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ABSTRACT

This work investigates the equivalence of thermodynamic potentials utilizing stress-induced anisotropy energy
and potentials using elastic, magnetoelastic, and mechanical work energies. The former is often used to model
changes in magnetization and strain due to magnetic field and stress in magnetostrictive materials. The en-
thalpy of a ferromagnetic body with cubic symmetry is written with magnetization and strain as the internal
states and the equilibrium strains are calculated by minimizing the enthalpy. Evaluating the enthalpy using
the equilibrium strains, functions of the magnetization orientation, results in an enthalpy expression devoid
of strain. By inspecting this expression, the magnetoelastic, elastic, and mechanical work energies are iden-
tified to be equivalent to the stress-induced anisotropy plus magnetostriction-induced fourth order anisotropy.
It is shown that as long as the value of fourth order crystalline anisotropy constant K1 includes the value of
magnetostriction-induced fourth order anisotropy constant ∆K1, energy formulations involving magnetoelastic,
elastic, and mechanical work energies are equivalent to those involving stress-induced anisotropy energy. Further,
since the stress-induced anisotropy is only given for a uniaxial applied stress, an expression is developed for a
general 3D stress.
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1. INTRODUCTION

Magnetostrictive materials exhibit dimensional and magnetization changes in response to magnetic fields and
stresses. The dimensional change due to the application of a magnetic field is exploited for actuation. The
magnetization change due to stress is used for sensing. The development of new magnetostrictive materials
like Iron-Gallium alloys (Galfenol) demonstrating moderate magnetostriction and steel-like structural properties
enables these materials to be used in applications involving bending, torsion, etc. in 3D structures. Such
applications require modeling tools that capture the nonlinear constitutive response of magnetostrictive materials.

Nonlinear modeling of magnetostriction often involves the calculation of the system’s free energy,1 where the
internal states are magnetization and strain and the applied work is due to mechanical stresses and magnetic
fields. Alternative energy approaches2–4 use only the magnetization as the internal state and incorporate magne-
tomechanical coupling by including the anisotropy energy induced by applied stress in the system’s free energy.
The energy with only the magnetization as an internal state is

ET = EK + Eaniso
σ − Wmag, (1)

where the first, second, and third terms are magnetocrystalline anisotropy, stress-induced anisotropy, and mag-
netic work (Zeeman energy) energies respectively. Although the second term in the energy expression is sometimes
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referred to as magnetoelastic energy, the works of Kittel et al. and Chikazumi et al. show that it is actually
the stress-induced anisotropy energy.5, 6 The expression for the magnetoelastic energy involves strains as will be
described in equation (6) while the expression for stress-induced anisotropy does not.

Jiles and Thoelke2 used the energy expression (1) for modeling the effects of stress and anisotropy on the
magnetization and magnetostriction of Terfenol-D. The approach calculates the bulk magnetization and magne-
tostriction as the sum of the contributions from the various equlibria without explicitly calculating the fractional
occupancy of the material in each equilibrium. Armstrong3 used an empirical expression to explicitly calculate
the energy distribution and subsequently the bulk material magnetization and magnetostriction of Terfenol-D.
Evans and Dapino7 employed a thermodynamic framework to calculate the energy distribution and model the
magnetization and magnetostriction of Galfenol. The Armstrong model has also been used to model actuation
and sensing behavior of Iron-Gallium alloys.8–10

The modeling approaches discussed here agree well with experiments despite their use of an energy potential
lacking strain as an internal state. In this paper, the conditions are given for which (1) is equivalent to an energy
potential which includes strain through the elastic, magnetoelastic, and mechanical work energies. Under these
conditions, the accuracy of models utilizing (1) is not effected by the absence of strain. Further, the energy
expression (1) is typically for 3-D magnetic fields and unidirectional stresses. Therefore, an expression suitable
not only for 3-D magnetic fields but also for 3-D stresses is developed which is of importance for modeling 3-D
Galfenol behavior.

2. ENERGY DERIVATION

Most widely used magnetostrictive materials like Nickel, Terfenol-D and Galfenol have a cubic symmetry and
hence all the energy expressions used or derived in this section are for materials with cubic symmetry. As
discussed in the introduction, an energy expression5 commonly used in magnetomechanical models is the sum of
the magnetocrystalline anisotropy energy
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}
− 3λ111σ (α1α2β1β2 + α2α3β2β3 + α3α1β3β1) , (3)

and magnetic work or Zeeman energy
Wmag = µ0MTH. (4)

In the above equations, K1 and K2 are fourth and sixth order cubic anisotropy constants respectively and λ100

and λ111 are the magnetostriction constants. The direction cosines αi of the magnetization vector M depend on
the applied magnetic field H and stress σ acting along a direction given by the direction cosines βi. Equilibrium
directions of the magnetization can be calculated by minimizing the total energy. However, this total energy, as
discussed in the introduction, lacks magnetoelastic Emagel, elastic Eel, and mechanical work Wmech terms.

To investigate the thermodynamic accuracy of using Eaniso
σ in place of Emagel, Eel, and Wmech, the internal

energy and work energy of a ferromagnetic system are expressed as the sum of the EK , Emagel, and Eel and sum
of the Wmag and Wmech respectively. The Gibbs free energy of the system is then formulated as the Legendre
transformation of the internal energy. Assuming isothermal and isentropic processes, the Gibbs free energy is
reduced to the enthalpy of the system

H = EK + Emagel + Eel − Wmag − Wmech. (5)

The expression for EK is given by equation (2) and the expression for the magnetoelastic energy, derived by
Néel5, 11 considering bond straining due to atomic magnetic moment rotation, is given by

Emagel = B1
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= bε, (7)
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where
b =
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and
ε =

[
εxx εyy εzz εxy εyz εzx

]T
. (9)

Constants B1 and B2 are called magnetomechanical coupling constants6, 12 and can be calculated from the
values of magnetostriction and elastic constants of a ferromagnetic material as will be seen later. The axis
directions x,y, and z correspond to the < 100 > crystallographic directions of the material.

The elastic energy can be written as

Eel =
1
2
εT C̃ε, (10)

where C̃ is the stiffness matrix. For cubic materials, C̃ is expressed using elastic constants c11, c12, and c44 as

C̃ =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
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0 0 0 0 0 c44

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

. (11)

The expression for Wmag is given by equation (4), while the expression for Wmech can be written as the
product of an externally applied stress (σ) given in equation (12) and the resulting strain (ε).

σT =
[
σxx σyy σzz σxy σyz σzx

]
. (12)

Wmech = σT ε (13)

Magnetization can be expressed as M = Ms [α1 α2 α3]
T , where Ms is the saturation magnetization, which is

a material property. Using this, the enthalpy of the system can be written as a function of αi and ε. Therefore,
the variables αi and ε can now be termed as the system’s internal variables. Using equations (2), (4), (7), (10),
and (13) the enthalpy can be expressed as

H (αi, ε) = K1

(
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εT C̃ε − µ0MTH− σT ε. (14)

The equilibrium states of the system can be calculated by minimizing H with respect to its internal variables
αi and ε. It is assumed that H(αi, ε) is a continuous function of αi and ε and has continuous second order
partial derivatives.

2.1 Equilibrium strains

Some of the earlier works5, 6, 12, 13 that have derived the equilibrium strains did so under an assumption of a zero
applied stress. In this work, the expression for the equilirium strains is derived assuming a constant 3-D stress.
The enthalpy of the sytem, which is defined in equation (14) with αi and ε as the internal variables, is minimized
with respect to ε

∂H (αi, ε)
∂ε

= 0, (15)

which gives
bT + C̃ε − σ = 0. (16)

Solving for ε yields
ε∗ = C̃−1σ − C̃−1bT = εmech + λ. (17)
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Taking a second partial derivative with respect to ε yields

∂2H (αi, ε)
∂ε2

= C̃, (18)

which is a positive value and hence ε∗ corresponds to a relative minimum of H. Therefore, ε∗ is the equilibrium
strain.

It is noted that the equilibrium strain derived earlier5, 6, 12, 13 for zero stress included only the second part of
the equation (17), which is the magnetostrictive λ = −C̃−1bT strain. For the non-zero stress condition derived
here, the equilibrium strain is a superposition of purely mechanical εmech = C̃−1σ and magnetostrictive strains.

Using equations (8) and (11), the magnetostrictive strain can be calculated as

λ =
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]
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The elongation due to magnetostriction along any direction (γ1, γ2, γ3) can be evaluated using the expression

δl

l
= λxxγ2

1 + λyyγ2
2 + λzzγ

2
3 + λxyγ1γ2 + λyzγ2γ3 + λzxγ3γ1, (20)

which becomes

δl

l
=
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3 −
1
3

)
− B2

c44
(γ1γ2α1α2 + γ2γ3α2α3 + γ3γ1α3α1) (21)

by substituting the expressions for λii from equation (19).

The magnetostriction along the direction [100] occurs when the magnetization is along this direction. This
can be calculated to be

λ100 = −2
3

B1

c11 − c12
(22)

by using α1 = γ1 = 1 and α2 = α3 = γ2 = γ3 = 0 in equation (21). Similarly, magnetostriction along [111] can
be obtained to be

λ111 = −1
3

B2

c44
(23)

by using αi = γi = 1√
3

in equation (21).

Using equations (22) and (23), the magnetoelastic coupling constants can be expressed in terms of the
magnetostriction constants and elastic constants as5, 6

B1 = −3
2
λ100 (c11 − cc12) ; B2 = −3λ111c44 (24)

2.2 Expression for enthalpy

The equilibrium strain ε∗ in equation (17) can be substituted back into equation (14) to obtain an expression for
the enthalpy in terms of αi. Minimizing this expression with respect to αi will yield the equilibrium magnetization
directions. As a result, any term that is not a function of αi can be ignored.

H (αi) = K1

(
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1α
2
2 + α2

2α
2
3 + α2
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2
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)
+ K2

(
α2

1α
2
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2
3

)
+ Emagel (ε∗) + Eel (ε∗) − Wmag − Wmech (ε∗) (25)

The expressions for Emagel (ε∗) and Eel (ε∗) − Wmech (ε∗) will be individually evaluated and then summed
up together to get an expression for the enthalpy.
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2.2.1 Expression for magnetoelastic energy

Substituting the equilibrium strain (ε∗) in equation (6) and expanding gives the magnetoelastic energy as the
sum of two terms:

Emagel (ε∗) = b (εmech + λ) = bεmech + bλ. (26)

Supposing a stress (σ) acting on the ferromagnetic body along a direction (β1, β2, β3), the corresponding
mechanical strain εmech = eii can be written as5

εmech = σ
[

β2
1
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+ s12

β2
2

c11−c12
+ s12

β2
3

c11−c12
+ s12

β1β2
c44

β2β3
c44

β3β1
c44

]T
, (27)

where s12 is a compliance constant.

Substituting equation (27) in the first term of equation (26) and using equation (7) yields
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which can be simplified using the expressions for B1 and B2 from equation (24) to obtain

bεmech = −3
2
λ100σ

{
α2

1β
2
1 + α2

2β
2
2 + α2

3β
2
3 − 1

3

}
− 3λ111σ (α1α2β1β2 + α2α3β2β3 + α3α1β3β1) . (29)

The above expression is the same as the expression for the stress-induced anisotropy energy given in equa-
tion (3). Hence, the first term of equation (26) can be replaced with

bεmech = Eaniso
σ . (30)

The second term in equation (26) can be evaluated by substituting from equations (8) and (19) to obtain
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which can be simplified by utilizing the expressions for B1 and B2 from equation (24) to
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Adding equations (30) and (32) gives the expression for the magnetoelastic energy

Emagel (ε∗) =
9
2
[
λ2

100(c11 − c12) − 2λ2
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] (
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2
2 + α2
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2
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2
1
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It is noted that the magnetoelastic energy equals the stress-induced anisotropy energy plus an additional
fourth order anisotropy energy term.
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2.2.2 Expressions for elastic and mechanical work energies

The expression for Eel (ε∗)−Wmech (ε∗) is evaluated by substituting the equilibrium strain (ε∗) from equation (17)
into equations (10) and (13) to obtain

Eel (ε∗) − Wmech (ε∗) =
1
2

(εmech + λ)T C̃ (εmech + λ) , (34)

which can be expanded and simplified to

Eel (ε∗) − Wmech (ε∗) =
1
2
λT C̃λ − 1

2
εmech

T C̃εmech. (35)

The second term in the equation (35) is devoid of αi. Therefore, as mentioned before, the equilibrium αi do
not depend on this term and can be ignored.

The first term in equation (35) can be expanded by using equation (11) to obtain
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which can be simplified by utilizing the expressions for B1 and B2 from equation (24) to yield

1
2
λT C̃λ = −9

4
[
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] (
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2
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Therefore,

Eel (ε∗) − Wmech (ε∗) = −9
4
[
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] (
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2
2 + α2
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2
3 + α2
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2
1

)
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ignoring the energy term that is independent of αi.

Adding equations (33) and (39) gives

Emagel (ε∗) + Eel (ε∗) − Wmech (ε∗) =
9
4
[
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111c44

] (
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2
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2
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2
1

)
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σ . (40)

The first term in equation (40) is a contribution to the anisotropy energy due to the equilibrium magne-
tostrictive strains. A fourth-order magnetostrictive anisotropy constant

∆K1 =
9
4
[
λ2

100(c11 − c12) − 2λ2
111c44

]
(41)

is defined5, 6, 13 and equation (40) becomes

Emagel (ε∗) + Eel (ε∗) − Wmech (ε∗) = ∆K1

(
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2
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2
3 + α2

3α
2
1

)
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σ . (42)

Substituting equation (42) in equation (25) yields the expression for the enthalpy of the system

H (αi) = (K1 + ∆K1)
(
α2

1α
2
2 + α2

2α
2
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3α
2
1

)
+ K2

(
α2
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2
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2
3

)
+ Eaniso

σ − Wmag. (43)
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2.3 Discussion

Comparing equation (43) to the total energy expression in equation (1), it can be seen that the only difference
between the two is the fourth order anisotropy constant K1. The total energy in equation (1) uses the mag-
netocrystalline anisotropy energy with fourth order anisotropy constant as K1 whereas the enthalpy expression
derived here shows that it is in fact K1 plus the magnetostriction-induced fourth order anisotropy constant ∆K1.
Kittel et al.6 described that an experimental determination of K1 can be made only if the ferromagnetic body
is held at a constant strain. If the ferromagnetic body is allowed to strain, then the value observed for K1 would
in fact be K1 + ∆K1. Since it is experimentally difficult to maintain a constant strain, the value of theoretical
K1 is usually obtained by subtracting the calculated value of ∆K1 from the experimentally observed K1 value.

The values of the fourth order cubic anisotropy constant K1 for FeGa alloys reported by Rafique et al.14 do
not include the corrective ∆K1 term. Therefore, the reported values are actually the values of K1 + ∆K1. The
appropriate values for K1 can be calculated by subtracting ∆K1 calculated using equation (41) with values of
the magnetostriction and elastic constants.

Figure 1 shows the corrected or theoretical K1 values for different compositions of FeGa along with the
reported values from Rafique et al.14 and calculated values of ∆K1. For the calculation of ∆K1, magnetostrictive
values reported by Clark et al.15 and stiffness constant values reported by Wuttig et al.16 were used.
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Figure 1. Experimentally determined (uncorrected) K1 and
Corrected K1 for different at% Ga FeGa alloys
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Figure 2. Percent deviation of uncorrected (K1 + ∆K1)
values from corrected values (K1)

In figures 1 and 2 the deviation of corrected from uncorrected values of K1 for FeGa alloys with less than
18% Ga content, is less than 10%, while close to 20% Ga content, where K1 becomes very small, it can be as
high as 200%. However, since K1 for FeGa alloys around 20 at% Ga is very small, crystalline anisotropy energy
is dominated by the other energy terms and as a result, the usage of K1 instead of K1 + ∆K1 will only affect
very low magnetic field or mechanical stress conditions. Moreover, the percentage deviations are within the
error bounds of measured K1 values (uncorrected) reported by Rafique et al. Therefore, it is concluded that no
changes are required for the reported values of K1 for FeGa alloys. In magnetostrictive materials other than
FeGa, ∆K1 may be more significant. For thermodynamic consistency, when Emagel, Eel, and Wmech is replaced
with Eaniso

σ in the total energy, the total anisotropy constant K1 + ∆K1 should be used.

2.4 Energy expression for 3D stresses

For 3-D modeling, the energy expression in equation (43) needs slight modification. While equation (43) describes
the free energy expression for 3-D magnetic fields, it is valid only for unidirectional stresses. Equation (43) can
be easily extended to incorporate 3-D stresses.
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It is well known that any 3-D stress tensor acting on a body can be decomposed into principle stresses and
principle directions by solving the eigenvalue problem

⎡

⎣
σxx σxy σzx

σxy σyy σyz

σzx σyz σzz

⎤

⎦

⎧
⎨

⎩

β1

β2

β3

⎫
⎬

⎭
= σ

⎧
⎨

⎩

β1

β2

β3

⎫
⎬

⎭
, (44)

which results in three principle stresses (eigenvalues), σj acting along three principle directions (eigenvectors),
(β1j , β2j , β3j).

The mechanical strain resulting from all the three principle stresses can be evaluated by the principle of
superposition

εmech =
3∑

j=1

σ
[

β2
1j

c11−c12
+ s12

β2
2j

c11−c12
+ s12

β2
3j

c11−c12
+ s12

β1jβ2j

c44

β2jβ3j

c44

β3jβ1j

c44

]T
. (45)

From equations (30) and (45), it directly follows that the net stress-induced anisotropy energy is sum of the
stress induced anisotropy energies due to each principle stress

Eaniso
σ3D

=
3∑

j=1

−3
2
λ100σ

{
α2

1β
2
1j + α2

2β
2
2j + α2

3β
2
3j −

1
3

}
− 3λ111σ (α1α2β1jβ2j + α2α3β2jβ3j + α3α1β3jβ1j)

=
3∑

j=1

Eaniso
σ (σj , βij), (46)

Therefore, the enthalpy expression that must be used to model the response of ferromagnetic materials
subjected to 3-D magnetic fields and mechanical stresses is given by

H (αi) = (K1 + ∆K1)
(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
+ K2

(
α2

1α
2
2α

2
3

)
+

3∑

j=1

Eaniso
σ (σj , βij) − Wmag. (47)

3. CONCLUSIONS

An expression for the enthalpy of a ferromagnetic body has been derived. Starting from the enthalpy expression,
which includes the energy density due to magnetocrystalline anisotropy, magnetoelastic coupling, and elastic
strain and work energy densities due to magnetic fields and mechanical stresses, the equilibrium strains were
derived. It has been shown that, as expected, the equilibrium strain is the superposition of pure mechanical
strain and pure magnetostrictive strain. Evaluating the enthalpy expression with the equilibrium strains yields
an expression which has only the magnetization orientation as the internal state. This expression is interpreted
as the sum of the magnetocrystalline anisotropy, the stress-induced anisotropy, and the magnetic work energies
where the fourth-order magnetocrystalline anisotropy constant is the sum of the intrinsic magnetic constant K1

and an anisotropy change ∆K1 due to magnetoelastic coupling. Since the experimental determination of the
crystalline anisotropy constant is usually done at constant stress, reported values include ∆K1. It was shown
that the difference in K1 and K1 + ∆K1 is within the experimental error of measurement for reported values of
FeGa. It was concluded that modeling approaches that use stress-induced anisotropy energy in place of elastic,
magnetoelastic, and mechanical work energies are thermodynamically consistent as long the magnetocrystalline
anisotropy coefficients include ∆K1 due to magnetoelastic coupling. Further, an expression for enthalpy suitable
for modeling the response of ferromagnetic materials subjected to 3-D magnetic fields as well as 3-D mechanical
stresses was provided.
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