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ABSTRACT

A fully-coupled, nonlinear model is presented that characterizes the 3-D strain and magnetization response of
magnetostrictive materials to magnetic fields and mechanical stresses. The model provides an efficient frame-
work for characterization, design, and control of Galfenol (Fe1−xGax) devices with 3-D functionality subjected
to combined magnetic field and stress loading. A thermodynamic approach is taken to determine possible do-
main orientations considering the magnetocrystalline anisotropy, magnetomechanical, and Zeeman energies. The
domain configuration is determined through minimization of the total Gibbs energy of a collection of domains.
To incorporate material texture, the orientation of the applied field and stress with respect to the local crystal
orientation is included as a statistically distributed parameter. Hysteresis due to irreversible domain wall motion
is modeled by accounting for the energy loss due to domain wall pinning sites.
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1. INTRODUCTION

With the advent of magnetostrictive Galfenol which has steel-like structural properties, models that predict
Galfenols 3-D magnetomechanical behavior have become increasingly important. Magnetic anisotropy and ma-
terial texture cause the magnetization and strain response to magnetic fields and stresses to depend heavily on
the application direction. Magnetostrictive devices have often been limited to unidirectional loading, due in part
to the brittleness of Terfenol-D. Accurate, nonlinear, and low-order transducer models1 have typically relied on
1-D constitutive models such as Jiles’ Theory of Ferromagnetic Hysteresis,2 the Preisach model, and Smith’s
homogenized energy framework.3 This paper describes a low-order constitutive model for 3-D magnetomechan-
ical coupling which, owing to its computational efficiency, is ideal for design and control of general Galfenol
transducers.

Recently, Datta, Atulasimha, and Flatau4 presented a 3-D, quasi-static transducer model for single-crystal
Galfenol in bending which couples Euler-Bernoulli beam theory with the Armstrong model5 for characterizing
magnetomechanical behavior. The 3-D Armstrong model has also been used to model the magnetomechanical
behavior of polycrystals6 and hysteresis of single crystals.7 The Armstrong model is an anhysteretic statistical
model which assumes that magnetic domain orientations (φ, θ) follow a Boltzmann distribution. Magnetome-
chanical coupling is incorporated through a stress-induced anisotropy term in the total energy (E) used in the
distribution. In the Armstrong model, a bulk quantity is calculated by an energy weighted integral of the
point-wise quantity over all possible domain orientations,

Q̄ =

∫ π

0

∫ 2π

0 Q(φ, θ)e−E(φ,θ)/Ωdθdφ
∫ π

0

∫ 2π

0
e−E(φ,θ)/Ωdθdφ

. (1)

The double integral serves to smooth the sharp transitions predicted by directed minimization of the total energy.
Since the energy terms in the Armstrong model depend only on magnetization orientation, it is only accurate
for single crystals when domain rotation is the dominant magnetization process, i.e., collinear field and stress
applications with moderate compressive stress.
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To characterize, design, and control general Galfenol devices with 3-D functionality it is necessary to quantify
the effects of domain wall motion, material texture, hysteresis, and transducer geometry. Extending the rotational
model (1) to include these effects comes at great computational expense, hence limiting the utility of the resulting
model. For example, to include irreversible domain wall motion (reversible domain wall motion is neglected)
Atulasimha and Akrhas7 approximate the double integral in (1) with a summation of 98 point evaluations, which
leads to 98 ordinary differential equations to be solved. Armstrong’s approach to including irreversible domain
wall motion is less demanding as it only considers 8 domain orientations corresponding to the 8 easy crystal
directions.8 However, it is accurate only when the applied field or stress is aligned with an easy crystal axis.
Extending (1) to include texture effects (neglecting grain boundary interactions) requires a summation of double
integrals.6

To solve the boundary-value problem of general Galfenol transducers it is necessary to couple Maxwell’s
equations with strain-displacement and force-equilibrium equations through a constitutive model relating mag-
netization and strain to stress and magnetic field. This system of partial differential equations must be discretized
for numerical solution and the constitutive model must be evaluated at each node. A computationally efficient
constitutive model is thus highly desirable. In this paper we present a 3-D (in tensorial sense) constitutive
model derived from thermodynamic principles which describes magnetization and strain as a function of applied
magnetic field and stress. In this model, smooth behavior is achieved without the need of a double integral such
as (1) thus making the model both accurate and numerically efficient.

2. CONSTITUTIVE MODEL

Ferromagnetic materials below the Curie temperature have regions of uniform magnetization Ms where the
atomic magnetic moments are aligned with each other. These regions of uniform magnetization are called
magnetic domains. Magnetic domains have preferred orientations which depend on the magnetic anisotropy and
on the applied magnetic field and stress. These orientations are preferred because they attain thermodynamic
equilibrium. For a given magnetic field and stress, multiple preferred or equilibrium orientations may exist.
In the absence of magnetic field and stress, Galfenol has six equilibrium orientations in the 〈100〉 directions
and Terfenol-D (Tb0.3Dy0.7Fe1.9) has eight in the 〈111〉 directions. As magnetic fields and stresses are applied,
the equilibrium orientations rotate towards the field direction and perpendicular to the stress direction. When
magnetic domains rotate, the magnetomechanical coupling causes a lattice strain termed magnetostriction. The
total magnetization and magnetostriction are the vector sum of the domain magnetization and magnetostriction,
respectively. When thermodynamic equilibrium is achieved, the total magnetization M̄ and magnetostriction
S̄ of a material having r equilibrium domain orientations m̂k are the sum of the magnetization Msm̂k and
magnetostriction Ŝk due to each equilibrium orientation, weighted by the volume fraction ξ̂k of domains in each
orientation

M̄ = Ms

r∑

k=1

ξ̂km̂k, S̄ =
r∑

k=1

ξ̂kŜk. (2)

The equilibrium domain orientations and magnetostrictions are found from the Gibbs energy of a single domain
and the equilibrium domain volume fractions are found from the Gibbs energy of a collection of domains.

2.1. Equilibrium Domain Orientations

The internal energy of a magnetic domain with orientation m = [m1 m2 m3] is due to the magnetocrystalline
anisotropy energy, which can be expressed as a series expansion. After considering the cubic crystal symmetry
and neglecting higher order terms, the expression for cubic materials is9

U (m) = K4 (m1m2 + m2m3 + m3m1) , (3)

where K4 is the fourth-order, cubic anisotropy constant. The Gibbs free energy is

G(H,T) = U (m) − S ·T − µ0Msm · H, (4)
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where T is the six-element stress vector with the first three components the longitudinal stresses and the last three
the shear stresses. Parameter H is the magnetic field and S = S(m) is the magnetostriction with longitudinal
components9

Si = −3
2
λ100m

2
i , i = 1, 2, 3 (5)

and shear components

S4 = −3λ111m1m2,

S5 = −3λ111m2m3,

S6 = −3λ111m3m1.

(6)

These expressions are derived by balancing the magnetic anisotropy, elastic, and magnetoelastic coupling ener-
gies.9

For K4 > 0, the internal energy has six minima or easy axes (r = 6) in the 〈100〉 directions and for
K4 < 0 , the internal energy has eight minima or easy axes (r = 8) in the 〈111〉 directions. Applied magnetic
and magnetomechanical work rotates domains away from the easy axes towards the magnetic field direction
and perpendicular to the longitudinal stress direction (see Figure 1). The equilibrium domain orientations
(m̂k; k = 1, ..., r), needed for calculation of the bulk magnetization (2), are obtained through the conditions
∂G/∂mi = 0 with the constraint m2

1 + m2
2 + m2

3 = 1. The equilibrium magnetostrictions (Ŝk; k = 1, ..., r),
needed for calculation of the bulk magnetostriction (2), are obtained by evaluating relations (5) and (6) using
the equilibrium domain orientations, Ŝk = S(m̂k).

2.2. Equilibrium Domain Volume Fractions

The bulk magnetization and magnetostriction due to a collection of domains is the sum of the products of the
magnetization and magnetostriction equilibria with the respective volume fraction of domains ξk in the kth

equilibrium (see equation 2).

If the sample geometry is known, the domain volume fractions can be determined from minimization of the
magnetostatic energy where the demagnetizing field can be calculated from approximate geometry factors or
through the finite element method. For an unspecified geometry with homogeneous stress and field, the domain
volume fractions can be determined by minimizing a total Gibbs energy potential which includes the entropy of
a collection of domains. The entropy of a system of N units (in this case domains) with r possible energy states
has been given by terHaar10

η =
kB

NV
ln

(
N !

N1!N2!N3!...!Nr!

)

, (7)

where Nk is the number domains in the kth energy state, N is the total number of domains, V is the control
volume and kB is Boltzmann’s constant. Using Stirling’s approximation and substituting ξk = Nk/N , the entropy
is

η = −kB

V

r∑

k=1

ξk ln ξk. (8)

The total Gibbs energy is then given by

Ḡ = −ηθ +
r∑

k=1

ξkGk, (9)

where θ is temperature and Gk(H,T) = U(m̂k) − Ŝk ·T− µ0Msm̂k ·H. The equilibrium domain configuration
ξ̂k is obtained from the equilibrium conditions ∂Ḡ/∂ξk = 0, constrained to

∑r
k=1 ξk = 1, which yields

ξ̂k =
e−GkV/kBθ

r∑

j=1

e−GjV/kBθ

. (10)
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Figure 1. Gibbs energy equilibrium orientations with (a) no field or stress (b) field and stress (c) field only (d) stress
only.
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Substituting (10) into (2) gives the bulk magnetization and magnetostrain

M̄ =

r∑

k=1

Msm̂ke−GkV/kBθ

r∑

k=1

e−GkV/kBθ

, S̄ =

r∑

k=1

Ŝke−GkV/kBθ

r∑

k=1

e−GkV/kBθ

. (11)

Relations (11) are similar to (1) when Ω = kBθ/V , G = E and the integrals are discretized. However, they differ
in that (11) was derived through thermodynamic principles and is more computationally efficient as it involves a
summation of only six terms whereas (1) requires hundreds of summations depending on the numerical integration
algorithm and desired accuracy. Simulation of the inverse effect in the [100] and [110] directions is shown in
Figure 2 and the direct effect in Figure 3. It is noted that smooth constitutive behavior has been achieved without
integration. Figure 2(d) shows a decrease in magnetostriction at high fields because domains rotate away from
the the [100] crystal direction, the maximum magnetostriction direction, towards the [110] direction which is
near the [111] minimum magnetostriction direction and may even have negative magnetostriction depending on
the Gallium content.

2.3. Polycrystallinity
Polycrystallinity is incorporated by considering non-interacting regions of defect-free crystal lattice having a
statistically distributed orientation with respect to the coordinate frame of the applied field and stress. This
approach is similar to that of Appino, Valsania, and Basso11 which considers in-plane domain rotations in
polycrystalline materials with uniaxial anisotropy. The bulk magnetization takes the form

M̄poly =
∫ 2π

0

∫ π

0

M̄(H,T, φ0, θ0)ν(φ0, θ0)dφ0dθ0, (12)

where (φ0, θ0) is the orientation, in spherical coordinates, of the field and stress with respect to the crystal
lattice. The grain orientation distribution ν depends on the material texture, which influences the bulk magne-
tostriction.12 Consider for example cylindrical rods grown by the techniques described by Summers et al. [13].
Orientation imaging microscropy shows a high degree of grain alignment with grains narrowly distributed about
the rod axis. An appropriate distribution when the field and stress are applied along the rod axis would be
Gaussian in φ0 and uniform in θ0

ν(φ0, θ0) =
e−φ2

0/2σ2

σ
√

2π

e−θ2
0/2σ2

σ
√

2π
, (13)

where σ is the standard deviation of the grain misalignment angle. Since the 〈100〉 direction has the largest
magnetostriction, any off-axis grains tend to decrease the bulk magnetostriction,13 hence as the distribution
broadens (increasing σ), the maximum magnetostriction decreases (see Figure 4.)

2.4. Hysteresis
Armstrong8 incorporated irreversible domain wall motion in a rotational model by including losses due to uni-
formly distributed pinning sites in the evolution of the domain volume fractions. We take a similar approach,

dξ

dH
= (ξan − ξ)/k, (14)

where k is proportional to the pinning site energy and ξan is the anhysteretic domain volume fraction given by
(10). This implementation differs from that of Armstrong in that the domains are allowed to rotate in order to
minimize the Gibbs energy whereas Armstrong only considered the 8 fixed 〈111〉 orientations which correspond
to the easy crystal axes or internal energy minima in Terfenol-D. Neglecting domain rotation limits the accuracy
of the model, especially when operated in directions away from the easy axes. Atulasimha and Akrhas7 improved
the accuracy by considering 98 fixed orientations corresponding to important orientations with regards to the
internal energy (magnetocrystalline anisotropy energy). Allowing domains to rotate in order to minimize the
Gibbs energy is thermodynamically consistent and reduces the number of domain orientations to be tracked to
6 while preserving accuracy.
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Figure 2. Simulation of the inverse effect at various stress levels for the (a),(b) [100] direction and (c),(d) [110] direction.
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Figure 3. Simulation of the direct effect at various stress levels for the (a),(b) [100] direction and (c),(d) [110] direction.
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Figure 4. Inverse effect simulation using (12) and (13) with increasing grain misalignment.
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Figure 5. Comparison of Galfenol inverse effect data with the hysteretic, polycrystalline model at stress levels of
−1.38,−13.8,−41.4,−55.2,−69 MPa.

3. EXPERIMENTAL VALIDATION

The polycrystal formulations (12) and (13) and hysteresis model (14) were used to describe the magnetization
and strain response to magnetic field at 6 levels of constant compressive stress. The integral (12) was computed
numerically with a 4 point Gauss-Quadrature integration. The sample is research grade Fe81.6Ga18.4 from Etrema
Products Inc., produced with an advanced Bridgeman method which results in a polycrystalline rod with a large
percentage of the grains having the [100] direction oriented along the axis of the rod. Magnetic field and induction
were measured along the rod axis. The model parameters were determined through a least-squares algorithm with
initial values in the parameter optimization algorithm chosen to be consistent with the literature. The optimized
parameters were k = 300 A/m, σ = 7.10 deg, Ms = 1.26 × 10−3 kA/m, K4 = 36.0 kJ/m3, λ100 = 174 µε,
λ111 = −13.3 µε, and kBθ/V = 1.6 kJ/m3. The accuracy of the model is illustrated by the fact that the model
parameters were optimized for only one data set while the simulations agree well with all the data sets. While
the error was small for all data sets, the error is larger for the low-stress data sets where domain wall motion is
more prevalent. This may be attributed to the absence of reversible domain wall motion in the model.

4. CONCLUDING REMARKS

A low-order, 3-D constitutive model relating magnetization and strain to magnetic field and stress has been
developed through thermodynamic principles. By including entropy in the Gibbs energy, the basic model frame-
work achieves smooth constitutive behavior without integration. As a result, the framework is extended to
include irreversible domain wall motion and material texture without making it too cumbersome for use in dis-
tributed parameter, general transducer models which are often solved with the finite-element method, requiring
evaluation of the material constitutive model at each node. Comparison of the model to experiment has shown
it to accurately model the magnetization and strain response over a broad range of magnetic fields and stresses.
The efficiency and accuracy of the model makes it ideal for lumped parameter transducer models which may
be used for model-based, real-time control of magnetostrictive devices. While accurate, low-order transducer
models have been developed for magnetostrictive devices operated in 1-D modes, the framework developed here
can be used for characterization, design, and control of Galfenol devices capable of 3-D magnetic field and stress
loading.
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