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ABSTRACT

Due to magnetic field diffusion and structural dynamics, the relationship between magnetic field and strain in
Ni-Mn-Ga changes significantly as the frequency of applied field is increased. In order to describe this behavior,
which is critical for actuator applications, we present a strain model for Ni-Mn-Ga driven with dynamic magnetic
fields. The magnitude and phase of the magnetic field inside the sample are modeled as a 1-D magnetic diffusion
problem, from where an averaged or effective field is calculated. A continuum thermodynamics constitutive
model is used to quantify the hysteretic response of the martensite volume fraction due to this effective magnetic
field. The evolution of volume fractions with effective field is proposed to behave as a zero order system. To
quantify the dynamic strain output, the actuator is represented as a lumped-parameter 1-DOF resonator with
force input dictated by the twin-variant volume fraction. This results in a second order, linear ODE whose
periodic force input is expressed as a summation of Fourier series terms. The total dynamic strain output is
obtained by superposition of strain solutions due to each harmonic force input. The model accurately describes
experimental measurements at frequencies of up to 250 Hz.

Keywords: Ferromagnetic shape memory alloys, Ni-Mn-Ga, dynamic actuation

1. INTRODUCTION

Ferromagnetic shape memory alloys in the Ni-Mn-Ga system produce 6% strain by magnetic field induced twin
variant rearrangement. This strain is two orders of magnitude larger than the strain produced by magnetostrictive
and piezoelectric materials. Due to the magnetic field activation, these materials exhibit faster response than
thermally activated shape memory materials with comparable deformation response. The large strain and broad
frequency bandwidth makes Ni-Mn-Ga an attractive material for dynamic actuator applications. Although
considerable experimental and analytical work has been reported on the dependence of strain on static magnetic
fields,1, 2 work aimed at understanding the relationship between strain and dynamic magnetic fields has been
scarce. This issue is created in part by the electromagnet device used to drive this material, which can in some
cases suffer from limited frequency bandwidth due to high electrical inductance.

Henry3 presented measurements of magnetic field induced strains for drive frequencies of up to 250 Hz and
a linear model to describe the phase lag between strain and field and system resonance frequencies. Petersen4

presented dynamic actuation measurements on piezoelectrically assisted twin boundary motion in Ni-Mn-Ga. The
acoustic stress waves produced by a piezoelectric actuator complement the applied fields and allow for reduced
field strengths. Scoby and Chen5 presented a preliminary magnetic diffusion model for cylindrical Ni-Mn-Ga
material with the field applied along the long axis, but they did not quantify the dynamic strain response.

For modeling of dynamic piezoelectric or magnetostrictive transducers, the actuator dynamics must be coupled
with the applied electric or magnetic fields through models for the strain generated by the active driver. This is
often done by considering a spring-mass-damper resonator subjected to a forcing function which is proportional
to the active strain. The active strain is related to the field by constitutive relations which can be linearized,
without significant loss of accuracy, when a suitable bias field is present.6 However, the actuation response of

Further author information: (Send correspondence to M.J.D)
N.N.S.: E-mail: sarawate.1@osu.edu, Telephone: 1-614-247-7480
M.J.D.: E-mail: dapino.1@osu.edu, Telephone: 1-614-688-3689

Behavior and Mechanics of Multifunctional and Composite Materials 2008,
edited by Marcelo J. Dapino, Zoubeida Ounaies, Proc. of SPIE Vol. 6929, 69291R, (2008)

0277-786X/08/$18 · doi: 10.1117/12.776486

Proc. of SPIE Vol. 6929  69291R-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

Input field Diffusion 
(Eddy  currents) 

Constitutive 
model 

Fourier series
expansion 

Structural 
dynamics Dynamic strain 

Figure 1. Flow chart for modeling of dynamic Ni-Mn-Ga actuators.

Ni-Mn-Ga is dictated by the rearrangement of martensite twin variants, which are either field-preferred or stress-
preferred depending on whether the magnetically easy crystal axis is aligned with field or stress. The evolution of
twin variants with a.c. magnetic fields always exhibit large hysteresis, hence the constitutive strain-field relation
of Ni-Mn-Ga cannot be accurately quantified by linearized models.

This paper quantifies the hysteretic relationship between magnetic fields and strains in dynamic actuators
consisting of a Ni-Mn-Ga element, return spring, and external mechanical load. The key contribution of this paper
is the modeling of coupled structural and magnetic dynamics in Ni-Mn-Ga actuators by means of a simple (yet
accurate) framework. The framework constitutes a useful tool for the design of actuators with straightforward
geometries and provides a set of core equations for finite element solvers applicable to more complex geometries.
Further, it offers the possibility of obtaining input field profiles that produce a prescribed strain profile, which
can be a useful tool in actuator control.

The model is focused on describing properties of measured Ni-Mn-Ga data3 observed as the frequency of the
applied magnetic field is increased, as follows: (1) For a given a.c. voltage magnitude, the maximum current and
associated maximum applied field decrease due to an increase in the impedance of the coils; (2) The field at zero
strain (i.e., field required to change the sign of the deformation rate) increases over a defined frequency range,
indicating an increasing phase lag of the strain relative to the applied field; and (3) For a given applied field
magnitude, the maximum strain magnitude decreases and the shape of the hysteresis loop changes significantly.
We posit that overdamped second-order structural dynamics and magnetic field diffusion due to eddy currents
are the primary causes for the observed behaviors. The two effects are coupled: eddy currents reduce the
magnitude and delays the phase of the magnetic field towards the center of the material, which in turn affects
the corresponding strain response through the structural dynamics (Figure 1). Magnetization dynamics and twin
boundary motion response times are considered relatively insignificant.

The model is constructed as illustrated in Figure 1. First, the magnitude and phase of the magnetic field
inside a prismatic Ni-Mn-Ga sample are modeled as a 1-D magnetic diffusion problem with applied a.c. fields
known on the surface of the sample. To calculate the bulk magnetic field-induced deformation, an effective
or average magnetic field acting on the material is calculated. With this effective field, a previous continuum
thermodynamics constitutive model7, 8 is used to quantify the hysteretic response of the martensite volume
fraction. The evolution of the volume fraction defines an equivalent forcing function dependent on the elastic
modulus of the Ni-Mn-Ga sample, its cross-sectional area, and the maximum reorientation strain. Assuming
steady-state excitation, this forcing function is periodic and can be expressed as a Fourier series. This Fourier
series provides the force excitation to a lumped-parameter 1-DOF resonator representing the Ni-Mn-Ga actuator.
The dynamic strain response is obtained by superposition of the strain response to forces of different frequencies.

For model validation, dynamic measurements presented by Henry3 are utilized. A 10 mm × 10 mm × 20 mm
single crystal Ni-Mn-Ga sample was placed between the poles of an E-shaped electromagnet with the 10 mm
× 20 mm sides facing the magnet poles. The magnetic field was applied perpendicular to the longitudinal axis
of the material, which tends to elongate the sample. A spring of stiffness 36 kN/m provided a compressive
bias stress of 1.7 MPa along the longitudinal axis of the sample to achieve reversible field-induced actuation in
response to cyclic fields. Figure 2 shows dynamic actuation measurements. The strain response of Ni-Mn-Ga
depends on the magnitude of the applied field but not on its direction, thus giving two strain cycles per field
cycle. The frequencies shown in Figure 2 are the inverse of the time period of one strain cycle. Thus, the
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Figure 2. Dynamic actuation data by Henry3 for 2 − 100 Hz (fa = 1 − 50 Hz) and 100 − 500 Hz (fa = 50 − 250 Hz).

frequency of applied field ranges from 1-250 Hz. It is also noted that the applied field amplitude decays with
increasing frequency, likely due to a combination of high electromagnet inductance and the measurements having
been conducted at constant voltage rather than at constant current.

Since the experimental magnetic field waveform is not described in Henry’s thesis,3 sinusoidal and triangular
waveforms are studied. It is proposed that the experimental field waveform deviates from an exact waveform
(sinusoidal or triangular) as the applied field frequency increases. Nonetheless, study of these two ideal waveforms
provides insight on the physical experiments.

2. MAGNETIC FIELD DIFFUSION

The application of an alternating magnetic field to a conducting material results in the generation of eddy currents
and an internal magnetic field which partially offsets the applied field. The relationship between the eddy currents
and applied fields is described by Maxwell’s electromagnetic equations. Assuming that the magnetization is
uniform and does not saturate, the diffusion equation describing the magnetic field inside a one-dimensional
conducting medium has the form9

∇2H − µσ
∂H

∂t
= 0, (1)

where σ is the conductivity, µ is the magnetic permeability, and ε is the dielectric constant. The assumption
of uniform magnetization is not necessarily met experimentally due to nonuniform twin boundary motion10

and saturation effects. However, comparison of model results and measurements (Section IV) suggests that the
simplified diffusion model is able to describe the problem qualitatively. This is attributed to the susceptibilities of
field-preferred and stress-preferred variants being relatively close (4.7 and 1.1, respectively7) and not differing too
much from zero as twin boundary motion and magnetization rotation processes take place. It is also speculated
that the variants are sufficiently fine in the tested material.

The solution to (1) gives the magnetic field values H(x, t) at position x (inside a material of thickness 2d)
and time t. The boundary condition at the two ends is the externally applied magnetic field. In the case of
harmonic fields, the boundary condition is given by

H(±d, t) = H0e
iωt (2)

where H0 is the amplitude and ω = 2πfa is the circular frequency (rad/s) of the magnetic field on the surface of
the Ni-Mn-Ga sample. Assuming no leakage flux in the gap between the electromagnet and sample, this field is
the same as the applied field. The solution for magnetic fields inside the material has the form9

H(x, t) = H0 h(X) eiωt. (3)
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Figure 3. Average field waveforms with increasing actuation frequency for (a) sinusoidal input and (b) triangular input.

In this expression, the complex magnitude scale factor is

h(X) = A(B + iC),

A =
1

cosh2 Xd cos2 Xd + sinh2 Xd sin2 Xd

,

B = coshX cosX coshXd cosXd + sinhX sinX sinh Xd sin Xd,

C = sinhX sin X coshXd cosXd − coshX cosX sinh Xd sin Xd,

(4)

with

X = x/δ, Xd = d/δ, δ =
√

2
ωµσ

, (5)

where δ is the skin depth, or the distance inside material at which the diffused field is 1/e times the external
field. To estimate the effective magnetic field, an average of the field waveforms at various positions is calculated,

Havg(t) =
1

Nx

Xd∑
X=−Xd

H0 h(X) eiωt. (6)

Here, Nx represents the number of uniformly spaced points inside the material where the field waveforms are
calculated.

If the external field is an arbitrary periodic function, the corresponding boundary condition is represented as
a Fourier series expansion. The diffused internal field is then obtained by superposition of individual solutions
(3) to each harmonic component of the applied field.

Figure 3 shows averaged field waveforms at several applied field frequencies for sinusoidal and triangular
inputs. In these simulations the resistivity has a value of ρ = 1/σ = 6e-8 Ohm-m and the relative permeability
is µr = 3. At 1 Hz, the magnetic field intensity is uniform throughout the material and equal to the applied
field H0, and there is no phase lag. With increasing actuation frequency, the magnetic field diffusion results in a
decrease in the amplitude and an increase in the phase lag of the averaged field relative to the field on the surface
of the material. Figure 4 shows the decay of the magnetic field amplitude with position inside the material at
several applied field frequencies.

When the applied field is sinusoidal, the diffused average field is also sinusoidal regardless of frequency (Figure
3a). When the applied field is triangular, the shape of the diffused average field increasingly differs from the input
field as the frequency is increased (Figure 3b). The corresponding strain waveforms are modified accordingly
as they are dictated by the material response to the effective averaged field. Thus, the shape of the input field
waveform can alter the final strain profile. This is discussed in section 4.

Proc. of SPIE Vol. 6929  69291R-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



−5 −4 −3 −2 −1 0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

Position (mm)

M
ax

im
um

 N
or

m
al

iz
ed

 F
ie

ld

 

 

1 Hz
50 Hz
100 Hz
150 Hz
175 Hz
200 Hz
250 Hz

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

Position (mm)

M
ax

im
um

 N
or

m
al

iz
ed

 F
ie

ld

 

 

1 Hz
50 Hz
100 Hz
150 Hz
175 Hz
200 Hz
250 Hz

(b)

Figure 4. Dependence of normalized field amplitude on position with increasing actuation frequency for (a) sinusoidal
input and (b) triangular input.

3. QUASISTATIC STRAIN-FIELD HYSTERESIS MODEL

Our previous magnetomechanical model7, 8 is used to obtain constitutive material response. The model incorpo-
rates thermodynamic potentials to define reversible processes in combination with evolution equations for internal
state variables associated with dissipative effects. The model naturally quantifies the actuation or sensing ef-
fects depending on which variable pairs among stress, strain, magnetic field, and magnetization, are selected
as independent and dependent variables. In this section we focus on the essential components of the model,
while further details on its development can be found in.7, 8 For the actuation problem under consideration, the
average or effective field Havg (for simplicity denoted H from now on) and bias compressive stress σb are the
independent variables, and the strain ε and magnetization M are the dependent variables.

The simplified twin variant microstructure for single crystal Ni-Mn-Ga is shown in Figure 5. The magnetic
field and the applied stress (or strain) are oriented in x and y direction respectively. A field-preferred variant,
with volume fraction ξ, is one in which the magnetically easy c-axis is aligned with the x direction. A stress-
preferred variant, with volume fraction 1−ξ, is one in which the c-axis is aligned in the y direction. It is assumed
that the variant volume fractions are sufficiently large to be subdivided into 180-degree magnetic domains with
volume fractions α and 1 − α. This domain structure minimizes the net magnetostatic energy. The high
magnetocrystalline energy of Ni-Mn-Ga dictates that the magnetization vectors in the field-preferred variant
are attached to the crystallographic c-axis, whereas the magnetization vectors in the stress-preferred variant are
rotated an angle θ relative to the c-axis. Energy minimization dictates that this angle is equal and opposite in
the two magnetic domains within a stress-preferred variant. The magnetization component in the x direction is
found by inspection to be

M(ξ, α, θ) = Ms[2ξα − ξ + sin θ − ξ sin θ], (7)

where Ms is the saturation magnetization. The modified Clausius-Duhem inequality for the actuation problem
is written as

−ρφ̇ − σ̇bεe − µ0ḢM + σb ˙εtw ≥ 0. (8)

Here, ρ is density, φ is specific Gibbs energy, εe is elastic strain component, εtw is twinning strain component,
and µ0 is permeability of free space. The elastic and twinning strain are the two components of the total strain
exhibited by the material, with the twinning strain being proportional to the field-preferred volume fraction,

ε = εe + εtw = εe + ε0ξ, (9)
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Figure 5. Simplified twin variant microstructure in Ni-Mn-Ga.

where ε0 is the maximum reorientation strain. The constitutive equations for the elastic strain component and
magnetization are given as,

εe =
∂(ρφ)
∂σb

, M = − 1
µ0

∂(ρφ)
∂H

. (10)

The total Gibbs energy is expressed as a summation of magnetic and mechanical energies. The magnetic
Gibbs energy consists of Zeeman, magnetostatic, and anisotropy energy contributions. The Zeeman energy
represents the work done by external magnetic fields on the material, or the energy available to drive the twin
boundary motion with magnetic fields. The magnetostatic energy is associated with the demagnetization field
created inside the material due to finite dimensions of the sample. The demagnetization field tends to oppose the
applied field, and the magnetostatic energy tends to reduce the net magnetization inside the material to zero.
The anisotropy energy represents the energy associated with pure rotation of the magnetization vectors (hard
axis) compared to the magnetization due to zero rotation of vectors (easy axis). The total magnetic energy is
expressed as the weighted sum of the energies of the two variants represented in Figure 5,

ρφmag = ξ[−µ0HMsα + µ0HMs(1 − α) +
1
2
µ0N(Msα − Ms(1 − α))2]

+(1 − ξ)[−µ0HMsα sin θ +
1
2
µ0NM2

s sin2 θ + Ku sin2 θ],
(11)

in which N is the demagnetization factor and Ku is the magnetocrystalline anisotropy constant.

The mechanical Gibbs energy includes elastic and twinning contributions. The mechanical energy varies
depending on whether the field is increasing or decreasing,

ρφmech = − 1
2E

σ2
b +

1
2
aε2

0(ξ − ξs) (Ḣ > 0),

ρφmech = − 1
2E

σ2
b +

1
2
aε2

0(ξ − ξf + ξs) (Ḣ < 0),

(12)

with E the elastic modulus, a the modulus associated with the twinning strain,7 ξs the volume fraction at the
start of the actuation process, and ξf the volume fraction at the end of actuation. The magnetization process
in single crystal Ni-Mn-Ga is assumed to be reversible, hence the thermodynamic driving forces associated with
the domain fraction (πα) and magnetization rotation angle (πθ) are zero,

πα = −∂(ρφ)
∂α

= 0, πθ = −∂(ρφ)
∂θ

= 0. (13)

This yields closed form solutions for the domain fraction and rotation angle which have the form

α =
H

2NMs
+

1
2
, θ = sin−1

(
µ0HMs

µ0NM2
s + 2Ku

)
, (14)
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Figure 6. Model result for quasistatic strain vs. magnetic field. The circles denote experimental data points (1 Hz line in
Figure 2) while the solid and dashed lines denote model simulations for Ḣ > 0 and Ḣ < 0, respectively.

subject to the constraints 0 ≤ α ≤ 1 and −π/2 ≤ θ ≤ π/2. The Clausius-Duhem inequality (8) is reduced to

(−∂(ρφ)
∂ξ

+ σbε0)ξ̇ ≥ 0, (15)

and the net thermodynamic driving force (πξ∗) is thus given by

πξ∗ = −∂(ρφ)
∂ξ

+ σbε0 = πξ + σbε0. (16)

When a magnetic field is applied, twin boundary motion starts when the net thermodynamic driving force
exceeds a critical value πcr = σtw0ε0, where σtw0 is the twinning stress required to initiate twin boundary motion
when the material is compressed from its maximum length (ξ = 1). For decreasing field, the critical force to be
overcome is π−cr. The volume fraction is obtained by numerically solving the piecewise continuous equations,

πξ∗ = πcr (Ḣ ≥ 0),
πξ∗ = −πcr (Ḣ ≤ 0).

(17)

The volume fraction is thus given by

ξ =
πξ

mag + σbε0 + aε2
0ξs − πcr

aε2
0

(Ḣ ≥ 0),

ξ =
πξ

mag + σbε0 + aε2
0ξf − aε2

0ξs + πcr

aε2
0

(Ḣ ≤ 0),

(18)

where πmag = −∂(ρφmag)/∂ξ is the thermodynamic driving force associated with the applied magnetic field.
Thus, inequality (15) is satisfied during the entire process.

Figure 6 shows a comparison of model results with actuation data for a 1 Hz applied field. The model
parameters used are: ε0 = 0.04, k = 70 MPa, Ms = 0.8 T, Ku = 1.7 J/m3, and σtw0 = 0.5 MPa. The hysteresis
loop in Figure 6 is dominated by the twinning strain ε0ξ (proportional to volume fraction), which represents
around 99% of the total strain. The variation of volume fraction with effective field is proposed to behave as a
zero order system, without any dynamics of its own, and thus independent of the frequency of actuation. The
second order structural dynamics associated with the transducer vibrations modify the constitutive behavior
shown in Figure 6 in the manner detailed in section 4.
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4. DYNAMIC ACTUATOR MODEL

The average field Havg (denoted H for simplicity) acting on the Ni-Mn-Ga sample is calculated by applying
expression (6) to a given input field waveform. Using this effective field, the actuator model described in section
3 is used to calculate the field-preferred martensite volume fraction ξ. By ignoring the dynamics of twin boundary
motion, the dependence of volume fraction on applied field given by relations (18) is that of a zero-order system
(ξ = f [H(t)]). Marioni et. al.11 studied the actuation of Ni-Mn-Ga single crystal using magnetic field pulses
lasting 620 µs. It was observed that the full 6% magnetic field induced strain was obtained in less than 250 µs
implying that the bandwidth of the Ni-Mn-Ga element was around 2000 Hz. As the frequencies in the present
work are below 250 Hz, one can accurately assume that twin boundary motion, and hence the evolution of volume
fractions, occurs in concert with the applied field according to the dynamics of a zero-order system.

The mechanical properties of a dynamic Ni-Mn-Ga actuator are illustrated in Figure 7. Although the position
of twin boundaries in the crystal affects the inertial response of the material,11 this effect is ignored with the
assumption of a lumped mass system. The actuator is modeled as a 1-DOF, lumped-parameter resonator in
which the Ni-Mn-Ga rod acts as an equivalent spring of stiffness EA/L, with E the modulus, A the area, and L
the length of the Ni-Mn-Ga sample. This equivalent spring is in parallel with the load spring of stiffness k, which
is also used to pre-compress the sample. The overall system damping is represented by c and the combined mass
of the Ni-Mn-Ga sample and output pushrod are modeled as a lumped mass m. When an external field Ha(t) is
applied to the Ni-Mn-Ga sample, an equivalent force F (t) is generated which drives the motion of mass m.

We employ an approach similar to that used for the modeling of dynamic magnetostrictive actuators. The
motion of mass m is represented by a second order differential equation,

mẍ + cẋ + kx = F (t) = −σ(t)A, (19)

with x the displacement of mass m. An expression for the normal stress is obtained from (9) and (10) as

σ = E(ε − ε0ξ) = E(
x

L
− ε0ξ). (20)

The bias strain resulting from initial and final volume fractions (ξs, ξf ) is compensated for when plotting the
total strain. Substitution of (20) into (19) gives

mẍ + cẋ + (k +
AE

L
)x = AEε0ξ. (21)

Equation (21) represents a second-order dynamic system driven by the volume fraction. The dependence of
volume fraction on applied field given by relations (18) is nonlinear and hysteretic, and follows the dynamics of
a zero-order system, i.e., the volume fraction does not depend on the frequency of the applied magnetic field.
This is in contrast to biased magnetostrictive actuators, in which the drive force can be approximated by a linear
function of the magnetic field since the amount of hysteresis in minor magnetostriction loops often is significantly
less than in Ni-Mn-Ga.

c 

E, A, L 

F (t)

 
m 

k 

H (t) x (t) 
Figure 7. Dynamic Ni-Mn-Ga actuator consisting of an active sample (spring) connected in mechanical parallel with an
external spring and damper. The mass includes the dynamic mass of the sample and the actuator’s output pushrod.
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For periodic applied fields, the volume fraction also follows a periodic waveform and hence the properties of
Fourier series are utilized to calculate model solutions. Figure 8 shows the calculated variation of volume fraction
with time for the cases of sinusoidal and triangular external fields. The reconstructed waveforms shown in the
figure are discussed later.
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Using a Fourier series expansion, the periodic volume fraction is represented as a sum of sinusoidal functions.
The Fourier coefficients are

Zk =
1
Ta

∫ Ta

0

ξ(t)e−iωktdt, k = 0,±1,±2, ... (22)

where Ta = 1/fa, with fa the fundamental frequency. The frequency spectrum of the volume fraction thus consists
of discrete components at the frequencies ±ωk, k = 0, 1, 2...; Zk is the complex Fourier coefficient corresponding
to the kth harmonic. Equation (22) yields a double sided discrete frequency spectrum consisting of frequencies
−fs/2...fs/2, where fs = 1/dt represents the sampling frequency which depends on the time domain resolution dt
of the signal. The double sided frequency spectrum is converted to a single sided spectrum through the relations

|Z0| = |Z0| k = 0,
|Zk| = |Zk| + |Z−k| = 2|Zk| k > 0.

(23)

The phase angles remain unchanged,

� Zk = � Zk k ≥ 0. (24)

The reconstructed volume fraction ξr(t) is

ξr(t) = ξr(t ± Ta) =
K∑

k=−K

Zkeiωkt, (25)

in which K represents the number of terms in the series. The single sided frequency spectrum of the volume
fraction is shown in Figure 9 for sinusoidal and triangular applied field waveforms. This spectrum consists of
frequencies 0...fs/2. It is noted that the plotted spectrum has a resolution of df = fa/4, as four cycles of the
applied field are included. The actuation frequency in the presented case is fa = 1 Hz. For an input field
frequency of fa Hz, the volume fraction spectrum consists of non-zero components at frequencies 2fa, 4fa, 6fa,...
Hz. Mathematically, the phase angles appear to be leading; the physically correct phase angle values are obtained
by subtracting π from the mathematical values.

Finally, if the applied field has the form

Ha(t) = H0 sin(2πfat), (26)
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with H0 constant, then the reconstructed volume fraction ξr(t) is represented in terms of the single sided Fourier
coefficients by

ξr(t) = ξr(t ± Ta)
K∑

k=0

|Zk| cos(2πkfat + � Zk). (27)

The reconstructed volume fraction signal overlapped over the original is shown in Figure 8, for both the sinusoidal
and triangular input fields. The number of terms used is K = 20. Substitution of (27) into (21) gives

mẍ + cẋ + (k +
AE

L
)x = AEε0

K∑
k=0

|Zk| cos(2πkfat + � Zk), (28)

which represents a second-order dynamic system subjected to simultaneous harmonic forces at the frequencies
kfa, k = 0, . . . , K. The steady state solution for the net displacement x(t) is given by the superposition of steady
state solutions to each forcing function. Thus, the steady state solution for the dynamic strain εd has the form

εd(t) =
x(t)
L

=
EAε0

EA + kL

K∑
k=0

|Zk||Xk| cos(2πkfat + � Zk − � Xk). (29)

In (29), Xk represents the non-dimensional transfer function relating the force at the kth harmonic and the
corresponding displacement,

Xk =
1

[1 − (kfa/fn)2] + j(2ζkfa/fn)
= |Xk|e−i� Xk (30)

where

|Xk| =
1√

[1 − (kfa/fn)2]2 + (2ζkfa/fn)2
, � Xk = tan−1(

2ζkfa/fn

1 − (kfa/fn)2
). (31)

The natural frequency and damping ratio in these expressions have the form

fn =
1
2π

√
k + AE/L

m
, ζ =

c

2
√

(k + AE/L)m
. (32)

Figure 10 shows experimental and modeled strain versus field curves for sinusoidal and triangular waveforms
at varied frequencies. The model parameters used are fn = 700 Hz, ζ = 0.95, ρ = 62 × 10−8 Ohm-m, and
µr = 3. The natural frequency is obtained by using a modulus of E=166 MPa, which is estimated from the
stress-strain plots in.3 The dynamic mass of the Ni-Mn-Ga sample and pushrods is m=0.027 kg. It is seen
that the assumption of triangular input field waveform tends to model the higher frequency data well. This
implies that the shape of the applied field waveform may not remain exactly sinusoidal at higher frequencies. For
example, the experimental data at 250 Hz shows a slight discontinuity when the applied field changes direction,
thus verifying the proposed claim of triangular shape.

The model results match the experimental data well with the assumption of triangular input field waveform,
except for the case of 200 Hz. This may be due to the influence of model parameters in that particular case.
Otherwise, the model accurately predicts the increase of coercive field, the magnitude of maximum strain, and
the overall shape change of the hysteresis loop with increasing actuation frequency. The lack of overshoot in
the experimental data for any of the frequencies justifies the assumption of overdamped system. The average
error between the experimental data and the model results is 2.37%, which increases to 4.24% in the case of fa

= 200 Hz. The relationship between strain and field is strongly nonlinear and hysteretic due to factors such as
magnetic field diffusion, constitutive coupling, and structural dynamics.

Figure 11 shows a comparison of model results and experimental data in the frequency domain. Only the
results for triangular input field waveform are shown, as the actual input field is proposed to be close to the
triangular function from the simulations. The frequency spectrum of the experimental strain data shows a
monotonous decay of strain magnitudes with increasing even harmonics up to an actuation frequency of 100
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Figure 10. Model results for strain vs. applied field at different frequencies for (a) sinusoidal, (b) triangular input
waveforms. Dotted line: experimental, solid line: model.
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Figure 11. Model results for strain vs. applied field in frequency domain for triangular input waveform for (a) fa = 50
Hz, (b) fa = 100 Hz, (c) fa = 150 Hz, (d) fa = 175 Hz, (e) fa = 200 Hz, (e) fa = 250 Hz. Dotted line: experimental,
solid line: model.

Hz. For actuation frequencies from 150 Hz onwards, the decay is not monotonous, for example, the strain
magnitudes corresponding to the 4th and 6th harmonic are almost equal, with the magnitude corresponding to
the 2nd harmonic being comparatively high. This behavior is reflected in the strain-field plots as the hysteresis
loop shows increasing rounding-off for frequencies higher than 150 Hz. The model accurately describes these
responses as the magnitudes match the experimental values well for most cases. The phase angles for the
experimental and model spectra also show a good match. In some cases, the angles show a discrepancy of about
180 deg, though they are physically equivalent.
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5. CONCLUSION
A model is presented to describe the dependence of strain on applied field at varied frequencies in ferromagnetic
shape memory Ni-Mn-Ga. The essential components of the model include magnetomechanical constitutive
responses, magnetic field diffusion, and structural dynamics. The presented method can be extended to arrive at
the input field profiles which will result in the desired strain profile at a given frequency. If the direction of flow
in Figure 1 is reversed, the input field profile can be designed from a desired strain profile. It is comparatively
easy to obtain the inverse Fourier transform, whereas calculation of the average field from a desired strain profile
through the constitutive model, and estimation of the external field from the averaged diffused field inside the
sample can be complex.

The frequency spectra of the field preferred volume fraction and the resulting dynamic strain include even
harmonics. The corresponding magnitudes at the 2nd harmonic are comparatively high indicating frequency
doubling similar to that associated with magnetostrictive actuators. However, additional components at higher
harmonics are present due to the large hysteresis in ferromagnetic shape memory alloys compared to biased
magnetostrictive materials. If the overall system including the active material is underdamped, then it is pos-
sible to achieve system resonance at a frequency which is 1/4th or 1/6th of the system natural frequency. In
magnetically-active material actuators, the application of magnetic fields at high frequencies becomes increas-
ingly difficult as the coil inductances tend to increase rapidly. If the actuator can be made to resonate at a
fraction of the system natural frequency, then this problem can be simplified. However, the strain magnitudes
corresponding to the higher harmonics tend to diminish rapidly as well, which creates a compensating effect.
Further, in some cases the natural frequency and damping of the system may be beyond the control of the
designer. Nevertheless, our approach suggests a way to drive a magnetic actuator at a fraction of the natural
frequency to achieve resonance.
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