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ABSTRACT: Design and modeling of a bi-laminate, Galfenol-driven composite beam is pre-
sented in which the elasticity of the adhesive layer is considered. The optimal thickness ratio
necessary to maximize the tip deflection is found by minimization of the internal energy of the
beam. Model simulations show that use of a substrate material with high modulus leads to
larger tip deflections. Stainless steel was therefore utilized as substrate in the experiments. In
order to reduce eddy currents, a laminated silicon steel frame was employed to magnetize the
beam. A dynamic model is proposed by coupling the structural dynamics of the beam and
adhesive layer with the magnetostriction generated by the Galfenol layer. The latter is
described with a linear piezomagnetic law with uniform magnetic field distribution along
the length of the beam. Galerkin discretization combined with Newmark numerical integra-
tion are employed to approximate the dynamic response of the beam. The model is shown to
describe both the transient and steady-state response of the composite beam tip displacement
under harmonic excitation between 10 and 320Hz. The RMS error between model and data
range between 1.44% at 10Hz and 6.34% at 320Hz, when the same set of model parameters
(optimized at quasistatic frequency) is utilized.
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INTRODUCTION

G
ALFENOL is a recent magnetostrictive material
which exhibits moderately high magnetically

induced strain and intrinsic steel-like structural proper-
ties (Evans and Dapino, 2008). Unlike most active mate-
rials, Galfenol is suitable for load-carrying transducers
operating under combined loads.
At present, most active laminated structures take

advantage of piezoelectric materials or the giant magne-
tostrictive material Terfenol-D (Krishnamurthy, 1999;
Kumar et al., 2003). Zabihollah et al. (2007) presented
a laminated structure for vibration suppression.
Piezoceramic and PVDF patches were respectively used
as the actuation and sensing elements, and a linear qua-
dratic regulator controller was designed to suppress the
vibrations of the composite beam. Suhariyono et al.
(2008) presented a lightweight piezo-composite actuator
(LIPCA) which achieves 41% higher actuation moment
than bare PZT. Despite this improvement, piezoelectric
materials are too brittle and cannot withstand large
bending or tensile loads (Baillargeon and Vel, 2005).
This limitation can be partially addressed through the

use of thin patches with small surface areas, at the
expense of actuation authority. One approach for avoid-
ing premature failure is the use of piezoelectric shear
actuators embedded within sandwich beams (Sun and
Zhang, 1995; Baillargeon and Vel, 2005). Another way
to design active laminated structures is using active thin
film. Chen (2004) presented a MEMS microswitch with
piezoelectric-film actuation and proposed a mathemat-
ical model which accounts for normal and shear stres-
ses. Lee and Cho (2008) investigated a multilayer
deposition technique of thin film for fabrication of a
magnetostrictive actuator.

Galfenol has been utilized in active structures such as
micro-actuators (Ueno and Higuchi, 2007), MEMS
devices (Basantkumar et al., 2006), and laminated sen-
sors (Downey and Flatau, 2005; Datta et al., 2008).
Ueno and Higuchi (2007) investigated a micro-bending
actuator based on Galfenol. A Galfenol C-shaped yoke
was bonded with stainless steel plates, in which the yoke
was machined from a plate of 1mm thick polycrystalline
Galfenol. The first resonance frequency is 1.6 kHz and it
was shown that the actuator could withstand a sus-
pended weight of 500 g. Downey and Flatau (2005)
investigated the magnetoelastic bending of Galfenol
for sensor applications. A series of experiments were
conducted under dynamic bending loads to facilitate
design concepts.
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Such applications motivate the development of a
modeling framework for active laminated structures.
Structural modeling of extensional magnetostrictive
transducers has successfully been performed (Dapino
et al., 2000), while the structural modeling of active lam-
inated structures in bending has been a challenge.
Datta et al. (2008) have developed a magnetomecha-

nical model for sensors in laminated structures. This
model can be used to analyze the response of the
active Galfenol layer to quasi-static axial and shear
force and bending moments. Wang et al. (2010) pre-
sented a Galfenol layer bonded to a PZT-5H layer. It
was found that a decrease in the thickness of the piezo-
electric layer led to an increase in the tip deflection and
greater charge generation by the PZT layer. An actua-
tion model was proposed by Datta et al. (2009) to pre-
dict magnetostrictive strains and stresses in laminated
plates under quasi-static magnetic fields. The contribu-
tion of their study was the combination of the magne-
tomechanical material model and the structural plate
model. However, the adhesive layer was not considered
in their study. Bashash et al. (2009) presented another
hysteresis model based on recursive memory. A
Galfenol-driven micropositioning actuator and a piezo-
electrically driven nanopositioning stage were used to
experimentally validate the model in the static domain.
du Trémolet de Lacheisserie and Peuzin (1994) investi-
gated deformations of a bimorph actuator consisting of
a non-magnetic substrate and a magnetic thin film.
Their model is suitable for a very thin film deposited
on a non-magnetic substrate. The film thickness was
assumed to be far less than the substrate thickness so
that the mechanical energy in the active layer could be
taken as constant since internal stress in the film hardly
changes through the thickness. Models for any thickness
ratio have been presented by Gehring et al. (2000) and
Guerrero and Wetherhold (2003) based on total internal
energy minimization. Since the cantilevers discussed
were made of active film deposited on a non-magnetic
substrate, no adhesive layer was included.
Yan et al. (2009) developed an analytical expression

for the static behavior of surface-bonded piezoelectric
transducers, in which the interfacial shear stresses
between the piezoelectric patches and the host elastic
beam were considered. Numerical calculations showed
that the actuation authority of the piezoelectric patches
decreases for thicker adhesive layers. The effect of piezo-
actuator thickness on the active vibration control of a
cantilever beam was investigated by Kim and Jones
(1995). The analytical solution of the deflection was
derived from Euler’s beam equation. The effect of the
bonding layer thickness was investigated by assuming
the excitation frequency was zero. In the Euler beam
equation, the structural damping was assumed to be
zero and no experiment was implemented to verify the
effect of the bonding layer.

This article investigates the dynamic response of
Galfenol-driven laminated beam actuators considering
the effect of the substrate and adhesive layer on tip dis-
placement. A U-shaped frame was designed and fabri-
cated to excite the beam with dynamic magnetic fields.
In order to reduce eddy current losses in the frame, lam-
inated silicon steel was utilized. We present a dynamic
Galfenol-driven composite beam model, in which the
Galfenol layer is bonded to a non-magnetic substrate.
The energy loss or damping from the adhesive layer is
considered as is the stress variaration through the
Galfenol thickness. Experiments and simulations are
conducted to study the influence of thickness ratio and
material parameters on tip displacement. The optimal
design of a composite beam micro-positioner is dis-
cussed first, followed by a dynamic model which
combines the piezomagnetic constitutive law and the
structural beam model. The experiments and results
are presented next, followed by concluding remarks.

OPTIMAL BEAM DESIGN

The composite beam, consisting of a Galfenol layer
bonded to a non-magnetic substrate, is clamped at one
end while the other end is free (Figure 1). The length of
the beam is L and the width is b. The xy plane of the
coordinate system is set on the neutral plane of the can-
tilever and the z axis is perpendicular to the active layer
plane. Euler beam assumptions are employed. The out-
of-plane strain is negligible since the in-plane dimen-
sions of the beam are large relative to its thickness.
The Poisson’s ratio of the materials is not taken into

z
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L

Figure 1. Coordinate system of the cantilever.
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account since the length of the beam is much greater
than the width.
The thickness of the composite beam is t; the sub-

scripts g, s, and m are used to denote the Galfenol
layer, substrate layer, and adhesive layer, respectively
(Figure 2). The distance from the top of the beam to
the neutral axis is h.
For the adhesive and substrate layers, there is no mag-

netostriction and the stress in the layers is assumed to
follow Hooke’s law. The total axial strain of the
Galfenol layer is the sum of the purely elastic strain
obeying Hooke’s law and the magnetostriction:

�x ¼
�g
Eg
þ �, ð1Þ

and thus the stress is:

�g ¼ Egð�x � �Þ, ð2Þ

where E represents Young’s modulus (with subscript g,
s, or m) and � denotes magnetostriction. The axial strain
at any point in the composite can be expressed as

�x ¼ ��z, ð3Þ

where � is the curvature of the beam. The x-axis normal
stress in each layer thus has the form

�g ¼ �Egð�zþ �Þ,

�s ¼ �Es�z,

�m ¼ �Em�z:

ð4Þ

The total energy of the beam is calculated by integrating
the sum of the energy densities of each layer over the
beam volume:

U¼

Z
V

1
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Z
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þ
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3
�
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Em�
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1
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2
�

þ
1

2
�2EgtgbL: ð5Þ

The neutral axis is found by setting the x-axis force
equal to zero:

FðhÞ ¼

Z
As

�sdAs þ

Z
Am

�mdAm þ

Z
Ag

�gdAg

¼� Es

Z h�tg�tm

h�tg�ts�tm

dz

Z b

0

ð�zÞdy

� Em

Z h�tg

h�tg�tm

dz

Z b

0

ð�zÞdy

� Eg

Z h

h�tg

dz

Z b

0

ð�zþ �Þdy

¼�
1
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Es�bð2tsðh� tg � tmÞ � t2s Þ � Egbtg�

�
1

2
Em�bð2tmðh� tgÞ � t2mÞ �

1

2
Eg�bð2htg � t2gÞ

¼0: ð6Þ

Collecting h terms in (6) one obtains:

ðEsts þ Emtm þ EgtgÞh ¼
1

2
ðEst

2
s þ Emt

2
m þ Egt

2
gÞ

þ Emtmtg þ Estsðtg þ tmÞ �
Egtg
�
�: ð7Þ

Since the maximum deflection of the laminated beam
is of interest, the magnetostriction � can be taken as the
saturation value �s. With the definition of the following
constants:

~B �Est
2
s þ Emt

2
m þ Egt

2
g,

~A �Ests þ Emtm þ Egtg,
ð8Þ

the location of the neuatral axis with respect to the top
of the beam can be expressed in terms of curvature � as

h ¼
1

2

~B

~A
þ
Emtmtg

~A
þ
Estsðtg þ tmÞ

~A
�
Egtg�s

~A

1

�
: ð9Þ

Substitution of (9) into (5) gives the total energy as a
function of �. Energy minimization with respect to �
yields

� ¼ �
6�s�

E2
gt

4
g þ 4�þ 6�þ 12�tþ E2

mt
4
m þ E2

s t
4
s

, ð10Þ
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Figure 2. Geometry of the thickness and neutral axis.
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where

� ¼ EgEmtgtm, � ¼ EgEstgts, 	 ¼ EmEstmts,

� ¼ EgEstgtmts,

� ¼ �tg þ �tm þ �tg þ �ts þ 2�,

� ¼ �t2g þ �t
2
m þ �t

2
g þ �t

2
s þ 	t

2
m þ 	t

2
s ,

� ¼ �tgtm þ �tgts þ 	tmts:

ð11Þ

The tip displacement of the laminate can be calculated
from the curvature as

D ¼ �
1

2
�L2: ð12Þ

It can be seen from (10) and (12) that tip displacement D
depends on the magnetostriction, elastic properties, and
thicknesses. Since �s is constant when the Galfenol layer
is magnetically saturated, the tip displacement is deter-
mined only by the elastic parameters and the
thicknesses.
In order to maximize the tip displacement, different

elastic parameters and substrate thicknesses are investi-
gated by employing (10) and (12). Since the total thick-
ness of the composite beam is relatively small, the
adhesive layer has to be taken into account in optimiza-
tion. Previous work has neglected the effect of the

adhesive layer (Gehring et al., 2000; Guerrero and
Wetherhold, 2003).

Simulation results are shown in Figure 3 based on the
proposed model (solid lines) and the model without con-
sidering the adhesive layer (dashed lines), for two differ-
ent modulus ratios (Eg/Es¼ 1 and Eg/Es¼ 5). The
thickness of the adhesive layer is 1/5th of the Galfenol
layer. Comparison of panels (b) and (c) reveals that con-
sideration of the adhesive layer yields reduced deflec-
tions due to the compliance of the adhesive.

Figure 3(a) shows that the displacement versus thick-
ness ratio exhibits a peak. To the left of the peak, the
deflection increases monotonically as the thickness of
the substrate decreases. The opposite is true to the
right of the peak. The reason for the peak has been
explained physically by Gehring et al. (2000). For low
thickness ratios, the active layer cannot effectively
deform the substrate and little deflection is observed.
At high thickness ratios, most of the deformation is a
uniform longitudinal strain and little bending of the
beam takes place. The existence of an optimum thick-
ness ratio can be explained mathematically. Substitution
of the stiffness ratio ~� � tg=ts into (10) gives

� ¼
6 ~�2Egtg�s Em ~�2tm tg þ tm

� �
þ Est

2
g ~�þ 1ð Þ þ 2Estgtm ~�

� �
~�4t4gE

2
g þ t4gE

2
s þ ~�4t4mE

2
m þ 


,

ð13Þ
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Figure 3. (a) Deflection vs thickness ratio based on the proposed model (solid lines) and the model without considering the adhesive layer
(dashed lines), for two different modulus ratios (Eg/Es¼1 and Eg/ES¼ 5). (b) Proposed model below the optimal thickness ratio. (c) Model
without consideration of the adhesive layer, below the optimal thickness ratio.
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where


 ¼ ~�4EgEmtgtm ~�þ ~�EgEst
4
g ~�þ 12 ~�2EgEstgtm ~�

þ ~�EsEmtgtm ~!,

~� ¼ 4t2g þ 6tgtm þ 4t2m, � ¼ 4 ~�2 þ 6 ~�þ 4,

~� ¼ ~�t2g þ ~�tgtm þ t2g, ~! ¼ 4 ~�2t2m þ 6 ~�tgtm þ 4t2g:

Since tg and tm are constants, the solution to d�=d ~� ¼ 0
gives the optimal thickness ratio as

where

�̂ ¼ 6Emtmt
2
g þ 6Emtgt

2
m, �̂ ¼ 3Emtgt

2
m � Egt

3
g þ 2Emt

3
m,

	̂ ¼ 3Est
3
g þ 6Estmt

2
g, �̂ ¼ �Egt

3
g þ 3Emtgt

2
m þ 2Emt

3
m:

The optimal thickness ratio for achieving peak deflec-
tion is higher when the substrate is stiff. Below this peak,
softer substrates are more desirable for maximum deflec-
tion, as shown in Figure 3(b) and (c). This is because
when the thickness of the substrate is large relative to the
Galfenol layer, the combination of large thickness and
large modulus makes the substrate more difficult to be
actuated. Above the cross-over point, the active layer is
driving a thin substrate and most of the deformation is a
uniform longitudinal strain (Gehring et al., 2000). In
order to achieve bending rather than longitudinal defor-
mation, a stiff substrate is necessary.
Experimental verification of the model predictions is

conducted on seven specimens with various thicknesses.
The substrate material is stainless steel, which has a
higher elastic modulus than other typical substrate mate-
rials such as brass or aluminum. Sample details are pro-
vided in Table 1. Experimental measurements are
compared against model simulations in Figure 4. Due to
a limit on available stainless steel thickness, the largest ratio
testedwas 15:1. Consideration of the adhesive layer yields a
significant improvement over the model without adhesive

layer. The optimal thickness ratio is around 4 according to
simulation and experimental results. Since the thickness of
theGalfenol layer is constant, a high thickness ratio implies
a thin substrate. At high thickness ratios, the adhesive layer
can be taken as an equivalent substrate, making the sub-
strate layer stiffer than the model without adhesive. Over
most of the range of thickness ratios a stiffer substrate
will give higher deflection. This is why in Figure 4 the
proposed model predicts higher deflection above a thick-
ness ratio of 12 than the model without adhesive.

DYNAMIC BEAM MODEL

When Galfenol is bonded to a non-magnetic material,
the constraint of the substrate causes bending of the
beam. With steel-like ductility and stiffness, Galfenol
bends along with the substrate. To describe the dynamic
response of the active composite beam driven by
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Figure 4. Comparison of experimental data and models with and
without consideration of the adhesive layer.

Table 1. Geometric details of the beams used for model verification.

Sample I II III IV V VI VII

Substrate thickness (mm) 0.762 0.508 0.381 0.254 0.127 0.0762 0.0254
Thickness ratio (Gal/Sub) 1:2 3:4 1:1 1.5 :1 3:1 5:1 15:1

The length of the beam is 25 mm, the width is 6.35 mm, and the thickness of the Galfenol layer is 0.381 mm.
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Galfenol, a dynamic model is formulated and subse-
quently implemented with finite-element spatial discreti-
zation and Newmark temporal integration.

Governing Equation

Deformation of the composite beam is illustrated in
Figure 5 along with the corresponding parameters of
each layer, including elastic modulus E, mass density
, and moment of inertia I.
The total bending moment is calculated by integrating

the differential moment due to stress over the cross-
sectional area:

M ¼ �

Z
Ag

Egð�zþ �ÞzdAg �

Z
As

Es�z
2dAs

�

Z
Am

Em�z
2dAm

¼ ��ðEsIs þ EmIm þ EgIgÞ � EgAg�ðh� tg=2Þ

¼ ðEsIs þ EmIm þ EgIgÞ
@2wðx, tÞ

@x2
� EgAg�ðh� tg=2Þ:

ð15Þ

The total shear force Q is

Q ¼
@M

@x
¼ ðEsIs þ EmIm þ EgIgÞ

@3wðx, tÞ

@x3

� EgAgðh� tg=2Þ
@�

@x
,

ð16Þ

where w(x, t) is the vertical deflection of the neutral
plane. From (9), the distance from the top of the beam
to the neutral axis h is dependent on curvature � and

saturation magnetostriction �S. The curvature k can be
calculated as (Wetherhold and Chopra, 2001),

� ¼
AM� � BN�

AD� B2
, ð17Þ

where A, B, and D are the extensional, coupling, and
bending stiffnesses:

A ¼
XN
i¼1

Qiti,

B ¼
1

2

XN
i¼1

Qiðh
2
i � h2i�1Þ,

D ¼
1

3

XN
i¼1

Qiðh
3
i � h3i�1Þ,

ð18Þ

where N denotes the number of layers in the laminate, Qi

is the x-direction stiffness for the i-th layer, and hi the
distance of the i-th layer from the mid-surface.

Wetherhold and Chopra (2001) also provide expres-
sions for the equivalent actuation moment and force per
unit length,

N� ¼
XN
i¼1

Qiti�i,

M� ¼
1

2

XN
i¼1

Qiðh
2
i � h2i�1Þ�i:

ð19Þ

Since Galfenol is biased during normal operation and
experimental characterization, the biased magnetostric-
tion �b is used in (15) and (19).

Adhesive, Em, rm, Im

Substrate, Es, rs, Is

Galfenol, Eg, rg, Ig

Neutral axis

1/k

Figure 5. Schematic representation of the composite beam subjected to bending.
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Force balancing on a generic cross-section of the
beam gives

ðgAg þ sAs þ mAmÞ
@2wðx, tÞ

@t2
þ ĉ

@wðx, tÞ

@t
þ
@Q

@x
¼ 0,

ð20Þ

where ĉ is the damping constant. A Rayleigh-type damp-
ing is employed by assuming that energy dissipation in
the system is proportional to velocity. The generalized
velocity is the only relevant state variable that affects the
damping force. Energy dissipation due to eddy current
has been ignored since the main flux path is laminated,
consistent with best design practices for this type of
actuator. Substitution of (16) into this expression gives

ðgAg þ sAs þ mAmÞ
@2wðx, tÞ

@t2
þ ĉ

@wðx, tÞ

@t

þ
@

@x
ððEsIs þ EmIm þ EgIgÞ

@3wðx, tÞ

@x3

� EgAgðh� tg=2Þ
@�

@x
Þ ¼ 0:

ð21Þ

For convenience, the following definitions are used:

EI � EsIs þ EmIm þ EgIg,

Ĥ � EgAgðh� tg=2Þ,

A � gAg þ sAs þ mAm:

ð22Þ

The governing equation of the composite beam can
now be expressed as

EI
@4wðx, tÞ

@x4
þ ĉ

@wðx, tÞ

@t
þ A

@2wðx, tÞ

@t2
¼ Ĥ

@2�

@x2
: ð23Þ

Discretization and Weak Form

To arrive at a weak form of (23), the space of test
functions is defined as

V ¼ H2ð0,LÞ � fv 2 H2ð0,LÞjvð0Þ ¼
@vð0Þ

@x
¼ 0g: ð24Þ

Multiplication by test functions followed by integration
yields the weak form:

Z L

0

ðEI
@4wðx, tÞ

@x4
þ ĉ

@wðx, tÞ

@t
þ A

@2wðx, tÞ

@t2
Þvdx

¼

Z L

0

Ĥ
@2�

@x2
vdx,

ð25Þ

for all v2V. To approximate (25), the Galerkin method
is employed over finite elements where the test functions
have the same basis as w. The domain of the composite
beam is divided into N elements, each having two nodes

as shown in Figure 6(a). Each node has two degrees
of freedom, vertical deflection w and rotation y,
Figure 6(b).

For small rotations, the bending angle y is equal
to the slope of the vertical displacement w with respect
to x. The primary variables to be solved for can be
expressed as

we ¼ ½w1
dw1

dx
w2

dw2

dx
�: ð26Þ

For a typical element �e¼ (xe, xeþ1), integration
over the element of the fourth derivative term by parts
in (25) gives

Z xeþ1

xe

ðEI
@2wðx, tÞ

@x2
@2vðxÞ

@x2
þ ĉ

@wðx, tÞ

@t
vðxÞ þ A

@2wðx, tÞ

@t2
Þvdx

¼

Z xeþ1

xe

Ĥ
@2�

@x2
vðxÞdxþ ðvðxÞQe

qÞxe � ð
dvðxÞ

dx
Qe

mÞxe

� ðvðxÞQe
qÞxeþ1 þ ð

dvðxÞ

dx
Qe

mÞxeþ1 ,

ð27Þ

where

Qe
q ¼ EI

@3wðx, tÞ

@x3
,

Qe
m ¼ EI

@2wðx, tÞ

@x2
:

ð28Þ

The solution w(x, t) of (27) is approximated by expres-
sions of the form

wðx, tsÞ ¼
Xn
j

we
j ðtsÞ�

e
j ðxÞ, ð29Þ

where we
j ðtsÞ is the value of w(x, t) at time ts and node j of

the element �e; �
e
j ðxÞ is an interpolation function. Here,

the Hermite cubic interpolation functions are used (see
Reddy (1993) for details).

Substitution of (29) and v(x)¼�i(x) into (27) gives the
second-order finite element model

½M�f €wg þ ½C�f _wg þ ½K�fwg ¼ fFg þ fFBCsg, ð30Þ

where

Mij ¼

Z xeþ1

xe

ðA�i�j Þdx,

Cij ¼

Z xeþ1

xe

ĉ�i�jdx,

Kij ¼

Z xeþ1

xe

ðEI
@2�i
@x2

@2�j
@x2
Þdx,
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Fi ¼

Z xeþ1

xe

Ĥ
@2�

@x2
�idx,

fFBCsg ¼
d
dx ðĤ�Þjxe �Ĥ�jxe �

d
dx ðĤ�Þjxeþ1 Ĥ�jxeþ1

h iT
:

ð31Þ

Equation (30) shows the actuation model of the
composite beam, in which the load vector is a func-
tion of boundary conditions and the magnetostric-
tion of the Galfenol layer. In order to relate tip
displacement with the drive current, a current�magne-
tostriction relationship is needed. A linear relationship is
assumed which has the form

� ¼ dgH ¼ dgNcIc, ð32Þ

where Nc is the number of turns per unit length in the
coil, dg the piezomagnetic coefficient, H the magnetic
field, and Ic denotes current.
Combination of (30) and (32) gives the dynamic

response of the composite beam to drive currents. We
assume the magnetic field is uniform along the cantilever
and through its thickness, hence the derivative terms of
magnetostriction are zero in (30).

Solution and Validation

Newmark integration (Zhou and Zhou, 2007) is
employed to solve the actuation model (30), which is
expressed as

fwgtþ�t ¼ ½K̂�
�1
fF̂g, ð33Þ

where

½K̂� ¼ ½K� þ �0½M� þ �1½C�, ð34Þ

fF̂g ¼ fF̂gtþ�t þ ½M�ð�0fwgt þ �2f _wgt þ �3f €wgtÞ

þ ½C�ð�1fwgt þ �4f _wgt þ �5f €wgtÞ,
ð35Þ

and [C] is the damping matrix. Velocity and acceleration
are involved in (35) and they are calculated as

f €wgtþ�t ¼ �0ðfwgtþ�t þ fwgtÞ � �2f _wgt � �3f €wgt,

f _wgtþ�t ¼ f _wgt þ �6f €wgt þ �7f €wgtþ�t:
ð36Þ

The parameters involved in Newmark integration are:

�0 ¼
1

��t2
, �1 ¼

	

��t
, �2 ¼

1

��t
, �3 ¼

1

2�
� 1,

�4 ¼
	

�
� 1, �5 ¼

�t

2
ð
	

�
� 2Þ, �6 ¼ �ð1� 	Þ,

�7 ¼ �t	, � ¼ 0:25, 	 ¼ 0:5:

ð37Þ

The initial conditions of the beam required in (36) are
known and the dynamic response of the composite beam
is calculated from expressions (33) to (37).

The structural damping is modeled as Rayleigh damp-
ing in which the damping matrix is formed by the linear
combination of mass and stiffness matrices (Kiral,
2008):

½C� ¼ c0½M� þ c1½K�: ð38Þ

Rayleigh damping coefficients c0 and c1 can be evaluated
from damping ratios zm and zn, which are associated
with two specific fundamental frequencies om and on

(Clough and Penzien, 1993):

c0
c1


 �
¼

2!m!n

!2
m!

2
n

!n �!m

�1=!n 1=!m

� 	
�m
�n


 �
: ð39Þ

(a)

(b)
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Figure 6. (a) Discretization of the beam; (b) degrees of freedom of an element.
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The damping ratio is identified from the impulse-
response test shown in Figure 7. This analysis gives
z¼ 0.0056. The damping ratios zm and zn are assumed
equal.

EXPERIMENTS AND DISCUSSION

Experimental Setup

The experimental configuration is illustrated in
Figure 8, in which dSpace ControlDesk is used for
real-time manipulation; the tip displacement is measured
with a laser sensor. The cantilever is clamped in a met-
glas, U-shaped laminated frame and the driving coil is
wound on the frame. The thickness of the Galfenol layer
is 0.381mm and the thickness of the epoxy layer is 1/5th
of the Galfenol layer. The thickness ratio is chosen as
3:1, which is as close as practically possible to the opti-
mal ratio in Figure 4. The sampling frequency in the
dSpace system is 6000Hz whereas the sampling rate in
the laser sensor is 20 ms. Both cause frequency-indepen-
dent pure time delay in the measurements, equivalent to
0.1867ms. This delay is added into the dynamic model
when it is excited with the magnetic field.

Discussion

Model validation is conducted at different frequencies
ranging from 10 to 320Hz, as illustrated in Figures 9
and 10. Tip displacement and actuation current relation-
ships for representative frequencies are shown in Figure 11.

To quantify the maximum value of predictive error,
the following definition is utilized:

Ratio �
dpk �mpk

dpk
� 100%, ð40Þ

where mpk denotes the peak to peak value of the steady-
state model solution while dpk denotes the correspond-
ing peak to peak value of the measurement. The values
of Ratio are presented within each figure. The RMS

Computer

Multifunctional 
Controller

Laser sensor Galfenol-substrate
cantilever clamped in

U-shape frame

Amplifier

dSPACE

Figure 8. Schematic of the experimental setup.
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Figure 9. Model validation at different dynamic frequencies, (a) 10 Hz; (b) 80 Hz; (c) 150 Hz.
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value of the modeling error is presented in Table 2. In
order to scale this error, the corresponding error ratio is
defined as Error¼RMS(dd�md)/dpk� 100%, where dd
denotes the measurement signal and md denotes the
signal generated by the model. The values of Error are
presented in the last column of Table 2.
The dynamic model accurately describes both the

transient and steady-state responses of the composite
beam. The RMS error between the model and

experimental data ranges between 1.44% at 10Hz and
6.34% at 320Hz. The increase in error with increasing
frequency is likely due to eddy current losses, which are
not accounted for in the model. It is emphasized that the
model parameters were identified from quasistatic mea-
surements conducted at 1Hz, and the same set of
parameters was employed across the frequency range.
We justify the use of linear piezomagnetic modeling in
that the Galfenol unimorph is biased with a DC current
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Figure 11. Tip displacement vs applied current at varied actuation frequencies, (a) 10 Hz; (b) 80 Hz; (c) 150 Hz; (d) 320 Hz.

Table 2. Comparison of experiments at different frequencies.

Input frequency (Hz) Measurement (km) RMS value of error (km) Error (%)

10 48.66 0.7012 1.44
30 47.17 0.8569 1.82
50 49.75 0.9011 1.81
80 48.9 1.2499 2.56
120 49.61 1.1343 2.29
150 50.75 1.6399 3.23
200 55.04 1.8932 3.44
250 48.85 2.2097 4.52
320 51.2 3.2442 6.34
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and operated in a relatively linear regime. Galfenol exhi-
bits significantly less hysteresis than Terfenol-D and
other active materials.

CONCLUDING REMARKS

The steel-like structural properties of Galfenol
make this material attractive for composite unimorph
beam micro-positioners. The adhesive layer is shown
to reduce tip deflection, and the effect of this layer is
taken into account for optimal design of the unimorph.
A dynamic model is presented which quantifies the elec-
tromechanical response of the beam in transient or
steady-state conditions. The use of linear piezomagnetic
equations is justified in that Galfenol exhibits relatively
low hysteresis loss, especially when magnetically biased.
The field is assumed to be uniform along the length of
the beam, rotary inertias are ignored, and damping is
assumed to be frequency independent. Dynamic losses
due to eddy currents are ignored under the assumption
that the laminated construction of the composite beam
reduces dynamic losses. That being said, the measure-
ments do show an increase in dynamic losses with
increasing frequency. These losses will be quantified in
a future study. Despite these assumptions and limita-
tions, the linear model is extremely accurate without
the need for adjustable parameters over the frequency
range being considered. The relative simplicity of the
model is beneficial for design and control purposes.
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