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ABSTRACT: A coupled magnetomechanical model for the design and control of Villari-
effect magnetostrictive sensors is presented. The model quantifies the magnetization changes
that a magnetostrictive material undergoes when subjected to a dc excitation field and variable
stresses. The magnetic behavior is characterized by considering the Jiles–Atherton mean
field theory for ferromagnetic hysteresis. This theory is constructed from a thermodynamic
balance between the energy available for magnetic moment rotation and the energy lost
as domain walls attach to and detach from pinning sites. The effect of stress on magnetization
is quantified through a law of approach to the anhysteretic magnetization. Elastic properties
are incorporated by means of a wave equation that quantifies the strains and stresses which
arise in magnetostrictive materials in response to moment rotations. This yields a nonlinear
PDE system for the strains, stresses and magnetization state of a magnetostrictive transducer
as it drives or is driven by external loads. Because the model addresses the magnetomechanical
coupling, it is applicable to both magnetostrictive sensors and actuators. Properties of
the model and approximation method are illustrated by comparison with experimental data
collected from a Terfenol-D sensor.
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INTRODUCTION

A
S sensors become integrated in a growing number
of industrial, defense and medical applications, the

demand for improved sensor technologies for detection
of various physical parameters is rapidly increasing
(Ristic, 1994). Existing and potential applications
for magnetostrictive sensors are numerous because the
newer magnetostrictive materials, fabricated both in
crystalline and amorphous form, can exhibit compara-
tively large coupling coefficients in the conversion
of energy between the magnetic and elastic states.
Recognizing that the magnetostrictive response can be
described mathematically through invertible tensor
relations, the conversion between elastic and magnetic
energy is: (i) reciprocal and (ii) of linear or torsional
nature depending on whether the magnetic field is
longitudinal (xii directions) or circumferential
(xij directions) (Hunt, 1982; Seekercher and Hoffmann,

1990; Trémolet de Lacheisserie, 1993; Garshelis and
Conto, 1996). Linear and torsional sensing mechanisms
are thus possible with magnetostrictive materials. Direct
and inverse magnetostrictive effects applicable to
actuator and sensor modes of operation are summarized
in Table 1, while constructive details on such designs
can be found in (Trémolet de Lacheisserie, 1993).

Although magnetostrictive transducers provide ade-
quate performance at low signal regimes, the demand
for high performance transducers often dictates that
they be driven at or near full displacement, where
the presence of nonlinearities and path dependences
severely compromises the accuracy of conventional
linear formulations. Since the fundamental material
properties needed to design and control dynamic
smart material structures vary substantially as various
combinations of major, minor, symmetric and asym-
metric magnetization curves are traversed, no nominal
design parameters of the kind defined in linear models
can be determined without introducing significant
simulation or characterization errors. For this funda-*Author to whom correspondence should be addressed.
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mental reason, conventional linear models typically
require the construction of laborious experimental
look-up tables for properties such as elastic modulus,
damping, and stiffness. But since these properties are
magnetoelastic averages dependent on magnetic field,
stress, temperature, and frequency, pure experimental
methods present additional challenges concerning the
order and time rate in which the different inputs are
applied to a sensor (Atherton and Ton, 1990; Sablik and
Jiles, 1999). For magnetostrictive sensors to be compe-
titive with established sensor technologies, for example
those based on piezoelectricity, maximum performance
characteristics of the kind associated with nonlinear
regimes must be sought.

For operation in actuators and sensors, magneto-
strictive materials are customarily operated under
mechanical and magnetic bias conditions. The magnetic
bias is employed to center operation over regions of
maximum strain per unit magnetic field, thus enabling
bidirectional operation. The mechanical bias is
employed to induce magnetic moment alignment along
magnetically easy axis perpendicular to the drive axis,
thus leading to 90� moment rotations (Engdahl, 2000).
In addition, a mechanical bias is necessary for reliability
reasons to ensure that the magnetostrictive material
always operates in compression.

This paper addresses the modeling of Villari-effect
sensors whose active element is a magnetostrictive
element operated under mechanical and magnetic bias
conditions. The proposed model is sufficiently general to
provide characterization of actuation and sensing
effects. In actuation mode, strains and ensuing forces
arise as a result of magnetization changes which are
brought about by the application of magnetic fields.
Conversely, elastic deformations lead to measurable
changes in magnetization thus providing a mechanism
for sensing. Both modes of operation are inherently
coupled through the magnetomechanical coupling
and hence methods for addressing this form of coupl-
ing must be considered in models to be used in high
performance transducers. Only by addressing magnetic
hysteresis and magnetoelastic coupling effects in a
manner consistent with the physical properties of

magnetostrictive materials will models for intelligent
structures based on these materials be sufficiently
accurate to characterize the performance space of
existing and expected applications. It is emphasized
that transducer models able to characterize the magne-
tomechanical coupling lend themselves to the design of
collocated actuators and sensors. Demonstration of
the use of magnetostrictive materials for sensoriactua-
tion applications can be found in Pratt and Flatau
(1995), Jones and Garcia (1994).

The model is formulated in the context of the
transducer design shown in Figure 1, which illustrates
primary components needed to fully utilize the
advantageous properties of magnetostrictive materials.
These components include a magnetostrictive rod, an
excitation–sensing solenoid that provides the bias
magnetization and sensing voltage, a mechanical bias
or prestress mechanism consisting of a bolt and a spring,
a permanent magnet which is used in conjunction
with the solenoid to finely adjust the bias magnetization,
and magnetic couplers.

The model is presented in three steps. In the first, we
consider the magnetization MðH, �Þ of a magnetostric-
tive rod under a fixed dc magnetizing field H0 and a
variable stress field �. It is thus implicitely assumed
that the sensor is first magnetized at constant preload �0

by means of either a permanent magnet or a ramped
magnetic field with final value H0, and that the field-

Table 1. Magnetostrictive effects and their inverse.

Direct Effects Inverse Effects

Joule magnetostriction Villari effect
Change in sample dimensions in the direction of the applied field Change in magnetization due to applied stress

�E effect
Magnetoelastic contribution to magnetocrystalline anisotropy Magnetically induced changes in the elasticity

Wiedemann effect Matteuci effect
Torque induced by helical anisotropy Helical anisotropy and emf induced by a torque

Magnetovolume effect Nagaoka–Honda effect
Volume change due to magnetization

(most evident near the Curie temperature)
Change in the magnetic state due to a change in the volume

Figure 1. Magnetostrictive sensor used for model development and
experimental verification.
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induced magnetization has thereafter a constant value of
M0 ¼MðH0, �0Þ. The ac magnetization change arising
from the application of stress is then superimposed
on this dc value. The double dependency of the
magnetization on field and stress is represented
by Equation (1). To determine M0, we consider a
mean field model of ferromagnetic hysteresis as origin-
ally proposed in Jiles and Atherton (1986). The model
is constructed through consideration of the energy
dissipated when domain walls attach to and detach
from inclusions in a magnetostrictive material. To
determine the ac magnetization changes originated in
stress dependences, we consider a law of approach to the
anhysteretic magnetization as developed in Jiles (1995)
and extended to magnetostrictive transducers in
Dapino et al. (2000a).

The second step involves the quantification of the
magnetostriction � produced when a magnetostrictive
rod is magnetized. The relationship between magnetiza-
tion and strain is modeled by an even-terms series
expansion. Although � includes components of strain
arising from the rotation of magnetic moments, that
is those which give rise to magnetostrictions or active
strains, it does not account for passive or material
responses of the kind found in ordinary elastic materials
and modeled by sH� in the generalized Hooke’s law
" ¼ sH� þ d33H.

The passive effects are modeled in the third step
through consideration of force balancing in a magneto-
strictive rod in the form of a PDE that includes the
intrinsic magnetostriction, system compliance, internal
damping, and boundary conditions dictated by the
constructive details of the transducer under considera-
tion. The solution to this PDE provides the rod
displacements and corresponding total magnetoelastic
strain ". It is emphasized that under dynamic force
inputs, inertial effects yield nonuniform strain and stress
distributions along the length of the sensor element. The
proposed PDE formulation addresses such nonunifor-
mities and provides a framework which allows to
include other phenomena not included here, such as
magnetic end effects. Demonstration of the model in
magnetostrictive actuators exhibiting magnetic field
noniformities and related end effects can be found in
Dapino et al. (2000b).

Properties of the model and approximation method
are illustrated in the final section of the paper by
comparison of model results with experimental data
collected from a Terfenol-D sensor.

MAGNETIZATION MODEL

Components of a previous magnetomechanical model
(Dapino et al., 2000a) are summarized here to charac-
terize the magnetization of magnetostrictive rods as

employed in sensors comprising excitation and sensing
solenoids, a magnetic path, and means for mechanical
preloading. Because magnetization and stress are
coupled, magnetization models must be constructed by
considering both entities simultaneously. Unlike the
previous model, the present formulation includes
the effect of externally applied forces on the elastic
dynamics of the transducer as well as on the magnetic
regime. Inclusion of this effect is critical to the
implementation of force sensors, while also allowing
the magnetization model to perform more accurately
in cases where a magnetic field sensor is operated under
stress created by a surrounding structure. It is thus
assumed that the magnetization MðH, �Þ is due to a
dc magnetic field H0 in combination with an ac stress
� produced as a magnetostrictive material drives or is
driven by external loads. In order to provide a general
model of the performance of magnetostrictive sensors,
the time rate of change of magnetization is expressed as

dM

dt
ðtÞ ¼

@M

@H

� �
dH

dt
þ

@M

@�

� �
d�

dt
: ð1Þ

The Jiles–Atherton domain wall model (Jiles and
Atherton, 1986) is considered here as a basis for charac-
terizing the changes in magnetization that a magneto-
strictive material undergoes when subjected to a uniaxial
field, given by @M=@H, whereas a law of approach to the
anhysteretic magnetization is employed to quantify the
magnetomechanical effect @M=@� (Jiles, 1995). The field
derivative dH=dt is determined by the rate of application
of the bias magnetic field. For implementation purposes,
field HðtÞ is ramped from 0 to H0. The stress derivative
d�=dt must be determined from force balancing in a
magnetostrictive rod as discussed later. It is noted that
since dH=dt is null during sensor operation, so is
ð@M=@HÞ ðdH=dtÞ and hence the ac magnetization is
solely due to the alternating stress. Hence, the nominal
magnetization M0 can be provided by either a solenoid
or a permanent magnet as shown in Figure 1, and its
value can be determined theoretically by means of the
Jiles–Atherton model, or experimentally. The former
approach is employed here for the sake of generality.
Point ðH0,M0Þ on the magnetization plane represents
the nominal condition of the sensor under no external
force excitation, i.e., at constant � ¼ �0.

Constant-stress Magnetization

To model the differential susceptibility @M=@H, it is
necessary to quantify the energy lost when a material
in the ferromagnetic state is exposed to a cyclic uniaxial
magnetic field. Under the action of a magnetic field,
magnetic moments rotate toward the magnetic field
direction, giving rise to the processes of domain wall
motion and domain magnetization rotation (Jiles, 1998).
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Magnetic domains reorient so as to minimize the
total energy, thus producing changes in the bulk
magnetization.

In the idealized case of defect-free materials, on
reversal of the field the magnetic moments return to
their original orientations and the magnetization returns
to its original value. In ferromagnetic materials, how-
ever, defects such as crystal imperfections, cracks and
voids provide pinning sites to which domain walls attach
since the total energy decreases as pinning sites are
intersected by domain walls. For low magnetic field
intensities about an equilibrium value, the domain
walls remain pinned and bow in a reversible fashion,
producing reversible magnetizations. But when the field
intensity is sufficiently high so that the magnetic energy
overcomes the pinning energy, domain walls detach
irreversibly from the pinning sites and attach to remote
sites. This mechanism produces energy losses which lead
to magnetization hysteresis.

Assuming that no other loss mechanisms are present,
the energy supplied to a ferromagnetic material is either
converted into magnetostatic energy (total magnetiza-
tion) or dissipated in the form of irreversible magnetiza-
tion changes (hysteresis loss due to domain wall
pinning). This is formulated through an energy balance
in which the total magnetization is calculated from the
difference between the maximum possible magnetization
energy, attained in the anhysteretic state, and the energy
lost to pinning. The anhysteretic magnetization is cal-
culated using a modified formulation of the Langevin
equation (Jiles and Atherton, 1986), while the energy
lost to pinning is calculated in terms of a pinning
coefficient k that quantifies the density and strength of
pinning sites. It is noted that if there is no dissipation,
the magnetization must necessarily follow the minimum
energy anhysteretic curve.

We first consider the anhysteretic magnetization Man,
which is quantified using the Langevin formula
LðzÞ � cothðzÞ � 1=z, �1 < LðzÞ < 1. As detailed in
Jiles and Atherton (1986), Man has the form

Man ¼Ms LðHe=aÞ, ð2Þ

in which Ms is the saturation magnetization and the
constant a, representing the effective domain density, is
treated as a parameter to be estimated through a least
squares fit to data or through adaptive parameter
identification techniques. The effective magnetic field
He is found by minimization of a suitable thermo-
dynamic potential, and has the form

He ¼ H þ �M þH� ,

where H is the applied magnetic field, �M is the Weiss
interaction field responsible for the alignment of

neighboring magnetic moments within domains, and
H� � 3=ð2	0Þ ½@ð� "Þ=@M
 is the field due to magneto-
elastic interactions.

The differential equations for the irreversible Mirr

and reversible Mrev components of magnetization
(M ¼Mrev þMirr) can be shown to be (Jiles and
Atherton, 1986)

Mirr ¼Man � k 

dMirr

dHe
ð3Þ

Mrev ¼ c ðMan �MirrÞ, ð4Þ

where the parameter 
 is þ1 when dH=dt > 0 and �1
when dH=dt < 0 to ensure that pinning losses always
oppose the magnetization and c is a parameter that
quantifies the amount by which domain walls bulge
before breaking away from pinning sites.

The total magnetization is then dictated by the super-
position of their reversible and reversible contributions
given by (3) and (4) respectively,

M ¼Mirr þMrev ¼Man � k 
 ð1� cÞ
dMirr

dHe
:

This equation leads to the total differential susceptibility
@M=@H upon differentiation and subsequent application
of the chain rule. As detailed in Dapino et al. (2000b),
the total differential susceptibility has the form

@M

@H
¼ ð1� cÞ

Man �Mirr


 k�e��ðMirr, �Þ ðMan �MirrÞ
þ c

@Man

@H
:

ð5Þ

It is noted that in (5), the parameter e��ðMirr, �Þ re-
presents an effective coupling coefficient that combines
the interdomain coupling � and the magnetoelastic
interactions,

e��ðMirr, �Þ ¼ �þ
3

2	0

@2ð� "Þ

@M2
irr

:

Constant-field Magnetization

We now consider the changes in magnetization that
a magnetostrictive material undergoes when subjected
to a uniaxial stress, or magnetomechanical effect
@M=@�. Although extensive experimental evidence
suggests that the main mechanism governing the
magnetomechanical effect is the unpinning of domain
walls produced upon application of stress, at present no
single model theory completely describes the observed
behaviors. One description that has proved effective in
the analysis of magnetostrictive transducers has been
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proposed by Jiles (1995). On the basis of a key model
assumption that hysteresis originates primarily from
domain wall pinning, the freeing of domain walls from
their pinning sites is assumed to cause the magnetization
to change in such a way as to approach the anhysteretic
state.

Experimental measurements demonstrate that both
the magnitude and the direction of stress-induced
magnetization changes are profoundly influenced by
the magnetic history of the specimen (Pitman, 1990;
Jiles, 1995; Sablik, 1997). It has been observed that the
direction in which the magnetization changes with
applied stress is independent of the sign of the stress
for small stresses and when the magnetization is
sufficiently distant from the anhysteretic state. It is
then inferred that the direction of change is dependent
not on the stress itself, but on a quantity which is
independent of the sign of the stress. In this context, it
has been hypothesized in Jiles (1995) that this quantity is
the elastic energy per unit volume,W ¼ �2=ð2E Þ, which
is always independent of the sign of �. The ‘law of
approach’ to the anhysteretic state is then formulated
as follows: the rate of change of magnetization with
elastic energy is proportional to the displacement of
the prevailing magnetization from the anhysteretic
magnetization, or @M=@W /M �Man. The concept
of the law of approach is here applied to the
stress-induced magnetization of a magnetostrictive
material.

As in the constant-stress magnetization case, the
law of approach is modeled through irreversible
and reversible components. It is noted that to a first
approximation, the application of stress produces
irreversible magnetization changes since �M arising
from stress unloading is negligible. Thus, the law
of approach is formulated in terms of the irreversible
magnetization Mirr,

@Mirr

@W
¼

1

�
ðMan �MirrÞ, ð6Þ

where � is a coefficient, having dimensions of energy per
unit volume, that needs to be identified for magneto-
strictive materials. Application of the chain rule
@Mirr=@W ¼ ð@Mirr=@�Þ ð@�=@WÞ in (6), in combination
with the relation @W=@� ¼ �=E, yields

@Mirr

@�
¼

�

E �
ðMan �MirrÞ: ð7Þ

A similar argument to that used in the field-induced case
yields the reversible component,

@Mrev

@�
¼ c

@Man

@�
�
@Mirr

@�

� �
: ð8Þ

It is noted that the reversibility coefficient c is the same
as that defined in (4) because the energy available for
domain wall bulging should be independent of the
mechanism that produces the bulging, which can be
either field- or stress-induced.

Summing the irreversible and reversible contributions
given by (7) and (8) gives

@M

@�
¼ ð1� cÞ

�

E �
ðMan �MirrÞ þ c

@Man

@�
, ð9Þ

which is used to quantify the magnetomechanical
effect in a magnetostrictive material. Equation (9)
characterizes the law of approach from prevailing
magnetization values above or below the anhysteretic
curve. As depicted in Figure 2(a), changes in magnetiza-
tion will be negative or positive depending on the
position of the starting point M0 relative to the
anhysteretic curve. If the starting point is A, �M
is negative and the relation between magnetization
and stress is as given in inset (b), top. Conversely,
starting point B leads to positive values of �M, and
the magnetization traverses a curve like the one given
in inset (b), bottom. It is noted that in both cases the
field remains fixed at a value H0. Figure 3 illustrates
the shearing of the magnetization with increasing
compressive stress. Consistently with experimental
measurements on ferromagnetic materials, the law
of approach described by relation (9) is such that
when a magnetostrictive material is subjected to uniaxial
compressive or tensile stress, the magnetization tries
to approach the anhysteretic curve while the location of
this curve changes as the stress is applied. Further
details on this subject are given in Dapino et al. (2000a).

It is noted that on application of stress the magnetiza-
tion approaches a state of global energy equilibrium.
This implies that the anhysteretic magnetization Man

must in this case be quantified by iteration of the
Langevin function (2) until a solution which satisfies
the equation identically is found. Further details
regarding the differences between local and global
solutions for Equation (2) can be found in Dapino
et al. (2000a).

MAGNETOSTRICTION

In order to quantify the contribution of stress to the
magnetization given by relation (9), it is necessary to
characterize the strain and stress states. To this end, it is
necessary to consider first the deformations that a
magnetostrictive material undergoes when its domain
configuration changes. Several models exist for quanti-
fying these deformations, including phenomenological
formulations (Jiles, 1995), a quadratic law for domain
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magnetization rotation (Cullity, 1972), energy or ther-
modynamic formulations, elastomagnetic models,
micromagnetic theories (James and Kinderlehrer,
1993) and magnetization rotation analysis (Clark et al.,
1984). At low to moderate operating levels, or when
material stresses are invariant, these deformations dom-
inate over other material elastic dynamics. In such cases,
it is theoretically possible to quantify the bulk magne-

tostriction upon knowledge of the domain configuration
and the magnetostriction along easy crystallographic
axes. In the case of Terfenol-D, nominal values for the
latter are �111 ¼ 1600� 10�6 and �100 ¼ 90� 10�6, and
�s 
 1000�10�6. In practical terms, however, the
domain configuration cannot be known a priori.

To motivate the approach followed here, we con-
sider the particular case when the magnetic field is

Figure 2. Representation of the approach to the anhysteretic under stress, after (Pitman, 1990): (a) Arrows indicate law of approach from starting
positions M0 ¼ A and M0 ¼ B above and below the anhysteretic curve, for fixed H ¼ H0. In either case, M moves towards point X on the
anhysteretic curve; (b) Trajectory of magnetization change �M=Ms upon application and further removal of a compressive stress, starting at
point A (A ! X), and at point B (B ! X).

Figure 3. Model results of the effect of stress on the total magnetization (—), and on the global anhysteretic magnetization (� � �), for þ10, 0,
�10, and �20 MPa. A positive magnetostriction coefficient is assumed.
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applied perpendicular to the axis in which the magnetic
moments have been aligned by application of
sufficiently large compression in the case of a poly-
crystalline material such as Terfenol-D, or perpendicu-
lar to the easy crystallographic axis in a single crystal
with uniaxial anisotropy. In either case domain rotation
is the prevailing magnetization mechanism, and the
magnetostriction along the field direction is given by
(Cullity, 1972)

�ðMÞ ¼
3

2
�s

M

Ms

� �2

, ð10Þ

which predicts a quadratic relationship between � and
M. Relation (10) is single valued, while extensive
experimental evidence suggests that the �–M relation-
ship exhibits some degree of hysteresis. For transducer
modeling purposes, it is feasible to utilize a single valued
�–M functional to model the overall shape, and to let
M provide the path dependences through the hysteretic
mechanisms in M–H. This approach has proven eff-
ective in previous investigations (Dapino et al., 2000b).

It is noted that (10) is not sufficiently general when
domain wall motion is significant, such as when the
compressive stress acting on a Terfenol-D element is not
extreme (typically, j�0j < 6:9 to 20:7MPa). In order
to provide a more general magnetostriction model, we
consider a series expansion symmetric about M ¼ 0,

�ðMÞ ¼
X1
i¼0


i M
2i,

in which the coefficients 
i need to be identified from
experimental data. It is noted that quadratic relation
(10) is obtained by assuming i ¼ 1 with 
0 ¼ 0 and 
1 ¼
ð3 �sÞ=ð2M

2
s Þ. For implementation purposes, we con-

sider in this study a quartic law in which the series is
truncated after i ¼ 2,

�ðMÞ ¼ 
1M
2 þ 
2M

4: ð11Þ

It is noted that if the magnetization M varies along the
longitudinal rod axis, then the magnetostriction � will
also vary and hence be a function of x.

MAGNETOELASTIC COUPLING

The magnetostriction relation (11) represents the
strain arising from the reorientation of magnetic
moments toward the direction of applied bias field H0.
It was shown in Dapino et al. (2000b) that � provides a
generalization of the term d33H in linear models of the
form " ¼ sH � þ d33H. Equation (11) ignores, however,
the elastic properties of a magnetostrictive material as
it vibrates, as represented in linear models by sH�. Here,

a PDE system is employed to quantify the elastic
response of a magnetostrictive rod and relevant
components located in a transducer’s load path. The
inputs to this system are the magnetostriction � and the
external force Fext. The solution to the PDE is the
longitudinal displacements uðt, xÞ relative to the pre-
stressed position.

To formulate a model for the structural dynamics of
a magnetostrictive sensor, we consider in Figure 4 a
magnetostrictive rod, prestress bolt, prestress washer,
and mass load following the constructive details of
Figure 1. It is noted that the arbitrary external force
acting on the rod is denoted FextðtÞ. The prestress bolt
provides a stress �0 < 0 by compressing the magneto-
strictive rod against the washer, modeled by linear
spring kL and dashpot cL. The rod is assumed to have
length L, cross sectional area A, and longitudinal
coordinate x. The material density is �, the
elastic modulus is E, the internal (Kelvin–Voigt)
damping is cD, and the external load is modeled by a
point mass mL. It is emphasized that the value of
parameter E lies between that of the elastic modulus at
constant H, EH , and at constant B, EB. Since EH and
EB depend upon the field intensity (Dapino et al., 1997),
so does E. However, for simplicity E is treated as a
nominal or operational material stiffness.

Assuming linear elasticity and small displacements,
force balancing yields a wave equation for the rod
vibrations,

�
@2u

@t2
ðt, xÞ ¼

@�

@x
ðt, xÞ:

Here, the stress at cross sections x in the rod is given by
(Dapino et al., 2000b)

�ðt, xÞ ¼ E
@u

@x
ðt, xÞ þ cD

@2u

@x@t
ðt, xÞ � E �ðt, xÞ þ �0,

ð12Þ

where � is given by (11) and �0 is the applied prestress.
When integrated over a cross section, relation (12) yields
the total in-plane resultant N (N > 0 in tension, N < 0
in compression),

Figure 4. Schematic illustration of Villari-effect magnetostrictive
sensor subjected to external force FextðtÞ .
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Nðt, xÞ ¼ E A
@u

@x
ðt, xÞ þ cD A

@2u

@x@t
ðt, xÞ

� E A �ðt, xÞ þ A �0:

To obtain appropriate boundary conditions, it is first
noted that at the fixed end of the rod uðt, xÞ ¼ 0. At the
end x ¼ L, force balancing over an infinitesimal cross
section of the rod yields

Nðt, LÞ ¼ �mL
@2u

@t2
ðt, LÞ � cL

@u

@t
ðt, LÞ

� kL uðt, LÞ � FextðtÞ: ð13Þ

The negative sign implies that Fext > 0 produces a
compressive force in the magnetostrictive rod.

For implementation purposes, the model is formu-
lated in weak or variational form by multiplying the
strong form by test functions � followed by integration
throughout the length of the rod. This reduces the
smoothness requirements on the finite element basis
since displacements and test functions need to be
differentiated only once compared to the second deri-
vatives present in the strong form. The space of test
functions is V ¼ H1

Lð0,LÞ � f� 2 H1ð0,LÞ j�ð0Þ ¼ 0g, so
that for all �ðxÞ 2 V ,

Z L

0

�A
@2u

@t2
ðt, xÞ�ðxÞdx

¼�

Z L

0

cDA
@2u

@x@t
ðt, xÞþEA

@u

@x
ðt, xÞ�EA�ðt, xÞ

� �

�
@�

@x
ðxÞdx�

�
mL

@2u

@t2
ðt, LÞþ cL

@u

@t
ðt, LÞ

þkL uðt, LÞþFextðtÞ

�
�ðLÞ: ð14Þ

The solution uðt, xÞ to this equation defines the long-
itudinal displacements about the prestressed position
and completely defines the elastic state through the
strain, given by "ðt, xÞ ¼ @u=@xðt, xÞ, and the stress
�ðt, xÞ, given by (12). Iterative computation of stress
and magnetization based on relations (9), (12) and (14)
yields a fully coupled quantification of the magneto-
elastic state of a magnetic field or force sensor.

MODEL SUMMARY

The magnetoelastic model presented here charac-
terizes the behavior of a magnetostrictive sensor in
response to two excitations: (i) a bias magnetic field H0

applied at a known rate dH=dt and (ii) a stress �
originated from both the externally applied force and
the strain produced by the material as it is magnetized.
It is emphasized that in this formulation the magnetic

and elastic regimes, represented byM and � respectively,
are coupled in accordance with the bidirectional energy
transduction process exhibited by magnetostrictive
materials. The model addresses both the actuation and
sensing regimes by means of a unified mechanism.
In actuator mode, externally applied magnetic fields
produce magnetization changes which lead to strains
and forces produced by a transducer as it drives external
loads. In sensor mode, externally applied forces produce
magnetization changes which can be detected through
the emf created in a sensing coil wrapped around a
magnetostrictive rod. The model quantifies the relation-
ship between input and output in either case.

In the presence of a magnetic field H and a stress
distribution �, the magnetization of a magnetostrictive
rod is dictated by the superposition of the field- and
stress-dependent components given by (5) and (9),

dM

dt
ðt, xÞ ¼ ð1� cÞ

Manðt, xÞ�Mirrðt, xÞ


k�e��ðMirr,�Þ ðManðt, xÞ�Mirrðt, xÞÞ

�

þ c
@Man

@H
ðt, xÞ

	
dH

dt
ðt, xÞ

þ ð1� cÞ
�ðt, xÞ

E �
ðManðt, xÞ�Mirrðt, xÞÞ

�

þ c
@Man

@�
ðt, xÞ

	
d�

dt
ðt, xÞ: ð15Þ

To characterize dH=dt, it is necessary to quantify first
the field Hðt, xÞ generated by a solenoid when a current
IðtÞ circulates through it. It is often assumed that
HðtÞ ¼ (No. turns/length) IðtÞ. However, this model is
only valid in the idealized case of a lossless, infinitely
long solenoid in a lossless magnetic circuit. A more
accurate modeling approach consists of identifying H–I
by solving numerically Ampère’s law or the Biot Savart
law using, for example, finite element methods. For
purposes of implementing the proposed model, the H–I
relationship is determined experimentally. The corre-
sponding solenoid model is then written in the form,

Hðt, xÞ ¼ Ns�ðxÞ IðtÞ, ð16Þ

where Ns is the number of turns in the solenoid and
parameter �ðxÞ, which needs to be measured from
experimental data, is employed to account for solenoid
end effects, demagnetizing factors, ohmic losses and flux
leakage.

Upon substitution of (16) into (15), the final form for
the time rate of change of magnetization is determined,
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dM

dt
ðt, xÞ ¼ ð1� cÞ

Manðt, xÞ�Mirrðt, xÞ


k�e��ðMirr,�Þ ðManðt, xÞ�Mirrðt, xÞÞ

�

þc
@Man

@H
ðt, xÞ

	
Ns�

dI

dt
ðtÞ

þ ð1� cÞ
�ðt, xÞ

E �
ðManðt, xÞ�Mirrðt, xÞÞ

�

þc
@Man

@�
ðt, xÞ

	
d�

dt
ðt, xÞ, ð17Þ

which yields Mðt, xÞ upon integration. It should be
noted that in the case of constant stress (d�=dt ¼ 0) or
constant field (dI=dt ¼ 0), the expression reduces to the
individual components characterized by expressions (5)
and (9).

After the magnetization Mðt, xÞ arising from the
application of Hðt, xÞ and �ðt, xÞ has been identified,
active strains are computed from relation (11),

�½Mðt, xÞ
 ¼ 
1M
2ðt, xÞ þ 
2M

4ðt, xÞ,

where it is noted that since � depends on the applied
magnetic field, it is not homogeneous throughout the
rod. Hence, the magnetostriction varies along x.

The longitudinal rod displacements uðt, xÞ are com-
puted from (14)

Z L

0

�A
@2u

@t2
ðt, xÞ�ðxÞdx

¼�

Z L

0

cDA
@2u

@x@t
ðt, xÞþEA

@u

@x
ðt, xÞ�EA�ðt, xÞ

� �

�
@�

@x
ðxÞdx�

�
mL

@2u

@t2
ðt, LÞþ cL

@u

@t
ðt, LÞ

þkL uðt, LÞþFextðtÞ

�
�ðLÞ: ð18Þ

To approximate the solution to this equation, a
Galerkin discretization in x is used to obtain a temporal
system which is then solved with finite difference
approximations. Details regarding this solution
method are provided in Dapino et al. (2000a). Once
the displacements have been characterized, the strains
are computed directly through the relation

"ðt, xÞ ¼
@u

@x
ðt, xÞ,

and the corresponding stresses acting on the rod are
computed directly from the strain using (12),

�ðt, xÞ ¼ E
@u

@x
ðt, xÞ þ cD

@2u

@x@t
ðt, xÞ � E �ðt, xÞ þ �0:

EXAMPLE

Relation (18) is now employed to characterize the
magnetization changes produced by a Terfenol-D sensor
with configuration as illustrated in Figure 1 in response
to an externally applied force. The force was generated
with a PZT-5A piezoelectric stack and its magnitude
was measured with a PCB 086C03 load cell arranged as
indicated in Figure 5. The complete device was rigidly
clamped to the wall at each end.

The measured output from the sensor during opera-
tion included the sensing voltage VðtÞ and impressed
force FextðtÞ. The prestress applied to the rod was
�0 ¼ �3:45MPa. A bias field of magnitude
H0 ¼ 75:8 kA/m was applied with an Alnico V perma-
nent magnet which was slit longitudinally to reduce
eddy current losses. Steel end caps and a Belleville
compression washer completed the magnetic circuit.

The magnetostrictive material was a 50mm long,
6.35mm diameter monolithic Tb0:3Dy0:7Fe1:92 rod man-
ufactured by the Free Stand Zone Melt process. The
sensing signal was provided by a1100–turn solenoid
wound with AWG26 magnet wire. The magnetic
induction BpuðtÞ was calculated by integration of the
sensing signal VðtÞ. Following the Faraday–Lenz law of
magnetic induction, BpuðtÞ ¼ �1=ðNpu ApuÞ

R t
0
Vð�Þ d�.

Here, Apu is the mean cross sectional area and Npu
is the number of turns of the sensing solenoid.
Figure 6(a)–(c) show respectively the 50Hz applied
force, sensing voltage and magnetic induction data
obtained in the case of 550V volts applied to the PZT
stack.

For simulation purposes, the material was magnetized
by applying a quasistatic (1Hz) sinusoidal current
until a prescribed bias field value H0 was reached. The
field value remained unchanged thereafter to ensure
a constant magnetization bias during operation. The
magnetic induction was calculated from the model
magnetization M and the applied field H via the
magnetic constitutive relation B ¼ 	0 ðM þHÞ, where
	0 is the permeability of free space. It is noted that
while the derivative dB=dt provides a characterization
of the sensing voltage through V ¼ �Npu Apu dBpu=dt,
derivatives of quantities involving experimental data

Figure 5. Schematic representation of the assembly used to drive
the magnetostrictive sensor. Measured input was driving force FðtÞ,
while measured output was sensing voltage VðtÞ.
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typically exhibit significant noise, thus precluding a
proper comparison of measured and calculated sensing
voltages. For this reason, a comparison is established
between measured and calculated induction, Bpu and B,
respectively.

Basic properties of the model are illustrated in
Figure 6(d). The model provides a very accurate
representation of the magnetic induction in the
magnetostrictive rod in both the shape and amplitude
of the measured response. The minor phase lag of the
model with respect to the data may be explained by eddy
current losses in the rod arising due to the 50Hz
frequency of operation. Use of a laminated sample
might result in a decreased phase discrepancy between
measurements and model results.

CONCLUDING REMARKS

A magnetomechanical model for quantifying the
behavior of magnetostrictive materials as used in
Villari-effect sensors has been presented. The model
addresses the bidirectional energy transduction between
the magnetic and elastic regimes by means of a coupling
mechanism posed in terms of a PDE system. This PDE
system characterizes the case of a magnetostrictive
material driving external loads (actuator mode) or
being driven by external loads (sensor mode).
Although some model components are ultimately
based on phenomenological observation, crucial aspects
of the model are constructed from thermodynamic
principles. For this reason, it is expected that a near-
constant set of parameters will provide accurate

Figure 6. Experimental data: (a) Force applied to sensor; (b) Sensing voltage from sensor; (c) Magnetic induction computed from (b). Model
performance: (d) Comparison of magnetic induction from model with data shown in (c). The parameters used for model simulation are:
a ¼ 7000 A/m, k ¼ 7000 A/m, c ¼ 0:2, � ¼ 0:065, E ¼ 40 GPa, � ¼ 9250 Kg/m3, 
1 ¼ 2:95 � 10�15 m2 / A2, 
2 ¼ �6 � 10�28 m4 / A4,
� ¼ 8 � 103 Pa, cD ¼ 1 � 106 Ns/m, cL ¼ 1 � 103 Ns/m, kL ¼ 2:66 � 106 N/m, mL ¼ 0:1 kg, �0 ¼ �3:45 MPa, L ¼ 50 mm, D ¼ 6:35 mm.
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characterization of sensor performance over a wide
range of regimes, including highly nonlinear regimes
where prior models provide inaccurate results.

The example demonstrated the use of the model to
quantify the magnetic induction changes exhibited
by a magnetically biased and mechanically preloaded
Terfenol-D rod subjected to external forces. This
example provides a template for applications based on
magnetostrictive materials in which the induction
changes created in a magnetostrictive rod are used to
generate voltages in a surrounding sensing coil. It was
shown that the model accurately characterizes the
relationship between input force and output magnetic
induction under typical conditions.
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