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A fully coupled 3D energy-avaraged model is presented which describes the magnetomechanical

behavior of Terfenol-D. Conventional energy averaging with eight easy axis orientations yields an

unphysical kink in the magnetization response and fails to describe the gradual approach to

saturation present in Terfenol-D magnetostriction. Superposition of an empirically weighted global

anisotropy energy onto an anisotropy energy locally defined around each easy axis eliminates the

unphysical kink in the response, while an implicit definition of the domain volume fraction

describes the gradual approach to saturation. Anhysteretic bulk material response is described

through a weighted sum of individual domains; the weights (or domain volume fractions) are

calculated using Boltzmann-type energy averaging. A hysteretic extension is built from an

evolution equation for the domain volume fractions. Although solution of the implicit equation for

the anhysteretic domain volume fractions requires iteration, the model takes only 20% longer than

its original non-iterative version because of the small size of the iteration loop. Comparison of the

model with sensing and actuation measurements reveals an average modeling error below 3%. A

reduced version of the model, proposed by eliminating certain easy axis orientations, has a 30%

lower computational time, with an average modeling error below 6%. VC 2012 American Institute of
Physics. [doi:10.1063/1.3687372]

I. INTRODUCTION

Magnetostrictive Terfenol-D (Tb0.7Dy0.3Fe2) is attrac-

tive for practical actuators due to its large magnetostriction

(1600 ppm) and moderate saturation fields (200 kA/m). To

aid in the design and control of Terfenol-D actuators, an effi-

cient yet accurate constitutive law describing magnetization

and magnetostriction in the material is needed. Modeling the

fully coupled, nonlinear constitutive behavior of Terfenol-D

has traditionally been a difficult problem. Its large magneto-

striction anisotropy, low magnetocrystalline anisotropy, and

a twinned dendritic structure give rise to complex domain

level processes which are not completely understood.1 The

aim of this work is to describe the actuation and sensing

response of Terfenol-D over a range of magnetic fields and

stresses. To this end, we modify an efficient energy-averaged

constitutive model originally developed for Galfenol. The pri-

mary benefits of the model for design and control applications

are its accuracy and computational efficiency.

The Jiles-Atherton model2 was originally formulated for

isotropic ferromagnetic hysteresis. The total magnetization

of a ferromagnetic material with Weiss-type moment interac-

tions is obtained as the sum of an irreversible component due

to domain wall motion and a reversible component due to

domain wall bowing. With careful understanding of the dif-

ference between local and global anhysteretic responses, the

model is straightforward to implement and computationally

efficient, as it involves only five parameters which can be

directly correlated to measurements. For this reason, the

Jiles-Atherton model has been used to describe the behavior

of Terfenol-D actuators in which the magnetostriction is

modeled as a quadratic function of magnetization.3–5

The Preisach model6 generates smooth ferromagnetic

hysteresis curves through contributions from a large number

of elementary bistable hysterons. Because giant magnetostric-

tive materials such as Terfenol-D show significant deviation

in behavior from elementary Preisach hysterons, Reimers and

Della Torre7,8 developed a special hysteron with a bimodally

distributed susceptibility function to describe the 1D actua-

tion response of Terfenol-D.

Carman and Mitrovic.9 formulated a model for Terfenol-

D using Gibbs free energy expanded in a Taylor series. The

exact form of the series, that is the degree of truncation, and

the value of the coefficients were determined experimentally.

The model describes Terfenol-D actuation for low to moder-

ate applied fields over a specific range of applied pre-stress.

Zheng and Sun10 included higher order terms in the Taylor

series and used a Langevin function to describe the magnet-

ization curve. The model, although anhysteretic, accurately

describes the nonlinear nature of Terfenol-D’s magnetostric-

tion for a wide range of pre-stresses. The DE effect was

quantified but it was only validated qualitatively.

Armstrong11 formulated a model for Terfenol-D in which

bulk magnetization and strain are obtained as an expected

value of a large number of possible energy states (or moment

orientations) with an energy-based probability density func-

tion. To increase the model efficiency, Armstrong12 restricted

the choice of moment orientations to the easy magnetization

axes (eight <111> directions for Terfenol-D) and used a dis-

crete version of the probability density function. The increase

in computational speed, however, came at the cost of reduced

accuracy due to the restricted choice of possible moment
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orientations. Atulasimha et al.13 improved the accuracy of the

Armstrong model by expanding the number of possible orien-

tations to 98 crystallographic directions. Evans and Dapino14

proposed a different approach for increasing the efficiency of

the energy-averaged class of models by choosing only those

orientations which minimize an energy functional locally

defined around each easy axis.

The Evans and Dapino14 Discrete Energy-Averaged

Model (DEAM) has major shortcomings when applied to

Terfenol-D, as detailed in Sec. II. Section III presents an

anhysteretic model formulation that addresses each of those

challenges; anhysteretic model results are compared with ex-

perimental data in Sec. IV. The proposed anhysteretic version

of the model is fully 3D and appropriate for use in finite ele-

ment modeling frameworks. An extension to model magneto-

mechanical hysteresis by using an evolution equation for the

domain volume fractions, similar to that of Evans and

Dapino,14 is presented in Sec. V. The hysteretic model can be

used for control applications where quantification of additional

delay due to material hysteresis is critical for ensuring stability.

Section VI provides a quantitative description of the model’s

performance.

II. PROBLEM DESCRIPTION

Terfenol-D has eight minima along the <111> direc-

tions. When energy-averaged models such as the Armstrong

model,12 or the Discrete Energy-Averaged Model,14 are com-

pared with measurements, two major discrepancies are

observed. First, these models introduce an unphysical kink in

the magnetization and magnetostriction; second, the slow

approach to saturation observed in the data is absent (Fig. 1).

Use of a sufficiently high smoothing factor (as done by Arm-

strong)12 removes the unphysical kink and somewhat

smoothes out the saturation behavior. However, it results in

large inaccuracies in the low to moderate field regions. More-

over, the kinking reappears at high pre-stress values (Fig. 2).

For a [112]-oriented sample, the magnetization process

is governed by two distinct domain jumps: one from the

[11�1] and [�1�11] directions perpendicular to the sample axis

to the [1�11] and [�111] directions oriented 61.9� from the

sample growth axis, and the second from [1�11] and [�111] to

the [111] direction oriented 19.5� from the growth axis.

When no compressive prestress is applied, all the <111>
orientations have equal energy and the jumps occur at very

low magnetic fields. Application of compressive prestress

alters the energy of each of the three sets of orientations. The

energy due to applied stress increases as the angle between

the domain magnetization and sample axis decreases. Thus

the increase in energy is largest for the [111] direction and

smallest for the [11�1] and [�1�11] directions. The difference in

energy between the three sets of easy axes causes domains to

stick at a particular set of orientations until additional mag-

netic field is applied to overcome the magnetoelastic energy

difference between the current and the next set of orienta-

tions. This domain attachment causes kinking in the magnet-

ization and magnetostriction curves (Fig. 3). The magnitude

of the kink increases with the amount of applied prestress.

Thus a high value of smoothing factor X, which smoothes

out the kinks for smaller prestresses, cannot eliminate the

kinking when the applied prestress is increased as observed

in Fig. 2. A value of X which is high enough to smooth out

the kinks for all prestresses results in the model overestimat-

ing the burst field and underestimating the slope of the mag-

netostrictionfield curve in the burst region. These issues

imply that fundamental changes are necessary in order to

successfully apply energy-averaged models to Terfenol-D.

FIG. 1. (Color online) Comparison of

magnetization and magnetostriction

curves for Terfenol-D at 13.5 MPa

compressive stress (Ref. 18) with the

Armstrong model (Ref. 12) and the

Discrete Energy-Averaged Model

(DEAM, Ref. 14).

FIG. 2. (Color online) Armstrong model

(Ref. 12) and DEAM (Ref. 14) with high

smoothing factors for 13.5 and 41.3 MPa

prestress. The higher prestress curve shows

the reappearance of kinks in both models.
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III. MODEL FORMULATION

A. Elimination of unphysical kinks

Assuming a [112]-oriented sample, the intermediate

kinks occur when domains align along the [1�11] and [�111]

directions for positive applied fields and [1�1�1] and [�11�1]

directions for negative applied fields. Absence of kinks in

the measurements suggests that domains are prevented from

orienting along these directions. This can be modeled by

increasing the magnetocrystalline anisotropy energy along

these orientations compared to the other easy axis orienta-

tions. In the original DEAM formulation, the anisotropy

energy is defined locally around each easy axis,

Gk
A ¼

1

2
Kk mk � ck
�� ��2

; (1)

where the anisotropy constant Kk controls how steep the ani-

sotropy energy wells are around the kth easy axis ck. Because

the anisotropy energy along each easy axis direction is iden-

tically zero, achieving variations in the base anisotropy

energy between the different easy axes is not possible from

Eq. (1). To achieve such variation, an orientation-dependent

global anisotropy energy is superimposed onto the local ani-

sotropy energy defined around each easy axis direction,

Gk
A ¼ wkGk

A0
þ 1

2
Kk mk � ck
�� ��2

: (2)

Here, Gk
A0

is the global anisotropy energy, which for materi-

als with cubic anisotropy is given by,

Gk
A0
¼ K4 mk2

1 mk2

2 þ mk2

2 mk2

3 þ mk2

3 mk2

1

� �
þ K6 mk2

1 mk2

2 mk2

3

� �
;

(3)

In Eq. (2), Gk
A0

is weighted by wk, an empirical weighting

factor that adjusts the anisotropy energy along the kth easy

axis. Physically, the weighting accounts for the change in

energy landscape that may occur due to precipitates, disloca-

tions, and twin boundaries.15 The eight easy axes can be bro-

ken down into three groups depending upon their angle

relative to the sample axis: the [111] and [�1�1�1] directions

oriented 19.5� with the sample axis, the [11�1] and [�1 �11]

directions oriented perpendicular to the sample axis, and the

[1�11], [�111], [1�1�1], and [�11�1] directions oriented 61.9� from

the sample axis. Thus, there are effectively three weights

that must be determined, one for each group.

Another way to suppress the kinks is to ignore the min-

ima associated with the four orientations which cause kink-

ing. The global anisotropy energy is still weighted but there

are only two weights to be determined because the set of

directions 61.9� from the sample axis is not considered. This

way the number of minima is reduced to four. The first

approach is more accurate as it has more degrees of freedom

while the second approach is more efficient as it involves

averaging of only four terms. However, in the second

approach, the three-dimensional accuracy of the model is

expected to suffer due to the loss of four orientations. In this

paper the full version of the model is described in detail and

its performance is compared to the reduced version in terms

of accuracy and efficiency.

B. Obtaining the slow approach to saturation

The exact reason for the slow approach to saturation in

Terfenol-D is not clearly understood. Various explanations

have been proposed such as the presence of demagnetization

fields,16 or radically different behavior of twins,17 but experi-

mental proof is lacking. Domain observations reported by

Engdahl18 suggest that closure domains become increasingly

difficult to remove in Terfenol-D as the sample is magne-

tized. From these theories and observations it can be postu-

lated that with increasing applied field, there is a tendency of

domains to occupy orientations which do not minimize the

theoretical energy obtained by summing up the anisotropic,

magnetoelastic, and Zeeman components. Incorporation of

demagnetization fields in the model comes at the expense of

an implicit definition for the total energy, which means that

iterations need to be performed to converge to the correct

value of volume fractions. Every iteration will involve com-

putation of the energies, minima, domain volume fractions,

and the bulk magnetization, adding significant computational

effort to the model.

An alternative way of incorporating this apparent broad-

ening of domain distribution is to employ a variable smooth-

ing factor which increases as the domain volume fractions

increasingly move farther away from a homogeneous distri-

bution. Mathematically this can be written as,

FIG. 3. (Color online) Armstrong model

(Ref. 12) and DEAM (Ref. 14) with low

smoothing factors showing the magnitude

of the two kinks with increasing stress.
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X ¼ a0 þ a1 nan H;Tð Þ � �n
�� ��2

; (4)

where nan(H,T) is the vector of anhysteretic domain volume

fractions and n is a vector equal in length to nan but with

each component as 1/r, r being the number of easy axis ori-

entations. Both nan and n are r-dimensional vectors, with

r¼ 8 for Terfenol-D. When no bias stress or field is applied,

assuming cubic magnetocrystalline anisotropy energy distri-

bution, all 8 orientations are equally likely to be occupied by

the domains. Thus nan¼ n and X¼ a0, its lowest value. On

application of stress or field the volume fractions will deviate

away from this homogeneous distribution, causing X to

increase. When a bias stress or field is applied, the initial do-

main distribution is not homogeneous, so for application of

field and stress about the bias points X no longer increases

monotonically. Figure 4(a) shows the variation of X with

applied field for different bias stress values. At low fields the

value of X increases with increasing bias stress while at high

fields X is larger for a lower bias stress. This allows the mag-

netostriction curves for low bias stress to exhibit a sharp

burst region at low fields and a gradual approach to satura-

tion at high fields, while for the high bias stress curves the

slope in the burst region is more gradual because X is rela-

tively large in the burst region (Fig. 4(b)). Figure 5 shows

the X-stress curves and the corresponding magnetization-

stress curves for different bias fields. For low bias fields, X
is small at low stresses and larger at higher stress values

while for high bias fields, X is large for low stresses and

relatively small for higher stress values. Figures 4 and 5

show the behavior of a material with perfect cubic anisot-

ropy, in which the global anisotropy energy along all the

easy axis orientations is equally weighted (i.e, wk is the

same for all k). When this is not the case, the X vs. field

and X vs. stress curves will be different. At zero applied

stress and field, for example, the domains will not be

homogeneously distributed among the eight directions.

Rather, they will be concentrated in orientations along

which the weights of the global anisotropy energy are

maximum.

C. Computational aspects

The new definition for X, expression (4), destroys the

explicit nature of the model because X is defined as a func-

tion of nan while determination of nan requires knowledge of

X according to the relation,

nk
an ¼

exp �Gk=X nanð Þ
� �Pr

j¼1 exp �Gj=X nanð Þð Þ ; (5)

where nk
an is the volume fraction of the kth easy axis. The

advantage of this implicit definition over an implicit defini-

tion for energy (as in the case of demagnetization fields) is

that the two most computationally intensive processes—

computation of energies and the corresponding energy min-

ima—are excluded from the iteration loop. The steps within

the iteration loop include determination of the volume frac-

tions, a convergence check, and computation of two scalar

expressions for df/dX and X. These steps are fast and allow

for efficient computation of the model.

FIG. 4. (Color online) (a) X-field and (b)

strain-field curves for compressive pres-

tresses of 0, 6.5, 13.5, 27.4, 41.3, and 55.3

MPa.

FIG. 5. (Color online) (a) X-stress and (b)

magnetization-stress curves for constant

bias fields of 0, 32.2, 64.4, 96.6, 128.8, 161,

and 193.2 kA/m.
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The algorithm for computing the model is shown in

Fig. 6. The solution loop involves combining Eqs. (4) and

(5) to obtain a single equation in terms of X,

f Xð Þ ¼ X� a0 � a1

Xr

k¼1

nk
an � �n

k
� �2

¼ 0: (6)

Newton-Raphson iterations are performed for quick conver-

gence because the derivative df/dX can be analytically

obtained as,

df

dX
¼ 1� 1

X2

Xr

k¼1

2a1 nk
an � �n

k
� �

nk
anGk � nk

an

Xr

j¼1

nj
anGj

 !
:

(7)

Even with strict tolerances, usually two to three iterations

are sufficient for convergence.

To investigate the effect of this iterative procedure on

the model efficiency, the model is run with and without itera-

tions for a large number of inputs. It is found that on average

the iterative version takes only 20% longer than the non-

iterative one.

IV. ANHYSTERETIC MODEL RESULTS

The model is compared with actuation measurements

from Moffett et al.19 and sensing measurements from Kel-

logg and Flatau.20 Anhysteretic model parameters have been

obtained by extracting the anhysteretic curves from data

(using simple averaging of values from the upper and lower

branches of the major hysteresis loops21) and using a least

squares optimization algorithm. The full model with eight

minima contains nine parameters (K, Ms, k100, k111, a0, a1,

w1¼w2, w3¼w4, w5¼w6¼w7¼w8) while the model with

four minima contains eight parameters due to the absence of

w5 through w8.

Figure 7 shows the performance of the two models when

optimized to describe the magnetostriction measurements of

FIG. 6. Flow chart for the anhysteretic

model. Details of the energy minimization

can be obtained from Evans and Dapino.

(Ref. 14).
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Moffett et al.19 Both models can accurately describe the

measurements. However, the reduced version shows some

error near saturation, particularly for the high bias stress

curves. With parameters optimized for the strain-field curves,

the full model accurately describes the stress-strain response

(Fig. 8).

To apply the model to various material compositions

and operating conditions, the parameters were also optimized

for Terfenol-D sensing measurements reported by Kellogg

and Flatau.20 Throughout the paper an elastic modulus of

115 GPa is used, calculated using the slope of the strain-

stress curves at high compressive stresses and low bias fields.

Figure 9 reveals that the full version of the model is able to

describe the trends more accurately than the reduced version

with four minima.

V. EXTENSION TO HYSTERETIC MODEL

The model can be extended to include hysteresis with an

incremental formulation similar to that done by Evans and

Dapino.14 The total volume fraction increment can be written

as a combination of an anhysteretic and an irreversible

component,

dnk ¼ cdnk
an þ 1� cð Þdnk

irr; (8)

where d nk
irr is given by

dnk
irr ¼

f
kp

nk
an � nk

irr

� �
l0Ms dH1j j þ dH2j j þ dH3j jð Þ½

þ 3=2ð Þk100 dT1j j þ dT2j j þ dT3j jð Þ

þ 3k111 dT4j j þ dT5j j þ dT6j jð Þ�; (9)

and dnk
an is given by

dnk
an ¼

@nk
an

@H
dHþ @n

k
an

@T
dT: (10)

The calculation of partial derivatives @nk
an=@H and @nk

an=@T

for the traditional energy-averaged model is much simpler

because nk
an is explicitly defined in terms of H and T.

Although nk
an is implicit as given by Eq. (5) it is possible to

obtain an analytical expression for its derivatives,

@nk
an

@Hi
¼ ak � nk

an

Xr

j¼1

aj þ 2a1 nan � �n
� �

� dnan

dHi

� �
bk � nk

an

Xr

j¼1

bj

 !
; (11)

where,

ak ¼ � nk
an

a

@Gk

@Hi

� �
; (12)

FIG. 7. (Color online) Comparison of the full model (eight minima),

reduced model (four minima), and actuation data (Ref. 19) for compressive

prestresses of 6.9, 15.3, 23.6, 32.0, 40.4, 48.7, 57.1, and 65.4 MPa.

FIG. 8. (Color online) Performance of the full and reduced models in pre-

dicting the stress-strain behavior of Terfenol-D (Ref. 19) for bias field values

of 11.9, 31.8, 55.7, 79.3, 103, 127, 151, and 175 kA/m with parameters esti-

mated from the strain-field curves.

FIG. 9. (Color online) Comparison of the

full model, reduced model, and sensing data

from Ref. 20 for bias magnetic fields of

16.1, 48.3, 80.5, 112.7, 144.9, and 193.2

kA/m.
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bk ¼ nj
an

a2
Gk; (13)

nan � �n
� �

� dnan

dHi

� �

¼
Pr

k¼1 ak � nk
an

Pr
j¼1 aj

� �
nk

an � �n
k

� �
1� 2a1

Pr
k¼1 bk � nk

an

Pr
j¼1 bj

� �
nk

an � �n
k

� � : (14)

The derivative @Gk/@Hi can be obtained as done by Chakra-

barti and Dapino.22 Equation (14) is obtained by multiplying

Eq. (11) by (nk
an � �nk) and summing for all k. The partial

derivatives with respect to Ti can be computed following a

similar procedure.

VI. HYSTERETIC MODEL RESULTS

The performance of the hysteretic model is described

quantitatively in this section by comparing it with the same

data sets. Additionally, the parameters have been optimized to

describe Terfenol-D magnetostriction data supplied by Etrema

Products, Inc.23 As done previously, every data set is simu-

lated with a single set of parameters. However, the parameters

are allowed to vary from one set to another because they repre-

sent measurements on samples with different compositions.

The parameter optimization for the hysteretic model is done

using the same least square optimization algorithm as

described earlier. The hysteretic model contains two additional

parameters (c and kp) over the anhysteretic version, thus mak-

ing the total number of parameters 11 and 10 for the full and

reduced models, respectively. However, the optimization rou-

tine is not time consuming because the parameter values are

very close to what they were for the anhysteretic version. The

range for the additional parameters is also straightforward to esti-

mate as kp determines the width of the hysteresis loops, which is

estimated to lie between 4–10 kJ while c is the reversibility

coefficient, the value of which is usually between 0.05 and 0.15.

For every curve, the modeling error has been quantified

using a normalized RMS error definition. The error for the ith

curve in a data set is given as,

error ¼ 1

range Xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

j¼1 Yij � Xij

� �2

Ni

s
; (15)

where Yij and Xij are the jth component of the ith model vector

and data vector, respectively, each containing Ni points, and

range(X) is the difference between the upper and lower

bound for the entire set. A mean error for the entire data set

is obtained by averaging the normalized RMS error for all

curves in the set. A maximum error is computed by finding

the maximum of the error values for all points for all curves

in the data set. This gives a measure of the worst case per-

formance of the model. Table I summarizes the mean and

the maximum errors obtained for three different data sets.

For clarity, in this section only plots for the full version

of the model are shown. Figure 10 shows the performance of

the hysteretic model in describing the measurements

reported by Moffett et al.19 As before, the parameters are

optimized only for the magnetostriction curves. As shown in

Table I, excellent accuracy is achieved not only for the mag-

netostriction curves (1.1% mean error) but also for the

stress-strain curves (2.3% mean error) even though no sepa-

rate parameter optimization was done. The reduced model

also provides high overall accuracy except for high fields

and stresses. As observed for the anhysteretic version of the

reduced model, some errors were found in the stress-strain

response, particularly in the low stress, low field region

where the maximum error is about 20%.

Similar results are obtained for sensing measurements

reported by Kellogg and Flatau20 for Tb0.3Dy0.7Fe2. In this

case the parameters are optimized for both magnetization-

stress and strain-stress curves together and mean errors

TABLE I. Mean percent errors obtained with the full and reduced models

(Maximum percent errors in parentheses).

Data Eight minima Four minima

Moffett et al.19 (strain-field) 1.1 (3.4) 2.3 (11.2)

Moffett et al.19 (strain-stress with parameters

optimized for strain-field loops)

2.3 (6.3) 5.7 (20.3)

Etrema Products, Inc.23 1.2 (5.2) 2.5 (10.3)

Kellogg and Flatau20 1.6 (9.87) 1.97 (12.8)

Simulation time (for Moffett et al.19 data) 0.206 s 0.146 s

FIG. 10. (Color online) Comparison of hyste-

retic model with data from Moffett et al. (Ref.

19) for compressive prestresses of 6.9, 15.3,

23.6, 32.0, 40.4, 48.7, 57.1, and 65.4 MPa. Pa-

rameters optimized for actuation curves.
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below 2% are obtained. The maximum error is relatively

large in both versions of the model due to the discrepancy in

the initial (0 stress) magnetization description of the 16.1

kA/m bias field curve.

Finally, the parameters are optimized to describe the

magnetostriction curves for commercially available Terfenol-

D supplied by Etrema Products, Inc.23 (See Fig. 12.) The

model accurately describes both saturation nonlinearity and

hysteresis. For example, at high compressive prestresses, the

magnetization process is dominated by reversible domain

rotation giving rise to a nearly anhysteretic response. This is

seen both in the experimental and modeled magnetostriction

curves at 16 ksi (110.4 MPa). The model also describes the

effect of preload on the maximum magnetostriction. For

example, the 1 ksi (6.9 MPa) curve exhibits a lower saturation

magnetostriction than the 4 ksi (27.6 MPa) and 8 ksi (55.2

MPa) curves. The optimized parameters for every data set for

both versions of the model are shown in Table II. To compare

the efficiencies of the two models, the time taken by each to

simulate the Moffett et al.19 data set is clocked in MATLAB.

The reduced model takes about 30% less time than the full

version. Thus, the reduced version can be used in applications

where some accuracy can be sacrificed in the interest of com-

putational speed.

VII. CONCLUDING REMARKS

The paper presents a fully coupled energy-averaged con-

stitutive model to describe the magnetomechanical response

of Terfenol-D. Two main deficiencies of previous energy-

averaged models for Terfenol-D are recognized and

addressed. One is the presence of an unphysical kink in the

modeled response, which is absent in measurements, and the

other is the absence of the slow approach to saturation pres-

ent in Terfenol-D magnetostriction. It is shown that by using

a weighted global anisotropy energy combined with a vari-

able smoothing factor based on the deviation of domain vol-

ume fractions from a homogeneous distribution one is able

to address both issues. The anhysteretic model is fully 3D

and is appropriate for use in distributed parameter modeling

frameworks. The addition of an implicit relationship for the

domain volume fractions creates the need for equilibrium

iterations to achieve convergence. Nevertheless, the iteration

procedure is extremely efficient and is shown to take only

20% longer time than without iterations. A reduced version

of the model is also proposed by ignoring the four minima

corresponding to the four easy axes orientations which cause

the kinks. This approach is more efficient but suffers from

some loss of accuracy under specific conditions of high

stress and field for actuation and low stress and field for

sensing.

A hysteretic extension to the model is formulated based

on an evolution equation for the domain volume fractions.

This model is used to simulate the response of three different

data sets. The model accurately describes the regions with

and without hysteresis and achieves below 3% mean error

for all the sets. The reduced version exhibits slightly lower

accuracy but requires 30% less computer time than the full

version. The hysteretic model is useful for implementation in

control design where quantifying delays due to hysteresis is

of importance.
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