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Abstract. A dynamic, nonlinear model for magnetic induction and strain response of cubic magne-
tostrictive materials to 3-D dynamic magnetic fields and 3-Dstresses is developed. Dynamic eddy
current losses and inertial stresses are modeled by coupling Maxwell’s equations to Newton’s sec-
ond law through a nonlinear constitutive model. The constitutive model is derived from continuum
thermodynamics.

Introduction

Magnetostrictive materials (MM) deform in response to magnetic fields and change magnetization in
response to mechanical stress. These effects have been effective for creating sensors, actuators, and
adaptive structures with high specific power and rugged operation [1]. Galfenol (FexGa1−x, 13 ≤

x ≤ 29 at%) is a unique MM because it exhibits moderate magnetostriction and steel-like mechanical
properties. It can be machined, rolled, deposited, and welded and is capable of bearing compressive,
tensile, bending, torsion, and shock loads [2]. Despite these advantages, dynamic devices utilizing
Galfenol are expected to be heavily influenced by dynamic thermal and eddy current effects as the
operating frequency is increased [3]. Fundamental models incorporating these effects are therefore
needed for design, characterization, and control of futureGalfenol devices.

In this article we develop a fully-coupled model that characterizes the nonlinear and dynamic
strain and magnetization of Galfenol in response to time-varying magnetic fields and mechanical
stresses. Dynamic effects include eddy current losses, magnetic after-effects, and the mechanical
dynamics of the transducer and load. The model provides a framework for characterization, design,
and control of Galfenol devices subjected to combined dynamic magnetic field and stress loading.
While the model is applied to Galfenol it can be directly applied to general magnetostrictive materials
which exhibit cubic anisotropy.

Eddy current losses and mechanical transducer dynamics

The magnetic induction and strain (or displacement) of Galfenol is dependent on the magnetic field
and stress. The field and stress state depends on the magneticand mechanical boundary conditions
and the geometry of the transducer. The field is calculated from the boundary value problem (BVP)
described by Maxwell’s equations and the stress from a BVP described by Newton’s second law.
In dynamic operation, eddy current losses cause a spatial distribution in the magnetic field. Eddy
currents can be described by Maxwell’s equations,

∇× E = −
∂B

∂t
, J =

1

ρe

E, ∇× H = J. (1)

A changing magnetic inductionB creates an electric fieldE which in turn creates a current density
which finally causes a magnetic fieldH opposing the changing magnetic induction. This causes an

Advances in Science and Technology Vol. 54 (2008) pp 13-18
online at http://www.scientific.net
© (2008) Trans Tech Publications, Switzerland
Online available since 2008/Sep/02

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the
publisher: Trans Tech Publications Ltd, Switzerland, www.ttp.net. (ID: 164.107.168.34-03/09/08,15:17:28)

http://www.scientific.net
http://www.scientific.net/feedback/62531
http://www.scientific.net/feedback/62531
http://www.ttp.net


instantaneous power loss per unit volumeJ·E and a spatial variation in the magnetic field. The spatial
variation may be described by combining Maxwell’s equations into a single BVP

∇× (∇× H) = −
1

ρe

∂B

∂t
(H,T) , H(Ω, t) = HΩ(t), H(X, 0) = H0(X), (2)

whereX is the spatial location andΩ denotes the boundary. To solve the boundary value problem, a
material constitutive law needs to be formulated, e.g.,

B(H,T) = µ0 [H + M(H,T)] , (3)

where the first term is the induction due to the magnetic field and the second term is the stress (T)
and field dependent magnetization of Galfenol. Because of thestress dependent magnetization, a
time-varying stress results in a time-varying magnetic induction and hence eddy current losses.

The presence of stress in the magnetic BVP couples it to the mechanical BVP defined by Newton’s
second law,

ρ
∂2

u

∂t2
= −∇ · T − cD

∂u

∂t
− F, u(Ω, t) = uΩ(t), u(X, 0) = u0(X) (4)

whereu is displacement,ρ is density,cD is the Kelvin-Voigt damping coefficient andF represents
body forces. The strainS is the sum of the purely elastic strain obeying Hooke’s law,Se = c

−1
T

(wherec is the compliance tensor), and the field and stress dependentmagnetostrictionSm(H,T) [4].
For small strainsS = ∇u, the stress is

T = c [∇u − Sm (H,T)] . (5)

The implicit relationship for stress, Eq. 5, couples Eq. 4 toEq. 2. The boundary value problems
and constitutive relationships in Eqns. 3 and 5 provide a general framework for modeling dynamic
induction and strain response of magnetostrictive materials to an external fieldHΩ and body forceF.
In the sections that follow, a computationally efficient and3-D constitutive model forM(H,T) and
Sm(H,T) incorporating rate-dependent thermal effects is developed.

Constitutive Model

Ferromagnetic materials below the Curie temperature have regions of uniform magnetizationMs

where the atomic magnetic moments are aligned with each other. These regions of uniform magneti-
zation are called magnetic domains. Magnetic domains have preferred orientations which depend on
the magnetic anisotropy, magnetic field and stress. When thermodynamic equilibrium is achieved, the
steady-state macroscopic magnetizationMss and magnetostrictionSm,ss of a material havingr equi-
librium domain orientationŝmk is the sum of the magnetizationMsm̂

k and magnetostriction̂Sk
m due

to each equilibrium orientation, weighted by the volume fraction ξ̂k of domains in each orientation,

Mss = Ms

r
∑

k=1

ξ̂k
m̂

k, Sm,ss =
r

∑

k=1

ξ̂k
Ŝ

k
m. (6)

Equilibrium Domain Orientations. The internal energy of a magnetic domain with orientation
m = [m1 m2 m3] is due to the magnetocrystalline anisotropy energy. After considering the cubic
crystal symmetry and neglecting higher order terms, the internal energy for cubic materials is [4]

U (m) = K4 (m1m2 + m2m3 + m3m1) , (7)

14 Smart Materials & Micro/Nanosystems

http://www.scientific.net/feedback/62531
http://www.scientific.net/feedback/62531


−4 −2 0 2 4
−1500

−1000

−500

0

500

1000

1500

Magnetic Field, kA/m

M
ag

ne
tiz

at
io

n,
 k

A
/m

Increasing
stress

(a)

−4 −2 0 2 4
0

50

100

150

200

250

300

Magnetic Field, kA/m

M
ic

ro
st

ra
in

(b)

Figure 1: Steady-state simulations of (a) magnetization and (b) magnetostriction with varying field
and constant stress levels of 0, -5, -15,-25, and -40 MPa.

whereK4 is the fourth-order, cubic anisotropy constant. The Gibbs free energy is

G(H,T) = U (m) − Sm · T − µ0Msm · H, (8)

whereT is the six-element stress vector with the first three components the longitudinal stresses and
the last three the shear stresses,H is magnetic field andSm = Sm(m) is the magnetostriction with
longitudinal components [4]

Sm,i = −
3

2
λ100m

2
i , i = 1, 2, 3 (9)

and shear components

Sm,4 = −3λ111m1m2 Sm,5 = −3λ111m2m3, Sm,6 = −3λ111m3m1. (10)

These expressions are derived by balancing the magnetic anisotropy, elastic, and magnetoelastic cou-
pling energies [4]. The equilibrium domain orientations (m̂

k; k = 1, ..., r), needed for calculation of
the bulk magnetization in Eq. 6, are obtained through the conditions∂G/∂mi = 0 with the constraint
m2

1 + m2
2 + m2

3 = 1. The equilibrium magnetostrictions (Ŝ
k
m; k = 1, ..., r), needed for calculation of

the bulk magnetostriction in Eq. 6, are obtained by evaluating Eqns. 9 and 10 using the equilibrium
domain orientations,̂Sk

m = Sm(m̂k).

Equilibrium Domain Volume Fractions. The domain volume fractions in each equilibrium can
be determined by minimization of a total Gibbs energy potential which includes the entropy of a
collection of domains. The entropy of a system withr energy states is

η = −
kB

V

r
∑

k=1

ξk ln ξk. (11)

The total Gibbs energy and equilibria are given by

Ḡ(H,T) = −ηθ +
r

∑

k=1

ξkGk(H,T), ξ̂k =
e−Gk(H,T)V/kBθ

r
∑

j=1

e−Gj(H,T)V/kBθ

. (12)
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Figure 2: Steady-state simulations of (a) magnetization and (b) magnetostriction with varying stress
and constant field values of 0, 10, 20, 30, and 40 kA/m.

whereθ is temperature andGk(H,T) is the Gibbs energy of thekth equilibrium domain orientation
given by Eq. 8.

Model predictions for the steady-state magnetization and magnetostriction in the[100] direction
in response to a magnetic field at constant compressive stress are shown in Figs. 1(a) and 1(b). The
responses have rounded elbows and exhibit a kinked shape dueto 90 degree domain orientations in
agreement with the magnetization and magnetostriction measurements [3]. Prediction of the magne-
tization and strain in the[100] direction in response to stress at constant magnetic field isshown in
Figs. 2(a) and 2(b).

Basso et al. [5] have shown that rate-dependent thermal effects result in hysteresis losses in the
magnetic constitutive behavior. For time-varying magnetic fields and stresses there is a delay associ-
ated with the evolution of the domain volume fractions as moments overcome anisotropy barriers. The
dynamic magnetizationM and magnetostrictionSm are characterized by two first-order differential
equations with time constantτ , driven by the steady-state constitutive models in Eq. 6,

τ
dM

dt
+ M = Mss, M(H,T, 0) = Mss(H,T), (13)

τ
dSm

dt
+ Sm = Sm,ss, Sm(H,T, 0) = Sm,ss(H,T). (14)

Dynamic Tonpilz transducer Model

The general boundary value problems in Eqs. 2 and 4 may be simplified to provide a low-order
dynamic model for a theoretical Tonpilz transducer composed of a cylindrical Galfenol rod in a closed
magnetic circuit, loaded by a spring with stiffnesskL, damping coefficientcL, and massmL (see Fig.
3). The rod is approximated as infinitely long and is energized by a magnetic fieldHext at the surface,
applied along the rod length. This is an accurate assumptionwhen the magnetic circuit is closed. In
this case, Maxwell’s equations are reduced to

1

r

∂

∂r

(

r
∂H

∂r

)

=
1

ρe

∂B

∂t
=

µ0

ρe

(

∂H

∂t
+

∂M

∂t

)

, H(r0, t) = Hext, H(r, 0) = H0, (15)
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Figure 3: General Tonpilz transducer used for model development.
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Figure 4: Tonpilz model dynamic actuation simulation withkl = (EA/l)/8, a bias stress of−5 MPa
and a100 Hz external field input where (a) shows the spatial variationof the magnetic field with the
smallest amplitude field at the center, (b) shows the averagemagnetic induction vs. applied magnetic
field, and (c) shows the rod elongationu/l vs. applied magnetic field.

wherer is the radial location andr0 is the radius of the rod. If the[001] crystal orientation of the
Galfenol rod is oriented along the rod axis, then∂M/∂t is given by the[001] component of the
dynamic constitutive model, Eq. 13. With the uniformity assumption for stresses and strains, the
mechanical boundary value problem is reduced to a second-order differential equation for the rod
tip displacement from equilibrium, driven by an external force fext at the rod tip and the average
magnetostriction̄Sm given by averaging the[001] component ofSm (H(r, t), T ) from Eq. 14 over the
cross section of the rod,

(mR + mL)
d2u

dt2
+ (cR + cL)

du

dt
+ (kR + kL)u = EAS̄m(H,T ) − fext, u(0) = 0, (16)

wheremR = (1/3)ρAl is the dynamic mass of the Galfenol rod with cross-sectionalareaA = πr2
0

and lengthl, cR = cDA/l is the damping coefficient of the rod, andkR = EA/l is its equivalent
spring stiffness. The constitutive relationship for stress in Eq. 5 reduces toT = E(u/l − S̄m). The
outputs are the displacementu and the magnetic induction̄B averaged over the cross-section and the
inputs are the externally applied magnetic fieldHext and the external force.

Model Simulations. For all simulations the rod dimensions are1/4 × 1 inches,E = 60 GPa,
ρ = 77.1 Kg/m3, λ100 = 173 × 10−6, λ111 = 20 × 10−6, µ0Ms = 1.62 T, K4 = 10 kJ/m3, kBθ/V =
200 kJ/m3, τ = 1 × 10−9 sec, andρe = 7 × 10−7 Ωm.

As the Tonpilz transducer is actuated by a dynamic external magnetic field, eddy currents give rise
to magnetic fields which oppose the applied field; this causesa spatial distribution of the magnetic
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field which results in hysteresis between the external field and average induction of the rod (see Fig. 4).
A dynamic force input results in a dynamic change in the magnetic induction due to stress-induced
domain rotation. In response to this dynamic magnetic induction, eddy currents arise which also
results in dynamic hysteresis loss as seen in Fig. 5(b), now between the applied force and the rod
elongation.
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Figure 5: Dynamic sensing simulation at 100 Hz where (a) shows the spatial variation of the magnetic
field with the largest amplitude field at the center (b) average magnetic induction vs. applied force
and (c) rod elongationu/l vs. applied force

Conclusion

A fully-coupled, dynamic model has been developed to characterize the nonlinear and dynamic strain
and magnetic induction of Galfenol in response to time-varying magnetic fields and mechanical
stresses. The model provides a framework for characterization, design, and control of Galfenol de-
vices subjected to combined 3-D dynamic magnetic field and 3-D stress loading. It may generally
be applied to cubic magnetostrictive materials. We wish to acknowledge the financial support by the
Office of Naval Research, MURI grant #N000140610530.
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