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Abstract
This work addresses the development of an advanced modeling tool which describes the full
nonlinear coupling in three-dimensional (3D) Galfenol transducers to provide system level
input–output relationships. Maxwell’s equations for electromagnetics and Navier’s equations
for mechanical systems are formulated in weak form. The constitutive behavior of Galfenol is
described through a nonlinear discrete energy-averaged model. The overall system is
approximated hierarchically; first, piecewise linearization is used to describe quasi-static
responses and magnetic bias calculations. A linear dynamic solution with piezomagnetic
coefficients computed at a given magnetic bias describes the system dynamics for moderate
inputs. Dynamic responses at large input fields and stresses are quantified through an implicit
dynamic solution based on the trapezoidal rule. The model simultaneously incorporates the
effects of eddy currents, flux leakage, structural dynamics and nonlinear material behavior. A
case study on a Galfenol unimorph actuator validates the model in quasistatic and dynamic
conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetostrictive iron–gallium alloys (Fe100−xGax , x ≈ 20%
Ga, known as Galfenol) possess structural-grade mechanical
properties in addition to exhibiting moderate magnetostriction.
These properties make Galfenol uniquely well suited for
integration within three-dimensional (3D) active structures.
Galfenol can be used in sensors or actuators capable of
withstanding tension, compression and shock loads. To design
Galfenol structures, a modeling framework is required for
describing the full nonlinear coupling between the electrical,
magnetic and mechanical domains. A Galfenol system consists
of a Galfenol driver (likely with complex 3D geometry),
passive magnetic materials for flux completion, passive
structural materials for load transmission, permanent magnetic
materials for magnetic biasing, and copper coils for generation
of dynamic magnetic fields.

The development of coupled models for magnetostrictive
transducers has received significant attention. Prior to the
advent of Galfenol, this type of modeling was primarily
focused on Terfenol-D (Tb0.3Dy0.7Fe1.9). Dapino et al [1]
coupled the Jiles–Atherton model with a wave equation

describing the structural dynamics of a Terfenol-D actuator.
Huang et al [2] coupled a lumped parameter vibratory model
with an extended version of the Jiles–Atherton equations
which included a phenomenological description of eddy
current losses [3]. Sarawate and Dapino [4] developed a
unidirectionally coupled model in which eddy currents in
the magnetostrictive sample are described by solving the 1D
magnetic field diffusion equation.

Higher-dimensional models have also been proposed.
Benbouzid [5] formulated a 2D bidirectionally coupled
magnetostatic model with Terfenol-D constitutive behavior
incorporated using surface splines. Kannan and Dasgupta [6]
formulated a 2D magnetostatic model with bidirectionally
coupled magnetomechanical relations, current-induced mag-
netic fields and electromagnetic body forces. Zhou et al
[7] developed a dynamic finite element model of a unimorph
actuator with one-way magnetomechanical coupling. The one-
way coupled 3D model of Kim and Jung [8] quantifies the
magnetostrictive force driving a coupled fluid-structural model
for a sonar transducer.

All of these models take externally applied fields as
input or compute the magnetic fields explicitly as a function
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of applied currents. The following models attempt to
describe the full coupling between the electromagnetic and
mechanical boundary value problems. Aparicio and Sosa [9]
presented a 3D, fully coupled finite element model including
dynamic effects in the context of a simple single-element
magnetostrictive transducer. Slaughter [10] implemented a
finite element model based on linear piezomagnetic relations
which couples the structural mechanics and AC/DC modules
in the commercial package COMSOL. Mudivarthi et al [11]
utilized a fully coupled, magnetostatic formulation to describe
stress-induced flux density changes in Galfenol with no
current-induced fields. An updated version of the model
includes current-induced magnetic fields but not eddy current
losses; thus this model is magnetostatic [12]. In order
to describe transducer level input–output relationships for
dynamic inputs, Evans and Dapino [13] presented a fully
coupled dynamic model for 3D magnetostrictive transducers.
The model simultaneously quantifies the effects of eddy
currents, structural dynamics, and flux leakage on transducer
performance. Due to the restriction of COMSOL Multiphysics
being unable to handle vectorized functions, linear constitutive
behavior is assumed.

This paper extends the framework by Evans and
Dapino [13] into nonlinear Galfenol regimes through the use of
an efficient discrete energy-averaged model (DEAM) [14]. The
weak form equations are entered into COMSOL (version 3.5a),
which is used to assemble the inertia, damping, and stiffness
matrices, the latter being recalculated at each time step. A
custom Matlab script (version R2009a) is used to approximate
solutions to the matrix system. Section 2 gives a brief
description of the weak form model equations, followed by
the DEAM and its analytical differentiation which yields the
material Jacobian matrix (matrix of material coefficients) in
section 3. For quasi-static operation, an efficient piecewise
linear solution strategy is proposed in section 4 in which
Galfenol constitutive behavior is implemented by solving the
linear piezomagnetic equations in piecewise increments. At the
end of each step the Galfenol material coefficients are updated
using the computed material Jacobian. This piecewise linear
solution strategy is useful for obtaining accurate magnetic
bias points. A linear dynamic simulation with Galfenol
coefficients computed at a given bias point describes the
system dynamics for moderate excitations. Finally, an implicit
time-integration algorithm is discussed in section 6 to obtain
the dynamic system response for large inputs. Comparison
of these solutions with experiments conducted on a Galfenol
unimorph actuator are presented in sections 5 and 7.

2. Weak form equations

The aim of the finite element model is to obtain the electro-
magnetic quantities, magnetic flux density (B), magnetic field
(H), electric flux density (D), and electric field (E), and the
mechanical quantities, stress (T) and strain (S), in the system.
The electrical and magnetic variables can be related using
Maxwell’s equations:

∇ × E = −∂B
∂ t

, (1)

∇ · D = ρq, (2)

∇ × H = J + ∂D
∂ t

, (3)

∇ · B = 0, (4)

where ρq and J are the free charge and free current density,
respectively. The mechanical variables can be described using
Navier’s equation:

ρ
∂2u
∂ t2

+ c
∂u
∂ t

= ∇ · T + fB, (5)

where u is the displacement vector, ρ is the mass density, c
is the structural damping coefficient, and fB is the vector of
body forces. Almost all formulations for electromechanical
systems use a standard displacement-based formulation for the
mechanical subsystem, meaning the solution variables are the
mechanical displacements at the nodes of the model. Strain is
obtained using the globally defined gradient operation on the
displacement field, while stress is obtained using constitutive
laws. For the electromagnetic subsystem, different approaches
are followed. Magnetostatic problems are often modeled
using a scalar magnetic potential [6] in which the magnetic
field is split up into a magnetization-induced component
computed as the gradient of the scalar magnetic potential
and an externally imposed component entered as nodal force
terms. The advantage of this procedure is that constitutive
laws do not have to be inverted since most constitutive models
take the magnetic field as an input. The disadvantage of
this formulation is that the current-induced fields need to be
specified manually but they generally are unknown before
solving the system. For the same reason, the formulation
is restricted to quasi-static operating conditions in which
eddy currents are absent. Formulations based on vector
magnetic potentials [9, 13] are more appropriate for dynamic
modeling of magnetostrictive transducers since they allow
direct inclusion of source current densities along with eddy
current-induced flux density changes. The vector magnetic
potential A is defined as

B = ∇ × A. (6)

With this definition, Gauss’ law (4) is identically satisfied. The
second term in (3) describes displacement currents and can be
neglected within the frequency bandwidth of magnetostrictive
transducers (<30 kHz). Lorentz forces are neglected since
the only component containing a significantly large current
density in a magnetostrictive transducer is the drive coil which
is structurally inactive. Finally, voltage gradients are neglected;
the only source of electrical input is considered to be a
source current density (Js) applied to the coil. Under these
assumptions the only one of Maxwell’s equations to be solved
is (3), which is reduced to

∇ × H = Js − σ
∂A
∂ t

, (7)

with σ the electric conductivity of the material. The second
term on the right-hand side quantifies eddy currents in
electrically conducting materials. The weak form equations
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can be derived using the method of weighted residuals as done
by Evans and Dapino [13],∫

VB

H · δB dV +
∫

VB

σ
∂A
∂ t

· δA dV

=
∫

∂VB

(H × n) · δA d∂ V +
∫

VB

Js · δA dV , (8)

∫
Vu

T · δS dV +
∫

Vu

(
ρ

∂2u
∂ t2

+ c
∂u
∂ t

)
· δu dV

=
∫

∂Vu

t · δ u d∂ V +
∫

Vu

fB · δu dV . (9)

The solution variables are the mechanical displacement field
(u) and the vector magnetic potential (A). Equations (8)
and (9) are decoupled in all domains except in Galfenol
where the mechanical and magnetic states are coupled in a
nonlinear manner. The first term in (8) and (9) suggests that
the constitutive law should take (B, S) as inputs and calculate
(H, T) as outputs. Almost all constitutive models work the
other way around, thus requiring inversion for incorporation
in (8) and (9). Since the models are nonlinear in nature,
analytical inversion is in most cases impossible. Sections 4
and 6 discuss the techniques used to incorporate the nonlinear
Galfenol constitutive law in the model.

3. Discrete energy-averaged model (DEAM)

Incorporation of nonlinear constitutive behavior poses a
significant challenge in the formulation of coupled finite ele-
ment models for magnetostrictive systems. Magnetostrictive
material behavior is often described by polynomial fitting of
data. For example, Benbouzid et al [15] used surface splines
to fit experimental data while Kannan and Dasgupta [6] used
constitutive relations in an incremental form with coefficients
obtained from bicubic spline fits to measurements. Kim et al
[8] used sixth-order polynomials to fit the strain field behavior
with a different set of coefficients for each preload condition.
The use of spline functions has the advantages of easy
differentiability and implementation for 1D cases. However,
this procedure is complex when complete 3D material behavior
is required. This would require 3D measurements to be
performed and bulky splines with nine components (three for
field and six for stress) to be fitted to those measurements.
Graham et al [12] implemented Galfenol constitutive behavior
through look-up tables generated a priori using the Armstrong
model for a large number of induction and stress values.
Although the Armstrong model is three-dimensional, look-
up tables were generated for 1D induction and stress inputs.
As is the case with splines, extension to a full 3D version is
complex because it requires generation of large tables with nine
inputs and nine outputs. For these reasons, using an efficient
constitutive law coded up as functions is beneficial for 3D
boundary value problems.

The energy-averaged class of models describes macro-
scopic material response based on an energy-weighted
summation of contributions from domains aligned along
different orientations. With homogeneously distributed fixed
orientations (as in Armstrong’s model [16]), obtaining high
accuracy requires a large number of possible orientations

to be considered which results in significant computational
effort. Atulasimha et al [17] improved the efficiency of these
models by tracking the volume fractions of domains aligned
along 98 fixed orientations. To preserve accuracy along with
computational efficiency, Evans and Dapino [14] restricted the
number of possible orientations to six by considering only the
directions which minimize an energy functional locally defined
around each easy axis. The total free energy of a domain
close to the kth easy axis ck is formulated as the sum of local
anisotropy energy, magnetomechanical coupling energy, and
Zeeman energy as

Gk = 1
2 K k |mk − ck |2 − Sk

m · T − μ0 Msmk · H, (10)

which must be minimized with respect to the orientation vector
mk in the vicinity of ck . The magnetostriction tensor Sk

m of a
cubic material is

Sk
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3/2)λ100(mk
1)

2

(3/2)λ100(mk
2)

2

(3/2)λ100(mk
3)

2

3λ111mk
1mk

2

3λ111mk
2mk

3

3λ111mk
3mk

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

The minimization problem is constrained (‖mk‖ = 1) and is
formulated as an inhomogeneous eigenvalue problem through
the use of Lagrange multipliers. The total energy is written as

Gk = 1
2 mk · Kkmk − mk · Bk, (12)

where the magnetic stiffness matrix Kk and force vector Bk are

Kk =
[ K k − 3λ100T1 −3λ111T4 −3λ111T6

−3λ111T4 K k − 3λ100T2 −3λ111T5

−3λ111T6 −3λ111T5 K k − 3λ100T3

]
,

(13)

Bk = [ ck
1 K k + μ0Ms H1 ck

2 K k + μ0Ms H2

ck
3 K k + μ0 Ms H2 ]T . (14)

The Lagrange function is constructed as the sum of the energy
functional and the unity norm constraint on the orientation
vectors linearized about the easy-axis orientations (mk · mk =
1 ≈ ck · mk = 1),

L = 1
2 mk · Kkmk − mk · Bk + λk

(
ck · mk − 1

)
, (15)

where λk is the Lagrange multiplier corresponding to the kth
easy axis. Differentiating the Lagrange function with respect
to mk and equating to zero one gets

mk = Kk−1 [Bk − λkck]. (16)

Substitution of mk from (16) into the above constraint yields
the following expression for the Lagrange multiplier:

λk = −1 − ck · (Kk)−1Bk

ck · (Kk)−1ck
, (17)
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which upon substitution into (16) gives an analytical
expression for the orientation which minimizes the energy
around the kth easy axis,

mk = (
Kk

)−1

[
Bk + 1 − ck · (

Kk
)−1

Bk

ck · (
Kk

)−1
ck

ck

]
. (18)

At very high fields well in the saturation regime, the norm
of mk can become much greater than unity, thus yielding
unphysical magnetization and strain calculations. This issue
can be addressed by strictly enforcing the unity norm constraint
rather than using the approximation mk ·mk = 1 ≈ ck ·mk = 1.
However, that leads to a sixth order equation for the Lagrange
multiplier for which no analytical solution is possible. To
circumvent the issue of unphysical magnetization and strain
due to the linearized norm constraint, mk is divided by its norm
in subsequent calculations and is denoted by the symbol (m̂k ).

The anhysteretic volume fractions are calculated explicitly
using Boltzmann-type averaging:

ξ k
an = exp(−Gk/�)∑r

j=1 exp(−G j/�)
, (19)

where � is an averaging factor. Macroscopic anhysteretic
material behavior is obtained by summing the individual
contributions of each domain weighted by its corresponding
volume fraction. The bulk magnetization M and strain S are
obtained by averaging the properties along the six minima
weighted by their respective volume fractions,

M = Ms

r∑
k=1

ξ k
anm̂k, (20)

S = sT +
r∑

k=1

ξ k
anSk

m. (21)

The DEAM is extremely efficient since it includes energy-
weighted summation of only six terms and analytical
expressions to calculate the minima. Moreover, it can be
analytically differentiated to obtain the matrix of material
coefficients. This property is useful for formulating the
piecewise linear solution procedure described in section 4, as
well as in the numerical inversion process for the nonlinear
dynamic solution discussed in section 6.

3.1. Evaluating the material Jacobian

Evaluation of the material Jacobian requires computation of the
derivatives ∂B/∂H, ∂B/∂T, ∂S/∂H, and ∂S/∂T. The tensors
S and T are written in contracted notation. The derivatives
are obtained with respect to Hi (i = 1–3) and Ti (i = 1–6).
Magnetic induction is algebraically related to magnetic field
and magnetization,

B = μ0 (H + M) . (22)

The derivatives of B with respect to Ti and Hi are

∂B
∂Ti

= μ0

(
∂M
∂Ti

)
, (23)

∂B
∂ Hi

= μ0

(
∂H
∂ Hi

+ ∂M
∂ Hi

)
. (24)

The derivatives of M and S with respect to Hi and Ti can
be obtained by differentiating (20) and (21):

∂M

∂ Hi
=

r∑
k=1

Ms

(
∂m̂k

∂ Hi
ξ k

an + m̂k ∂ξ k
an

∂ Hi

)
, (25)

∂M
∂Ti

=
r∑

k=1

Ms

(
∂m̂k

∂Ti
ξ k

an + m̂k ∂ξ k
an

∂Ti

)
, (26)

∂S

∂ Hi
=

r∑
k=1

(
∂Sk

m

∂ Hi
ξ k

an + Sk
m

∂ξ k
an

∂ Hi

)
, (27)

∂S
∂Ti

= s
∂T
∂Ti

+
r∑

k=1

(
∂Sk

m

∂Ti
ξ k

an + Sk
m

∂ξ k
an

∂Ti

)
. (28)

Thus, the partial derivatives of m̂k , Sk
m and ξ k

an with respect
to Hi and Ti must be obtained. The derivatives of Sk

m can be
written as

∂Sk
m

∂ Hi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3λ100m̂k
1

∂m̂k
1

∂ Hi

3λ100m̂k
2

∂m̂k
2

∂ Hi

3λ100m̂k
3

∂m̂k
3

∂ Hi

3λ111

(
m̂k

1
∂m̂k

2
∂ Hi

+ m̂k
2

∂m̂k
1

∂ Hi

)

3λ111

(
m̂k

2
∂m̂k

3
∂ Hi

+ m̂k
3

∂m̂k
2

∂ Hi

)

3λ111

(
m̂k

3
∂m̂k

1
∂ Hi

+ m̂k
1

∂mk
3

∂ Hi

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

∂Sk
m

∂Ti
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3λ100m̂k
1

∂m̂k
1

∂Ti

3λ100m̂k
2

∂m̂k
2

∂Ti

3λ100m̂k
3

∂m̂k
3

∂Ti

3λ111

(
mk

1
∂m̂k

2
∂Ti

+ m̂k
2

∂m̂k
1

∂Ti

)

3λ111

(
m̂k

2
∂m̂k

3
∂Ti

+ m̂k
3

∂m̂k
2

∂Ti

)

3λ111

(
m̂k

3
∂m̂k

1
∂Ti

+ m̂k
1

∂m̂k
3

∂Ti

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29)

The derivative of ξ k
an with respect to Hi and Ti can be found by

differentiating (19):

∂ξ k
an

∂ Hi
= ξ k

an

�

[
r∑

j=1

ξ j
an

(
∂G j

∂ Hi

)
−

(
∂Gk

∂ Hi

)]
, (30)

∂ξ k
an

∂Ti
= ξ k

an

�

[
r∑

j=1

ξ j
an

(
∂G j

∂Ti

)
−

(
∂Gk

∂Ti

)]
. (31)

The derivatives of Gk with respect to Hi and Ti are

∂Gk

∂ Hi
= m̂k · Kk

(
∂m̂k

∂ Hi

)
− ∂m̂k

∂ Hi
· Bk − m̂k ·

(
∂Bk

∂ Hi

)
, (32)

∂Gk

∂Ti
= m̂k ·Kk

(
∂m̂k

∂Ti

)
+ 1

2
m̂k ·

(
∂Kk

∂Ti

)
m̂k − ∂m̂k

∂Ti
·Bk . (33)
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The derivatives of the normalized kth equilibrium orientation
with respect to Hi and Ti are

∂m̂k

∂ Hi
= 1

‖mk‖ (Kk)−1

[
∂Bk

∂ Hi
−

(ck · (Kk)−1 ∂Bk

∂ Hi

ck · (Kk)−1ck

)
ck

]

− mk

‖mk‖3

(
mk · (Kk)−1

[
∂Bk

∂ Hi
−

(ck · (Kk)−1 ∂Bk

∂ Hi

ck · (Kk)−1ck

)
ck

])
,

(34)

∂m̂k

∂Ti
= 1

‖mk‖ (Kk)−1

[
−

(
∂Kk

∂Ti

)
mk

+ ck · ((Kk)−1 ∂Kk

∂Ti
mk)

ck · (Kk)−1ck
ck

]
− mk

‖mk‖3

(
mk · (Kk)−1

×
[
−

(
∂Kk

∂Ti

)
mk + ck · ((Kk)−1 ∂Kk

∂Ti
mk)

ck · (Kk)−1ck
ck

])
, (35)

where

∂Bk

∂ H1
=

{
μ0Ms

0
0

}
,

∂Bk

∂ H2
=

{ 0
μ0 Ms

0

}
,

∂Bk

∂ H3
=

{ 0
0

μ0 Ms

}
,

(36)

and

∂Kk

∂T1
=

[−3λ100 0 0
0 0 0
0 0 0

]
,

∂Kk

∂T4
=

[ 0 −3λ111 0
−3λ111 0 0

0 0 0

]
,

∂Kk

∂T2
=

[ 0 0 0
0 −3λ100 0
0 0 0

]
,

∂Kk

∂T5
=

[ 0 0 0
0 0 −3λ111

0 −3λ111 0

]
,

∂Kk

∂T3
=

[ 0 0 0
0 0 0
0 0 −3λ100

]
,

∂Kk

∂T6
=

[ 0 0 −3λ111

0 0 0
−3λ111 0 0

]
.

(37)

Thus the derivatives of m̂k , Sk
m and ξ k

an with respect to Hi and Ti

are known. Plugging these back into (25)–(28) the derivatives
of M and S with respect to Hi and Ti are obtained. Further,
the derivatives of B with respect to Hi and Ti are computed
by plugging (25) and (26) into (23) and (24) giving all the
derivatives required to compute the Jacobian.

4. Piecewise linear solution procedure

Under quasi-static conditions, the weak form equations (8)
and (9) can be written in incremental form as

∫
VB

	H · δ	B dV =
∫

∂VB

(	H × n) · δ	A d∂V

+
∫

VB

	Js · δ	A dV , (38)

∫
Vu

	T · δ	S dV =
∫

∂Vu

	t · δ	u d∂V +
∫

Vu

	fB · δ	u dV ,

(39)

where 	H and 	T must be computed as a function of 	B and
	S. For some field H0 and stress T0, the DEAM computes B
and S along with the material Jacobian J given by

J =
[

µ = ∂B
∂H(H0, T0) d = ∂B

∂T(H0, T0)

dT = ∂S
∂H (H0, T0) s = ∂S

∂T(H0, T0)

]
. (40)

For small deviations about H0 and T0, the constitutive law can
be formulated in incremental form through inversion of the
material Jacobian matrix:

[
	H
	T

]
=

[
µi −a

−aT c

] [
	B
	S

]
= J −1

[
	B
	S

]
. (41)

Since the computed coefficients are dependent on stress and
field, which have a spatial variation, the coefficients are
also spatially variant. To preserve this inhomogeneity, the
coefficients are declared as interpolated data functions of
spatial coordinates. Each coefficient is a separate function and,
when called, COMSOL searches in the data file for their values
corresponding to that location or interpolates between nearby
points if that location is not present in the file. Thirty three
material coefficients are used:

µ−1 =
[

μi
11 μi

12 μi
13

μi
12 μi

22 μi
23

μi
13 μi

23 μi
33

]
,

a =
[ a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

]
,

c =

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎦

.

(42)

Ideally, the coefficients must be evaluated at all the integration
points present in the Galfenol subdomain during the assembly
process. In a 3D model several thousand integration points are
present. Evaluation, inversion and storage of the Jacobian at
every integration point is both computationally and memory
intensive. Assuming that the spatial variation in field and stress
is not steep, the coefficients are calculated only at selected
locations and approximated at the remaining points through
interpolation.

Figure 1 shows a flowchart of the piecewise linear solution
procedure. A custom Matlab script implements this algorithm.
The computation is initialized with zero initial conditions and
the piezomagnetic coefficients are updated by computing the
material Jacobian at zero field and stress. A COMSOL script is
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Figure 1. Flowchart of the piecewise linear solution process.

invoked to assemble the external load vector and the system
matrix; subsequently, the incremental solution vector (	U)
is computed. The next step is to obtain the stress and field
increments from 	U. Increments in induction (	B) and
strain (	S) are found using the kinematic relationships with
the vector magnetic potential and mechanical displacements.
Next, 	T and 	H are obtained from 	B and 	S using the
inverted constitutive law (41). The total field and stress vectors
are updated with the corresponding increments. This process
is repeated until the end of the input arrays is reached.

The computation is fast as it does not involve iteration
loops or convergence checks. Consequently, the solution has
a tendency to drift since within every interval a nonlinear
response is approximated by linear behavior. The larger the
size of each interval the larger the drift. Thus, depending on the
desired accuracy, a sufficiently small step size must be utilized.

The piecewise linear model is useful for two purposes.
First, to obtain a measure of quasi-static system performance
and secondly to generate accurate bias points which preserve
the spatial inhomogeneity in the distribution of field and stress
in Galfenol and, hence, in the material coefficients. A measure
of dynamic response for moderate inputs about the bias point
can be obtained using these coefficients.

5. Piecewise linear model results

The finite element framework described in the previous
sections is validated using the Galfenol unimorph actuator
shown in figure 2(a). The actuator consists of a composite
beam having a Galfenol layer bonded to a brass substrate, a
stainless steel clamp, a drive coil, and a steel yoke. The system
is excited by applying a voltage input to the coil; the vertical tip
deflection of the beam is measured with a laser displacement
sensor. Figure 2(b) shows the mesh geometry used for finite
element calculations. The lower surface of the stainless steel
clamp is mechanically fixed (u = 0) to remove rigid body
modes. The actuator is surrounded by a sufficiently large air
volume such that the magnetic potential is negligible at its
outer boundaries, A = 0.

5.1. Piecewise linear quasi-static solution

Quasi-static measurements are collected by cycling the voltage
at 0.1 Hz. In the model, input is applied in the form of
small increments to the coil source current density and solution
is obtained using the piecewise linear approach outlined in
figure 1. Beam tip deflection is obtained by integrating
the vertical displacement component over the free end of
the Galfenol layer. The simulation accurately describes the
nonlinearity in the beam deflection response (see figure 3). The
voltage–current curve is a straight line whose slope is the dc
resistance of the coil.

5.2. Linear dynamic simulation about bias point

Harmonic response of the beam is obtained by applying a
bias voltage of 7 V and sinusoidal voltage inputs at different
frequencies. The amplitude of the sinusoidal voltage signal is
increased with increasing frequency to keep the current levels
comparable so as to obtain a good measurable displacement
response at the beam tip. Figures 4–8 show the time-
domain current and displacement response of the system to
sinusoidal voltage inputs ranging from 10 to 500 Hz. The
model quantifies the transient dynamic behavior of the beam
for all the frequencies using a single set of parameters. At
the lower frequencies the model slightly overpredicts the
response because of its linear nature. As the frequency
increases, the inertia and damping forces dominate the force
arising from the nonlinear internal stiffness, thus yielding a
smoother response. This leads to better correlation between the
amplitudes of the modeled and experimental curves. However,
because the model does not include Galfenol hysteresis, there
is a phase difference between the experimental and modeled
curves which is negligible up to 100 Hz but becomes more
noticeable at the higher frequencies. At 200 Hz the measured
displacement response is distorted, possibly because some
nonlinearities in the material are excited at that frequency
due to a particular distribution of stress and field. Since the
dynamic model is linear in nature, this effect is not described.
The measured current response is undistorted and is accurately
described. At 500 Hz the transient tip deflection response
exhibits beating behavior, as the excitation frequency is close
to the first natural frequency of the actuator (513 Hz). When
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Figure 2. Galfenol unimorph actuator used for model validation: (a) geometry and (b) mesh.

Figure 3. Quasi-static model results: (a) voltage deflection and (b) voltage–current.

Figure 4. Experimental and model results at 10 Hz: (a) tip displacement and (b) current.

the harmonic excitation is switched on, the fundamental mode
is also excited which interacts with components at the drive
frequency, giving rise to beats. The current takes a few cycles
to reach steady state and the response looks typical of a damped
second-order system.

6. Nonlinear dynamic solution procedure

Solution of nonlinear dynamic systems is a particularly
challenging task as even unconditionally stable time-
integration approaches for linear systems may become
unstable. The governing equations for the finite element
system described in section 2 can be written as

MÜ + DU̇ = R(t) − F(U, t), (43)

where the mass matrix M, damping matrix D, and state vector
U are of the form

M =
[

0 0
0 Mu

]
, D =

[
DA 0
0 Du

]
,

U =
(

QA

Qu

)
.

(44)

The vector of externally applied forces R(t) includes
contributions from the coil source current density and/or
traction on certain boundaries; F(U, t) is the internal nodal
force vector whose derivative with respect to the state vector U
yields the stiffness matrix. Since F contains contributions from
magnetic field and stress which are nonlinearly dependent on
U, the stiffness matrix K is also state-dependent. Evaluation of
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Figure 5. Experimental and model results at 50 Hz: (a) tip displacement and (b) current.

Figure 6. Experimental and model results at 100 Hz: (a) tip displacement and (b) current.

Figure 7. Experimental and model results at 200 Hz: (a) tip displacement and (b) current.

F and K is the most time-consuming operation in the solution
process.

Bathe [18] suggested various time-integration approaches
for nonlinear structural problems of a similar form. Explicit
methods are ruled out since the mass matrix is singular. An
implicit scheme based on the trapezoidal rule is implemented,
combined with equilibrium iterations. At the kth iteration the
system equations can be written as

Mt+	t Ü(k) + Dt+	t U̇(k) + t+	t K(k−1)	U(k)

= t+	t R − t+	t F(k−1), (45)
t+	t U(k) = t+	t U(k−1) + 	U(k). (46)

According to the trapezoidal rule of time integration, the

following assumptions are used:

t+	t U = t U + 	t

2

(
t U̇ + t+	t U̇

)
, (47)

t+	t U̇ = t U̇ + 	t

2

(
t Ü + t+	t Ü

)
. (48)

The vectors Ü(k) and U̇(k) can be written using (46)–(48) as

t+	t Ü(k) = 4

	t2

(
t+	t U(k−1) − t U + 	U(k)

) − 4

	t
t U̇ − t Ü,

(49)
t+	t U̇(k) = 2

	t

(
t+	t U(k−1) − t U + 	U(k)

) − t U̇. (50)
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Figure 8. Experimental and model results at 500 Hz: (a) tip displacement and (b) current.

Figure 9. Actuator response to harmonic excitation at 10 Hz.

Substitution in (45) yields the equation of motion for the
system,[

t+	t K(k−1) + 4M

	t2
+ 2D

	t

]
	U(k)

= t+	t R − M
[

4

	t2

(
t+	t U(k−1) − t U

) − 4

	t
t U̇ − t Ü

]

− D
[

2

	t

(
t+	t U(k−1) − t U

) − t U̇
]

− t+	t F(k−1). (51)

The starting values for the internal force and state vector are
considered to be the same as the corresponding final values of
the previous time step:

t+	t F(0) = t F, t+	t U(0) = t U. (52)

The convergence criteria used in this work are based on
energy and norm of the out-of-balance load vector [18].
Mathematically, these criteria can be written as

‖t+	t R − t+	t F(k−1) − M t+	t Ü(k−1) − D t+	t U̇(k−1)‖
RNORM

� RTOL, (53)

	U(k) · (t+	t R−t+	t F(k−1)−M t+	t Ü(k−1)−D t+	t U̇(k−1)
)

	U(1) · (
t+	t R − t F − M t Ü − D t U̇

)
� ETOL. (54)

The mass and damping matrix are state-independent and hence
are assembled only once for the entire simulation. The internal

nodal force vector F and the tangential stiffness matrix K
are assembled in every iteration as they are state-dependent.
Evaluation of F requires computation of the total stress and
field for a given flux density and strain distribution, for which
the DEAM needs to be inverted. This is done using the
quasi-Newton SR1 formula which updates the Jacobian inverse
directly, eliminating the need for matrix inversion within the
iteration loop. The computed Jacobian inverse in the final
iteration of the inversion process is used for the assembly
of the global stiffness matrix. Thus, the material model is
inverted only once for every integration point and the values
of the 3 field components, 6 stress components and 81 terms
of the material Jacobian inverse matrix are stored in a global
data structure in Matlab. Since COMSOL cannot take vector-
valued inputs from Matlab functions, it calls the same function
multiple times to assemble the matrices. The material model
is coded up such that it is executed only once for a particular
set of input values and returns directly from the stored data
structure for the remaining number of times.

7. Nonlinear dynamic model results

The same Galfenol unimorph actuator (figure 2) is used to
validate the nonlinear dynamic solution procedure. Harmonic
excitations ranging from 10 to 200 Hz are applied to the system
in the form V (t) = −Vbias + V0(1 − cos(2π f t)). The
finite element model is run only for the time duration of the
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Figure 10. Actuator response to harmonic excitation at 50 Hz.

Figure 11. Actuator response to harmonic excitation at 100 Hz.

Figure 12. Actuator response to harmonic excitation at 200 Hz.

first few cycles. In order to obtain appreciable displacement
response from the beam at higher frequencies, a negative bias
voltage (Vbias) is applied first before applying the harmonic
signal. This ensures that the effective bias point of the
cyclic signal is in the burst region. In the model the bias
point is obtained in similar fashion by applying the bias
voltage smoothed using a hyperbolic tangent function for ease
of convergence. Figures 9–12 show the transient response
of the transducer for harmonic inputs at 10, 50, 100 and
200 Hz. The modeled responses show good correlation with
the experiments, particularly for the tip deflection response. An
interesting outcome of nonlinear Galfenol behavior can be seen

where the quadratic nonlinearity of the magnetostrictive strain
at zero field causes frequency doubling in the tip deflection
response.

8. Concluding remarks

This paper presents a finite element framework for modeling
3D Galfenol transducers driven over nonlinear regimes with
dynamic inputs. Weak form equations derived from Maxwell’s
equations for electromagnetic systems and Navier’s equation
for mechanical systems are coded into COMSOL, which
is used for meshing, global assembly of matrices, and

10



Smart Mater. Struct. 20 (2011) 105034 S Chakrabarti and M J Dapino

post-processing. Galfenol constitutive behavior is incorporated
using a nonlinear discrete energy-averaged model. A piecewise
linear solution procedure is developed in which the solution
is obtained in the form of piecewise increments. Galfenol
is modeled using linear piezomagnetic equations within each
incremental step. The coefficients are updated at the end of
each step by analytical differentiation of the constitutive law.
Reduction in computational effort is achieved by declaring
the material coefficients as interpolated data functions and
computing them only at selected locations. The piecewise
linear procedure is useful for obtaining a quasi-static system
response and accurate bias point determination. A linear
dynamic simulation with the Galfenol material coefficients
computed at the bias point provides an accurate description
of system dynamics for moderate inputs. An implicit time-
integration algorithm based on the trapezoidal rule yields
the dynamic system response for large-scale inputs. As is
required for any vector magnetic-potential-based formulation,
the constitutive law is inverted numerically using quasi-
Newton iterations. Efficiency is maintained by coding up
the material model so that executing the inversion routine
once calculates the 6 components of stress, 3 components
of field and 81 components of the Jacobian inverse. The
inability of COMSOL to accept vector-valued inputs from
Matlab functions is overcome by using a global data structure.
The model is validated using a Galfenol unimorph actuator.
Results show that the modeled responses compare well with
experiments and describe the key effects which occur due to
the nonlinear behavior of Galfenol.
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