTION

Magnetostrictive transducers are being considered for a
number of high performance industrial, automotive, bio-
medical and Department of Defense applications due to their
capability for generating large force inputs over a broad fre-
quency range. As detailed in Refs. 1–3, applications utilizing
magnetostrictive transducers include, among others, active
vibration and noise control, micropositioning in high force
regimes, medical and industrial ultrasonics, noncontact
torque sensors, and tuned vibration absorbers. As the field of
magnetostrictive materials becomes more mature, it is antici-
pated that a growing number of actuator and sensor applica-
tions will benefit from the multifunctional characteristics and
robust operation that these materials can provide.

An inherent property of all existing magnetostrictive ma-
terials, however, is the presence of hysteresis and constitu-
tive nonlinearities in the relation between input fields and the
generated magnetization and strains as illustrated in Fig. 1.
While the effects of hysteresis and nonlinearities can be re-
duced through the choice of stoichiometry4 and feedback
mechanisms, the modeling of these effects in a manner com-
patible with subsequent control design can yield significant
improvements in performance.

To illustrate issues pertinent to model development and
control design for a typical magnetostrictive transducer, we
consider the device depicted in Fig. 2. Input to the system is
provided by a currentI (t) applied to the solenoid which
generates a fieldH(t). This causes magnetic moments in the
Terfenol-D rod to rotate which produces the strains and
stresses output by the device. The prestress mechanisms
serve two purposes: they further align magnetic moments to
improve performance and they maintain the Terfenol rod in a

state of compression. The surrounding permanent magnet
provides a bias fieldH0 necessary to achieve bidirectional
strains and can also be designed to optimize flux paths
through the rod. The hysteretic data plotted in Fig. 1 are
typical of this type of Terfenol-D transducer and hence they
represent criteria that must be accommodated in models to be
employed for design, analysis and control development.

A number of techniques have been considered for quan-
tifying the hysteresis and constitutive nonlinearities inherent
to the relation between input fieldH and the magnetization
M and straine generated. For Terfenol-D transducers, these
include Preisach models5,6 and domain wall models7–9 based
on the magnetic theory of Jiles and Atherton.10,11 For trans-
ducer characterization and control design, crucial require-
ments for the models include automatic closure of biased
minor loops, flexibility with regard to temperature and fre-
quency, and sufficient efficiency to permit real-time imple-
mentation. The Preisach techniques guarantee minor loop
closure but require a large number of nonphysical parameters
for accurate biased minor loop characterization. Furthermore,
modifications to classical Preisach theory are required to ac-
commodate temperature dependence, reversible changes in
the magnetization observed at low drive levels, or to relax
congruency requirements to ensure that minor loops remain
inside major loops.12,13 This limits the feasibility of control
techniques based on Preisach models to a limited number of
applications. Conversely, the physical basis for domain wall
models makes them applicable to a broader performance
space. However, although techniques have been developed to
guarantee closure of biased minor loops when turning points
are knowna priori,14,15 the closure of minor loops when
these points are not knowa priori, as will be the case in
closed loop feedback design, is not guaranteed by present
domain wall models. This proves a serious detriment in con-
trol design.a!Electronic mail: rsmith@eos.ncsu.edu
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In this article, we quantify hysteresis and constitutive
nonlinearities inherent to Terfenol-D magnetostrictive trans-
ducers through the development of a free energy model. In
the first step of the development, we derive appropriate rela-
tions for the Helmholtz and Gibbs free energies at the lattice
or domain level. This yields a local magnetization model for
homogeneous, single crystal materials. The effects of mate-
rial nonhomogeneities and nonuniform effective fields are
then incorporated through consideration of stochastic distri-
butions. This yields a macroscopic model which quantifies
the hysteretic relation betweenH andM. A more general free
energy relation that includes magnetoelastic interactions is
then employed to develop nonlinear constitutive relations
which predict the nonlinear relation between fieldsH and
strains«.

The model quantifies hysteresis in the relations between
H and M and H and « for temperature invariant and quasi-
static operating conditions. Although certain relaxation
mechanisms are included, the model presently neglects eddy
current losses and hence it should be employed for low fre-
quency regimes. Furthermore, the model is developed for
transducer configurations in which prestress levels are suffi-
ciently high that they dominate crystalline anisotropies and
thus, in this initial development, anisotropy energy is ne-
glected. Finally, it is illustrated that the model ensures the
closure of biased, nested minor loops in both theH –M and
H –« relations.

The nonlinear magnetization model is developed in Secs.
II B and II C and the full constitutive relations are developed
in Sec. II D. The accuracy of the model is illustrated in Sec.
III through comparison and prediction of data collected from
a typical Terfenol-D transducer. The capability of the model
to ensure closure of biased minor loops is illustrated through
a numerical example.

II. MODEL DEVELOPMENT

To motivate the development of a hysteresis model for
Terfenol-D, we summarize first pertinent properties of its
crystalline structure. This is facilitated by vector conventions
in which planes are denoted by round brackets and direc-
tional indices are represented by square brackets. Hence the
faces of a cube are denoted by (100),(010),(001),
(1̄00),(01̄0),(001̄) whereas the vertices are specified by

@100#,@010#,@001#,@ 1̄00#,@01̄0#,@001̄#. In both cases, 1,̄ in-
dicates a negative direction. Finally, angular brackets are
used to summarize an entire set of indices.

In present manufacturing processes, Terfenol-D crystals
are grown in dendrite sheets oriented in the@112̄# direction
as depicted in Fig. 3. At room temperature, the easy axes lie
approximately in thê111& set of directions and the greatest
strains occur when the magnetizationM rotates from@111#
to @111̄#.

FIG. 1. Hysteretic data measured in a Terfenol-D transducer of the~a! field-magnetization relation and~b! field-strain relation~from Ref. 8!.

FIG. 2. Cross section of a typical Terfenol-D magneto-
strictive transducer.
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The changes in magnetism that result from an applied
field H are primarily due to two mechanisms: the rotation of
moments and the movement of domain walls. To illustrate,
consider a demagnetized specimen which is subjected to a
magnetic field oriented in the@112̄# direction as shown in
Fig. 4. At low field levels, the change in magnetization is due
primarily to domain wall motion so that favorably oriented
domains are enlarged. As the field is increased, moments
rotate to orient with the easy@111̄# axis. This produces a
burst region in theH –M or H –« curve in which small
changes in field produce large changes in magnetization or
strain. In the final stage depicted in Fig. 4~d!, the material
acts as a single domain as moments rotate coherently from
the easy axis into the direction of the field applied. This
produces the saturation behavior exhibited by the material.

Strains are generated by the material when moments ro-
tate to align with an applied field. For general configurations,
the magnetomechanical coupling which produces these

strains is highly complex and dependent upon factors such as
the stress applied and crystalline anisotropies. However, in
the case of materials in which prestress perpendicular to the
moment direction is sufficiently large to dominate crystalline
anisotropy, the preferred orientation of domains is shifted
from the original eight̂ 111& magnetic easy axes to the two
axes@111# and @111# perpendicular to the@112̄# direction.
In this regime, strains are due primarily to moment rotation
and the free strain, or magnetostriction, can be modeled by
the quadratic relation

l5
3

2
lsS M

Ms
D 2

, ~1!

wherels and Ms , respectively, denote the saturation mag-
netostriction and magnetization. As discussed in Refs. 7 and
10, the prestress levels needed to optimize transducer perfor-
mance are often of such magnitude such that stress anisot-
ropy dominates crystalline anisotropy and relation~1! ad-
equately models the strain generated by the material.

To model the hysteretic behavior of the material, we first
quantify the nonlinear relation between input fieldsH and
magnetizationM. We then develop constitutive relations that
incorporate the quadratic behavior, Eq.~1!, to provide an
initial model for the strain produced by the transducer.

A. Thermodynamic preliminaries

To provide a common framework for constructing mag-
netostatic and magnetoelastic energy relations, we consider
general properties of free energy relations. The free energy is
assumed to be a function of temperatureT and an order pa-
rametere which is respectively taken to be the magnetization
M in magnetostatic relations and the strain« in magnetoelas-
tic relations. We letf̃ denote external fields that are thermo-
dynamically conjugate toe. For the order parametersM and
«, appropriate choices for the external fieldf̃ are the mag-
netic field H and stresss. Finally, we letc(e,T) denote a
general Helmholtz free energy relation.

In the absence of applied fields, thermodynamic equilib-
ria are determined by minimizingc with respect toe which,
under the assumption of differentiability, yields the necessary
condition,

FIG. 3. Orientation of Terfenol-D crystals.

FIG. 4. Magnetization process in the

(11̄0) plane of single crystal
Terfenol-D due to fieldH applied in

the @112̄# direction.~a! Demagnetized
state and~b! growth of domains due to
domain wall motion.~c! Rotation of

moments to the easy@111̄# axis, and
~d! rotation of moments to align with
the applied field.
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f~e,T![
]c

]e
50,

wheref denotes the energetic response of the system. For
systems subjected to an external fieldf̃, the total free energy
is taken to be

cf̃~e,T!5c~e,T!2f̃e, ~2!

which yields the equilibrium condition

f~e,T!5f̃. ~3!

Relation~3! can be physically interpreted as providing con-
ditions under which the order parameter adjusts to balance
the internal energy with that of the external field. As will be
illustrated later, relation~3! also provides the constraints
used to specify effective fields as well as magnetoelastic con-
stitutive relations.

B. Magnetic hysteresis model

Motivated by the prestressed operating regime which
yields the@111# and@111# easy magnetic axes, we now con-
sider the energy of a magnetic moment with two preferred
orientations. This includes characterization of the internal
and magnetostatic energy. Magnetoelastic interactions are in-
cluded in Sec. II D and used to develop elastic constitutive
relations.

We first formulate a Helmholtz potentialc by consider-
ing internal energy contributions due to moment interactions.
These interactions are assumed to be isothermal and hence
temperatures in all subsequent expressions are assumed to be
fixed below the Curie point, which implies that the material
under study is in its ferromagnetic phase. This condition,
when combined with the assumption that stress anisotropy
dominates crystalline anisotropy, yields material behavior
consistent with a double well potential of the form illustrated
in Fig. 5. As summarized in Ref. 16, statistical mechanics
analysis determines that, at fixed temperatures, a first-order
approximation to the potential exhibits quadratic behavior in
the neighborhoods of all three equilibria. Hence we employ
the piecewise quadratic definition,

c~M !55
1

2
h~M1MR!2, M<2MI ,

1

2
h~M2MR!2, M>MI ,

1

2
h~MI2MR!S M2

MI
2MRD , uM u,MI ,

~4!

for the Helmholtz free energy. As illustrated in Fig. 5~a!, MI

and MR , respectively, denote the inflection point and mag-
netization at which the minimum ofc occurs.

From Eq.~2!, the Gibbs energy is taken to be

G5c2HM , ~5!

which, for increasing fieldH, is illustrated in Fig. 5~a!. Since
the magnetostatic energy is given byE5m0MH, wherem0 is
the magnetic permeability, a second choice for the Gibbs

energy isG5c2m0HM . However, because formulation~5!
can be viewed as incorporatingm0 into c, the two energy
formulations yield equivalent final models, and we employ
formulation ~5! for simplicity.

For a homogeneous material with effective fieldHe

5H, whereH denotes the field applied, the average local
magnetization is given by

M̄5x1^M 1&1x2^M 2&, ~6!

wherex1 and x2 , respectively, denote the fraction of mo-
ments having positive and negative orientations, and^M 1&
and ^M 2& are the expected values of the resulting magneti-
zations. To specifŷM 1&, we take

^M 1&5E
M0

`

Mm~G!dM, ~7!

where

m~G!5Ce2GV/kT ~8!

quantifies the probability of obtaining the energy levelG, k is
the Boltzmann constant,C denotes a constant chosen to yield
a probability of 1 for integration over all possible magneti-
zation values, andM0 is the critical point that corresponds to
the unstable equilibrium. The Boltzmann energy balance is
considered over a lattice volumeV chosen to yield relaxation
behavior appropriate for the material being characterized.
Subsequent evaluation ofC yields the average magnetization
values,

^M 1&5
*M0

` Me2G(H,M )V/kTdM

*M0

` e2G(H,M )V/kTdM
,

^M 2&5
*

2`
M0 Me2G(H,M )V/kTdM

*
2`
M0 e2G(H,M )V/kTdM

. ~9!

We note that, when implementing the model, we typi-
cally replaceM0 by the inflection pointsMI and2MI , re-
spectively, in the relations for̂M 1& and^M 2&. This simpli-
fies approximation of the integrals and can be motivated by

FIG. 5. ~a! Helmholtz energyc and Gibbs energyG for increasing fieldH

(H2.H1.0). ~b! Local magnetizationM̄ as a function ofH for a homo-
geneous, isotropic material.
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observing that, if one considers the forces]G/]M due to the
field applied, maximum restoring forces occur atMI and
2MI ~e.g., see pages 332–333 of Ref. 17!. Furthermore, for
materials with low thermal activation, pointsM0 and 2MI

coincide in the limit as thermal activation is reduced to zero
for positive fields whileMI and M0 coincide for negative
fields as illustrated in Fig. 6.

The moment fractionsx1 and x2 are quantified by the
evolution equations,

ẋ152p12x11p21x2 ,

ẋ252p21x21p12x1 ,

which can be simplified to

ẋ152p12x11p21~12x1! ~10!

through the identityx11x251. The likelihoods of switch-
ing orientations are specified by

p125A kT

2pmV2/3

e2G(H,MI )V/kT

*MI

` e2G(H,M )V/kTdM
,

p215A kT

2pmV2/3

e2G(H,2MI )V/kT

*
2`
2MIe2G(H,M )V/kTdM

, ~11!

wherem is the mass of lattice volumeV.
Because expression~6! for the local magnetizationM̄ is

probabilistic in the sense that the moment rotations are de-
termined by Eq.~8!, the map between the field and magne-
tization exhibits both hysteresis and nonlinear transition be-
havior as depicted in Fig. 5~b!. The degree to which the
transition is mollified is dependent on the ratio betweenGV
and kT in the Boltzmann relation@Eq. ~8!#; large values of
kT model regimes in which thermal activation is prominent.
This in turn yields smoother transitions since, for a fixed
field level, moments have a higher probability of achieving
the thermal energy required to overcome energy barriers.

The complex behavior ofM̄ can be simplified in two
aspects to facilitate both qualitative analysis of the model
and its quantitative implementation for regimes in which
thermal activation is negligible. The qualitative behavior can
be ascertained by analyzing the equilibrium behavior after
moments have switched. In this regime, the equilibrium con-

dition ]G/]M 50 yields H5 ]c/]M . Hence the local
model predicts a linear relation betweenH andM̄ after mo-
ment switching. Furthermore, from]H/]M 5 ]2c/]M2, it
follows that the slope of the hysteresis kernel in this linear
regime is 1/h. The correspondence between the critical point
MR and remanence behavior of a homogeneous single crys-
tal follows directly from the zero field behavior of the Gibbs
energy. The transition point occurs at inflection pointMI

since this is the point of maximum restoring force.17 In con-
cert, these equilibrium conditions yield criteria which can be
employed to determine initial parameter values for optimiza-
tion routines used to estimate parameters in the final trans-
ducer models.

For regimes in which operating time scales make ther-
mal activation negligible, asymptotic relations can be em-
ployed to simplify the magnetization relations since jumps in
this case can be considered to occur instantaneously as de-
picted in Fig. 6. In this regime,M̄5Mmin where Mmin is
obtained through the solution of]G/]M 50. For the qua-
dratic Helmholtz model@Eq. ~4!#, the local magnetization in
this limiting case is given by

@M̄ ~H;Hc ,j!#~ t !

55
@M̄ ~H;Hc ,j!#~0!, t~ t !5B,

H

h
2MR , t~ t !ÞB and H@maxt~ t !#52Hc ,

H

h
1MR , t~ t !ÞB and H@maxt~ t !#5Hc ,

~12!

where@M̄ (H;Hc ,j)#(0) denotes the initial moment orienta-
tion and transition points are specified by

t~ t !5$tP~0,Tf # u H~ t !52Hc or H~ t !5Hc% . ~13!

Employing the notation used for Preisach models,18 the ini-
tial moment orientation is specified by

@M̄ ~H;Hc ,j!#~0!55
H

h
2MR , H~0!<2Hc ,

j, 2Hc,H~0!,Hc ,

H

h
1MR , H~0!>Hc .

~14!

The dependence ofM̄ on the local coercive fieldHc

[h(MR2MI) is explicitly indicated since parameterh is
considered to be distributed for the bulk model developed in
Sec. II C.

C. Nonhomogeneous materials and effective fields

The local magnetization models@Eqs. ~6! or ~12!# are
derived under the assumption that the lattice and hence do-
main structure in the materials is completely homogeneous
so that free energy profiles for different regions in the mate-
rial are identical. However, this typically is not the case due
to material defects, nonuniformities in the crystalline struc-
ture, and polycrystallinity. Furthermore, the models assume

FIG. 6. ~a! Gibbs energy profile with a high level of thermal activation
~– – –! in the Boltzmann probabilitym(G)5Ce2GV/kT. ~b! Local magne-

tization M̄ given by Eq.~6! with high thermal activation~– – –! and lim-

iting magnetizationM̄ specified by Eq.~12! in the absence of thermal acti-
vation ~——!.
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that the effective fieldHe at the domain level is exactly the
field H applied and hence they ignore magnetic interactions
or Weiss field effects. Through the incorporation of appropri-
ate stochastic distributions, we extend the local model to
obtain a bulk magnetization model for nonhomogeneous ma-
terials with nonconstant effective fields.

To accommodate general material nonhomogeneities, we
assume that materials exhibit a distribution of free energy
profiles which produce variations in the width of the hyster-
esis kernels predicted by Eqs.~6! or ~12! as depicted in Fig.
7. Nonhomogeneities are incorporated by assuming that pa-
rametersMR , MI , or Hc5h(MR2MI) are manifestations
of an underlying distribution rather than constants as as-
sumed in Sec. II B. For this initial model, we considerHc to
be normally distributed with meanH̄c . In this case, the total
magnetization is given by

M ~H !5E
0

`

M̄ ~H;Hc ,j! f ~Hc!dHc , ~15!

with the density

f ~Hc!5C1e2(Hc2H̄c)2/b. ~16!

Here,C1 andb are positive parameters andM̄ is specified by
Eqs.~6! or ~12!. We note that in Eq.~15!, the lower limit of
0 reflects the requirement that hysteresis kernels have non-
negative width. Alternatively,f can be specified as a log–
normal density to reflect the positivity of the kernel widths.

The second extension addresses the incorporation of
mean field effects due to interdomain coupling. In the models
of Jiles and Atherton10,11 and in subsequent magnetostrictive
transducer models,7–9 this coupling was modeled by an ef-
fective field of the form

He5H1aM , ~17!

where a is a constant mean field parameter. The effective
field @Eq. ~17!# is analogous to the Weiss mean field which
quantifies interatomic interactions. Rather than assume a
constant interaction coefficienta, we assume that the effec-
tive field can exhibit variations due to nonhomogeneities in
the distribution of magnetic moments. To incorporate these
field variations, we consider the effective field to be normally
distributed about the field applied. For fixedHc , the magne-
tization in this case is given by

M ~H !5E
2`

`

C2M̄ ~H;Hc ,j!e2(H2H)2/b̄dH. ~18!

The variations in the effective field produce domain switch-
ing in advance of the remanence point in accordance with
observations from experimental data.

The full magnetization model for nonhomogeneous
polycrystalline materials with variable effective fields then
becomes

@M ~H !#~ t !5CE
0

`E
2`

`

@M̄ ~H1H,Hc ,j!#~ t !

3e2H 2/b̄e2(Hc2H̄c)2/bdHdHc , ~19!

with M̄ again given by Eqs.~6! or ~12!. We note that for
implementation purposes, the integrals are truncated using
high-order Gaussian quadrature to achieve low-order systems
which facilitate efficient implementation.

Although the model@Eq. ~19!# does incorporate certain
relaxation mechanisms, it does not yet incorporate eddy cur-
rent losses so its use should be restricted to low frequency
drive regimes. The inclusion of eddy current losses and vari-
able temperature operating regimes to accommodate ohmic
heating can be addressed by including appropriate terms in
the energy relations.

D. Magnetoelastic constitutive relations

The Gibbs relation@Eq. ~5!# incorporates the internal
energy and magnetostatic energy exhibited by isotropic ma-
terials at the domain level. However, it neglects the magne-
toelastic coupling which provides the materials with magne-
tostrictive capabilities. Motivated by experimental evidence
that suggests a quadratic dependence of strain on the magne-
tization, we consider the magnetostrictive relation~1!. Al-
though this relation is customarily employed in magneto-
strictive transducer design due to its simplicity, it can only be
justified theoretically in applications where material stresses
are such that stress anisotropy overwhelms crystalline anisot-
ropy. In this case, magnetoelastic coupling can be incorpo-
rated through consideration of the magnetoelastic Helmholtz
free energy relation

ce~M ,«!5c~M !1 1
2 YM«22YMg«M2, ~20!

and corresponding Gibbs energy,

G~H,M ,«!5c~M !1 1
2 YM«22YMg«M22HM2s«,

~21!

where c is specified by Eq.~4!. Here YM denotes the

FIG. 7. ~a! Free energies associated with nonuniform moment distributions.
~b! Variations in the local coercive fieldHc for the hysteresis kernel due to
differing free energies.
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Young’s modulus at constant magnetization andg is a mag-
netoelastic coupling coefficient.

For regimes in which thermal activation is significant,
the local magnetizationM̄ is specified by Eq.~6! with the

Gibbs energy relation~21! employed in the integrals@Eqs.
~9! and ~11!#. For the limiting case of negligible thermal
activation, which is determined through solution of
]G/]M 50, the local magnetization is given by

@M̄ ~H,«;Hc ,j!#~ t !55
@M̄ ~H,«;Hc ,j!#~0!, t~ t !5B,

H

h22YMg«
2

MRh

h22YMg«
, t~ t !ÞB and H@maxt~ t !#52Hc ,

H

h22YMg«
1

MRh

h22YMg«
, t~ t !ÞB and H@maxt~ t !#5Hc ,

~22!

whereHc5h(MR2MI), t is given by Eq.~13!, and

@M̄ ~H,«;Hc ,j!#~0!55
H

h22YMg«
2

MRh

h22YMg«
, H~0!<2Hc ,

j, 2Hc,H~0!,Hc ,

H

h22YMg«
1

MRh

h22YMg«
, H~0!>Hc .

~23!

We note that Eqs.~22! and~23! reduce to Eqs.~12! and~14!
in the absence of strains.

The elastic constitutive relation is determined from the
equilibrium condition,

]G

]«
50,

which, as indicated in Eq.~3!, yields

s5
]ce

]« U
M

.

The coupled constitutive relations for the undamped magne-
tostrictive material are then given by

s5YM«2YMgM2,

~24!

M ~H,«!5CE
0

`E
2`

`

M̄ ~H1H,«;Hc ,j!

3e2H 2/b̄e2(Hc2H̄c)2/bdHdHc ,

with M̄ specified by Eqs.~22! in the absence of thermal
activation or Eq.~6! with G given by Eq.~21! when thermal
activation, or relaxation mechanisms, are significant.

FIG. 8. Experimental data~– – –! from Ref. 8 and model response~——!: ~a! field-magnetization relation and~b! field-strain relation.
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III. MODEL VALIDATION

To illustrate properties of the model, we present two ex-
amples. In the first, the model is used to characterize and
predict the magnetization and strains produced by a
Terfenol-D transducer. The second illustrates numerically the
ability of the model to close biased minor loops.

A. Experimental validation

We first consider the characterization of magnetization
and displacements generated by a typical Terfenol-D trans-
ducer having the configuration depicted in Fig. 2 in response
to a quasistatic input currentI (t) to the solenoid. Details
regarding the transducer construction and manner through
which the experimental data were collected are provided in
Ref. 8. We consider here data collected at 1 Hz with a pre-
stress of 1 ksi~6.9 MPa!. Two input levels yield the moderate
and high drive level magnetization and strain data plotted in
Figs. 1 and 8.

The parametersMR53.73104 A/m, h514, Hc5300
A/m, b513108 A2/m2, b̄583108 A2/m2, C52.52

31028, and g54.5310215 m2/A2 in relations ~24! were
estimated through a least squares fit to the high drive level
data to produce the model response plotted in Fig. 8. The
model with the same parameter values was then used to pre-
dict the moderate drive level behavior. Because we consid-
ered a fixed prestress regime, we neglected components of
the magnetomechanical coupling in constitutive relations
~24!. Hence the bulk magnetizationM was computed using
the local magnetization relation~22! with «50 and the mag-
netostrictionl[gM2 was used to model the strains mea-
sured.

Although certain discrepancies exist between the mod-
eled magnetization and strains and the experimental mea-
surements, the overall behavior predicted by the model is
sufficiently accurate for material characterization and control
design. The contraction in the low field magnetization data is
typically attributed to crystalline anisotropies inherent to
Terfenol-D. The present model does not incorporate anisot-
ropy energy and hence lacks mechanisms necessary to
achieve this low field change in concavity. The discrepancy

FIG. 9. ~a! Magnetization predicted by the model,~b! strains profile predicted by the model, and~c! input field H to the model.
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between the model and data in the tips of the strain loop
indicates limitations in the quadratic magnetostriction model
and potential mechanical coupling which must be incorpo-
rated through a partial differential equations~PDE! model for
the rod based on constitutive relations~24!. The development
of a distributed rod model and the computation of total
strains and displacements can be addressed in the manner
detailed in Refs. 8 and 9.

B. Biased minor loops

To illustrate model properties under asymmetric minor
loop operation, the field plotted in Fig. 9~c! was provided as
input to the model which yielded the magnetization and
strain responses plotted in Figs. 9~a! and 9~b!. The param-
eters in the model were taken to be those specified in the
example in Sec. III A which were obtained through a least
squares fit to high drive level data. Loops 1 and 3 illustrate
biased minor loop behavior while loop 2 illustrates the abil-
ity of the model to enforce closure of multiply nested minor
loops. Loops 4 and 5 illustrate biased behavior leading to
saturation. When combined with the experimental results
presented in Sec. III A, the behavior illustrated here provides
the model with substantial flexibility for material character-
ization and control design.

IV. CONCLUDING REMARKS

In this article we presented a model theory which quan-
tifies hysteresis and constitutive nonlinearities in magneto-
strictive transducers operating in moderate to high drive re-
gimes. By combining free energy analysis at the lattice or
domain level with stochastic distributions to accommodate
material and field nonhomogeneities, we obtain a low-order
macroscopic model that automatically ensures the closure of
biased, nested, minor loops. In its present form, the model
incorporates relaxation mechanisms but neglects eddy cur-
rent losses so, to avoid simulation inaccuracies, it should be
restricted to low frequencies of operation. Errors introduced
by employing the model at high frequencies include phase
shifts and overestimation of magnetization values. Addition-
ally, although stress or strain effects have been included in
the free energy formulations, the accuracy of the model for
quantifying full magnetoelastic coupling has not yet been
established. As indicated in Sec. III, this will involve in part
the formulation of a PDE model for the Terfenol-D rod and
subsequent Galerkin or finite element discretization to obtain
a finite dimensional model. The model also neglects self-
heating in the transducer as well as crystalline anisotropy. A
number of present transducer designs employ water cooling
to maintain approximately isothermal conditions and require
prestress levels at which stress anisotropy dominate crystal-
line anisotropy. For these regimes, the model accurately
quantifies the low frequency dynamics of the transducer.

We note that the free energy framework for this model
originated in the context of shape memory alloys~SMA!19,20

and was recently extended to piezoceramic compounds21

where a distributional analysis concerning variable coercive
and effective fields was added. Hence the theory provides a
unified framework for modeling hysteresis in a number of
representative smart material systems. Furthermore, it was
illustrated in Ref. 18 that the framework can be employed to
provide an energy basis for Preisach models with the follow-
ing important difference: temperature and relaxation depen-
dencies are manifested in the kernel or basis for this model
whereas they enter the parameters, or measures, in Preisach
expansions. This has important consequences for control de-
sign since it provides the potential for eliminating the gain
scheduling required to accommodate changing parameters in
broadband control regimes or systems with fluctuating tem-
peratures.
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