
ARTICLE IN PRESS

Journal of Magnetism and Magnetic Materials 322 (2010) 3028–3034
Contents lists available at ScienceDirect
Journal of Magnetism and Magnetic Materials
0304-88

doi:10.1

� Corr
�� Pri

E-m

dapino.
journal homepage: www.elsevier.com/locate/jmmm
Anisotropy of constrained magnetostrictive materials
Chaitanya Mudivarthi a,�, Supratik Datta b, Jayasimha Atulasimha c, Phillip G. Evans d,
Marcelo J. Dapino d,��, Alison B. Flatau a,b,��

a Materials Science and Engineering, University of Maryland, College Park, MD-20742, USA
b Aerospace Engineering, University of Maryland, College Park, MD-20742, USA
c Mechanical Engineering, Virginia Commonwealth University, Richmond, VA-23284, USA
d Mechanical Engineering, The Ohio State University, Columbus, OH-43210, USA
a r t i c l e i n f o

Article history:

Received 18 November 2009

Received in revised form

14 April 2010
Available online 15 May 2010

Keywords:

Magnetostriction

Magnetoelastic

Magnetocrystalline

Anisotropy

Energy

Delta K

Three-dimensional
53/$ - see front matter & 2010 Elsevier B.V. A

016/j.jmmm.2010.05.024

esponding author.

ncipal corresponding authors.

ail addresses: chaitanya.mudivarthi@gmail.co

1@osu.edu (M.J. Dapino), aflatau@umd.edu (A
a b s t r a c t

The magnetic anisotropy of a ferromagnetic material that is free to deform is defined as the effective

anisotropy, which is the sum of intrinsic anisotropy and magnetostriction-induced anisotropy. Prior

works [1,2] (Baltzer, 1957; Kittel, 1949) indicate that if the material is undeformed then the measured

anisotropy is same as its intrinsic anisotropy. When magnetostrictive materials are used as actuators or

sensors they are often mechanically loaded, resulting in a restriction on the deformation. To capture

their behavior in such scenarios, a modelling approach is required. Therefore, in this work, the

thermodynamic accuracy of the common expressions for magnetostriction-induced and stress-induced

anisotropies is first investigated. A 3D magnetoelastic model is then developed using Armstrong’s

implementation of an energy model. This 3D magnetoelastic model is capable of predicting the stresses

induced when the magnetostriction of these materials is constrained. Using this model, it is shown that

when the bulk magnetostriction of the material is clamped, the measured anisotropy will not in general

be the same as the intrinsic anisotropy. It is also shown that when the magnetostriction is clamped at

the microscopic level, i.e. if the material is locally constrained at the exchange length scales, then the

measured anisotropy is the intrinsic anisotropy.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The total energy of a magnetostrictive material is expressed as
the sum of effective magnetocrystalline anisotropy EK

eff, exchange
Eexch, magnetostatic Ems, stress-induced anisotropy Es, and
magnetic work (Zeeman energy) Wmag ¼ m0M � H energies, where
M¼Ms½a1 a2 a3�

T is the magnetization, a are the magnetization
direction cosines, and H is the applied magnetic field:

E¼ Eeff
K þEexchþEmsþEs�Wmag : ð1Þ

While micromagnetic models [3] minimize the energy expression
in Eq. (1), most macroscopic models [4–6] neglect the Eexch. This is
reasonable as the Eexch manifests only when there is a magnetiza-
tion gradient, i.e. near the domain walls, and thus makes up only a
small fraction of the total energy of a sample. Further, macro-
scopic models mentioned above consider only the internal
magnetic fields ignoring the demagnetizing effects from the Ems.
The energies EK

eff, Es and Wmag are used in all the models. The Es is
ll rights reserved.
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sometimes referred to as magnetoelastic energy [7–10]. However,
the works of Kittel [2] and Chikazumi [11] show that this is
actually the stress-induced anisotropy energy. The expression for
the magnetoelastic energy involves strains while the expression
for stress-induced anisotropy does not. This apparent contra-
diction will be explained in Section 2.

The effective magnetocrystalline anisotropy energy EK
eff is

defined [1,2] as the anisotropy of a single crystalline magnetos-
trictive sample that is allowed to freely deform. For cubic
materials, this is expressed as

Eeff
K ¼ Keff

1 ða
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The EK
eff is the sum of the anisotropy of an undeformed sample

called intrinsic magnetocrystalline anisotropy energy

E0
K ¼ K0
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and magnetostriction-induced anisotropy energy

DEK ¼DK1ða2
1a
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2
1Þ: ð4Þ

The constants K1 and K2 are the fourth and sixth order cubic
anisotropy constants, respectively. From the above equations,

Keff
1 ¼ K0

1þDK1: ð5Þ
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Measurements of the anisotropy of samples that are free to
deform give the effective anisotropy. The intrinsic anisotropy is
then obtained by subtracting the magnetostriction-induced
anisotropy, calculated using theoretically derived expression for
DK1 [1,2]. The expression for DK1 was derived by Kittel [2] and
Chikazumi [11] by calculating the elastic energy due to lattice
distortion caused by magnetostriction. However, their derivation
did not consider the mechanical work energy due to applied
stresses. Also, external stresses were not included in the
derivation of the equilibrium strains. Moreover, the expression
used for Es was derived using only the mechanical strains
produced due to applied stresses while ignoring the magnetoe-
lastic strains. Section 2 of this work derives expressions for the Es
and DK1 while including the mechanical work energy. The
resulting expressions are the same as those in the literature and
hence their thermodynamic accuracy is verified.

Kittel also indicates that if a sample can be held at constant
strain it is possible to experimentally determine the intrinsic
anisotropy. Secemski et al. [12] and Kuriki et al. [13] reported that
their anisotropy measurements of single crystalline Nickel films
were intrinsic anisotropy values instead of effective anisotropy
values. They reasoned that because the films used for measure-
ments were fully constrained by the underlying substrates, the
films could be assumed as undeformed during the measurements.
They then added the theoretically calculated magnetostriction-
induced anisotropy to their measured values to compare with the
bulk values.

Models for prediction of actuation/sensing behavior of mag-
netostrictive materials often use effective anisotropy energy,
which should be valid as long as the modeled samples are not
constrained. However, in recent works [14–16] modeled results
were shown to agree with the experimental results even for
constrained samples leading to an apparent discrepancy. There-
fore, in this paper we develop an understanding of how
constraining a sample’s magnetostriction affects its anisotropy.

In Section 3, the difference between clamping a material at the
microscale and macroscale is discussed. The modelling approach
to predict the response of the material when clamped micro-
scopically and macroscopically is outlined. Using this model, it is
shown that the measured anisotropy will be equal to the intrinsic
anisotropy only if the sample is microscopically clamped.
2. Energy derivation

All energy expressions used or derived in this section are for
materials with cubic symmetry, as most widely used magnetos-
trictive materials like Nickel, Terfenol-D and Galfenol are cubic or
near-cubic. As discussed in the Introduction, commonly used
energy-based models [4–6] use the total energy of the system
ET ðaÞ ¼ Eeff

K þEs�m0M �H. The stress-induced anisotropy energy

Es ¼�3
2l100sfa2

1g
2
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2þa

2
3g

2
3g

�3l111sða1a2g1g2þa2a3g2g3þa3a1g3g1Þ ð6Þ

was derived in [2,11], where l100 and l111 are the magnetostric-
tion constants and c are the direction cosines of externally applied
stress r. The internal or dependent state of the system using
energy potential ET is magnetization (a to be more precise).
However, nonlinear modelling of the magnetomechanical effect
usually involves the calculation of the system’s free energy [17],
where the internal states are magnetization and strain and the
work energy is due to externally applied mechanical stresses and
magnetic fields.

Despite using an energy potential that lacks strain as an
internal state and not including the mechanical work energy term,
predictions of the models agree well with experiments. The
Armstrong model, in particular, has been used quite successfully
to model both actuation and sensing behavior of Iron-Gallium
alloys [7,14,18,19]. Moreover, the expression for Es was derived
[2,11] using only the mechanical strain induced by the applied
stress while ignoring the magnetoelastic strain. Therefore, the
energy expression is re-derived starting with Gibbs free energy
with strain and magnetization as the internal states to verify the
thermodynamic accuracy of the energy potential ET.

It is reasonable to assume the process of magnetization
(domain reorientation) to be isothermal and that any entropy
change associated with it is negligible, thereby reducing the Gibbs
free energy to the enthalpy of the system. For a Stoner–Wohlfarth
particle [20], the enthalpy H with natural dependence on field H
and stress r, using six-element vector notation, is

HðH,rÞ ¼UðM,eÞ�e � r�m0M �H, ð7Þ

where the internal energy U depends on magnetization M and
strain e according to

UðM,eÞ ¼ E0
K ðaÞþb � eþ1

2e � Ce: ð8Þ

The intrinsic anisotropy energy EK
0 given in Eq. (3) depends on

magnetization orientation a alone. The second internal energy
term is the magnetoelastic energy b � e [21,11], where

b¼ ½B1ða2
1�

1
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This energy depends on both strain and magnetization orientation
through the magneto-mechanical coupling coefficients B1 and B2.
The last internal energy term is the elastic energy with the stiffness

C ¼

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

2
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3
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: ð10Þ

The total magnetic and magneto-mechanical coupling energy
ET, useful for calculating magnetization, will be derived by
substituting the stress and field dependent strain into the
enthalpy (7) and dropping terms that do not depend on a. From
either @U=@r¼ e or @H=@e¼ 0, the equilibrium strain is

e¼ C�1r�C�1b, ð11Þ

¼ emechþk, ð12Þ

where the magnetostriction is given by
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The equilibrium strain derived earlier [2,10,11,22] for zero
stress included only the second part of Eq. (11), which is the
magnetostrictive strain k. By including the external stress, it is
shown here that the equilibrium strain is a superposition of the
purely mechanical emech and magnetostrictive strains.

Substitution of (11) into (7) and noting that the compliance
C�1 is symmetric yields

H¼ E0
K�

1
2 b � C�1b�C�1b � r�1

2r � C
�1r�m0M � H, ð15Þ
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and using (12)

H¼ E0
K�

1
2 k � Ck�k � r�1

2r � C
�1r�m0M � H: ð16Þ

The strain energy density from magnetostriction depends only on
the magnetization orientation and using (13) can be incorporated
into the anisotropy energy
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Using Eeff
K ¼ E0

KþDK1ða2
1a2

2þa2
2a2

3þa2
3a2

1Þ, the resulting expression
for the enthalpy is

HðH,rÞ ¼ Eeff
K ðaÞ�k � r�1

2r � C
�1r�m0M �H, ð18Þ

which is thermodynamically accurate since the relations
@H=@e¼ 0 and @H=@r¼�e still hold. Noting that M ¼Msa, the
equilibrium magnetization orientation can be calculated from
@H=@a¼ 0. Since the strain is already known, purely mechanical
terms are no longer needed. The total magnetic and magneto-
mechanical energy is then

ET ðH,rÞ ¼ Eeff
K ðaÞ�k � r�m0M � H, ð19Þ

and the magnetization orientation can be calculated from
@ET=@a¼ 0. For an applied longitudinal stress s with direction
cosines g1, g2, and g3

�k � r¼ Es ¼�3
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For a field H applied with direction cosines b1, b2, and b3 the
energy is

ET ðH,rÞ ¼ ðK1þDK1Þða2
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The 1/3 terms in the magnetostriction (13) have been dropped
since they result in purely mechanical terms. The energy (21)
with 1D inputs is the expression used in the Armstrong’s
implementation of the energy model [5]. Any stress state can
be decomposed into three principal, longitudinal stresses sj with
direction cosines gj,1, gj,2, and gj,3. Hence for 3D applications
the energy

ET ðH,rÞ ¼ ðK1þDK1Þða2
1a

2
2þa

2
2a

2
3þa

2
3a

2
1ÞþK2ða2

1a
2
2a

2
3Þ

�
X3

j ¼ 1

3

2
l100sjða2

1g
2
j,1þa

2
2g

2
j,2þa

2
3g

2
j,3Þþ3l111sjða1a2gj,1gj,2

�

þa2a3gj,2gj,3þa1a3gj,1gj,3Þ

i
�m0MsHða1b1þa2b2þa3b3Þ,

ð22Þ

or the expression (19) can be used to calculate the magnetization
orientation.

The above derivation assumed that the material’s deformation
is unconstrained. Therefore, as long as the material is free to
deform the measured anisotropy will be the effective anisotropy.
It is also clear from the derivation that the expressions for both
DK1 and Es are thermodynamically consistent.

Kittel [2] and Baltzer [1] described that if the material is held
under iso-strain condition then the measured anisotropy should
be equal to the intrinsic anisotropy. Therefore, in the next section,
the anisotropy of the material whose deformation is constrained
is investigated.
3. Magnetoelastic modelling for iso-strain condition

The simplest case of an iso-strain condition is if the initial
strain state is zero. Substituting e¼ 0 in Eq. (7) and using Eq. (8)
yields

H¼ E0
K�m0M � H: ð23Þ

The anisotropy contribution to the enthalpy is only from the
intrinsic anisotropy of the material. Therefore, if e¼ 0 can be
maintained then the measured anisotropy will in fact be the
intrinsic anisotropy as Kittel and Baltzer described [1,2].

The usual anisotropy measurement procedure is to measure
the internal energy at constant strain in two directions and
compare the difference with the theoretical expression for
anisotropy energy in the two directions, since UðM1,e0Þ�

UðM0,e0Þ ¼DU ¼
RM1

M0
H dM. If exchange and demagnetizing en-

ergies are negligible, then DU is a linear combination of the
anisotropy constants, thus K1 and K2 can be calculated by
measuring DU for two different endpoints ðM0,M1Þ.

As noted earlier, the enthalpy expression in Eq. (7) gives the
energy associated with a Stoner–Wohlfarth particle with magne-
tization oriented along a direction a. The Stoner–Wohlfarth
particle is a single domain hypothetical particle of a ferromagnetic
material [20]. Since there is always a possibility of a single domain
breaking up into multiple domains, one can assume the Stoner–
Wohlfarth particle to be of dimensions less than the exchange
length. We refer to holding e¼ 0 at these length scales as
microscopic clamping.

In practice, however, bulk or macroscopic quantities are
usually measured. For example, a strain gage measures the
average strain over the gage area and an induction pick-up coil
measures the average induction over its cross-section. We refer to
maintaining a constant measured bulk strain as macroscopic

clamping. To study the effect of using macroscopic quantities with
the microlevel (Stoner–Wohlfarth particle) energy, a model is
needed for evaluating the macroscopic magnetization /MS and
magnetostriction /kS. In order to do this, the knowledge of
equilibrium domain configuration (spatial distribution of
moments) is essential. This can be calculated by minimizing the
energy in Eq. (1). Zhang et al. [3] performed such a calculation
using micromagnetic simulation. Using the equilibrium domain
distribution, the macroscopic magnetization and magnetostric-
tion were calculated. However, solving for equilibrium a as a
function of x involves spatial discretization of the sample volume
leading to substantial computational times. Therefore, such
simulations are suitable only for samples of smaller volumes.
Most commonly used magnetomechanical models like Jiles [23],
Armstrong [5], and Evans and Dapino [9] use the energy
expression (21) ignoring the only term that is spatially dependent
Eexch. This is a valid approximation as Eexch depends on the
gradient of a and hence is zero everywhere in the sample except
within the domain walls. Since domain walls constitute small
fraction of the sample volume, it can be safely ignored. These
models also ignore Ems and hence the effects due to the
demagnetization fields are not considered. This can be mitigated
by performing measurements in closed magnetic circuits. Because
of the omission of the spatial energy terms, it is impossible for
these models to explicitly calculate the domain configuration.
Therefore, they either use an empirical or probability distribution
function to overcome this problem.

For example, Jiles [23] calculated the magnetization and
magnetostriction of Terfenol-D by using an empirical fit of a
Langevin function to measured curves instead of using equili-
brium domain configuration. Armstrong [5], on the other hand,
calculated the macroscopic magnetization and magnetostriction
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using a probabilistic approach. The fractional volumes of the
material with moments oriented in a particular direction were
calculated using a probability distribution that assigns a higher
probability to a direction with lower energy. Evans and Dapino [9]
used a similar probabilistic approach but included losses
associated with moment flipping between energy wells.

For the purpose of evaluating the /MS and /kS, we employ
the Armstrong model described in detail in the next section.

3.1. Macroscopic magnetization and magnetostriction

To calculate the macroscopic magnetization /MS and magne-
tostriction /kS it is essential to calculate the equilibrium domain
configuration by minimizing the energy in Eq. (1). For reasons
discussed above, the Eexch, which is a function of spatial coordinates
and the Ems are ignored and the resulting energy in Eq. (22) is used.
As a result, it is impossible to explicitly calculate the domain
configuration. Therefore, a probabilistic approach is used to
calculate the volume of the material with moments oriented along
a particular direction. Lower energy orientations are more probable.
This can be quantitatively defined using an exponential probability
density function (pdf). The probability of the magnetization to be
oriented along a direction ðy,fÞ will therefore be

f ðy,fÞ ¼
e�ET ðy,fÞ=oR

e�ET ðy,fÞ=o dO
, ð24Þ

where o is the scale parameter, y and f are the azimuthal and
elevation angles, respectively, and dO¼ sinydydf. The direction
cosines a are related to (y,f) as a1 ¼ sinycosf, a2 ¼ sinysinf, and
a3 ¼ cosy. Since Eexch and Ems, which dictate the domain configura-
tion are ignored, the enthalpy is scaled using o, which is an
empirical parameter such that meaningful probabilities occur in the
desired range of energy.

Using the pdf, volume Vy,f of the material with magnetization
oriented along ðy,fÞ can be written as

Vy,f ¼ Vf ðy,fÞ, ð25Þ

where V is the total volume of the sample. Utilizing Eq. (25), the
macroscopic magnetization /MS can be calculated as

/MS¼
1

V

Z
MVy,f dO¼

Z
Mf ðy,fÞdO: ð26Þ

Similar to the calculation of /MS, macroscopic magnetostriction
/kS can be evaluated as

/kS¼
Z

kf ðy,fÞdO: ð27Þ

The scale parameter o is estimated by comparing the model
predicted /MS or /kS values with measured values. Since this
approach does not explicitly calculate the domain configuration
rather uses a pdf to determine the volume fractions corresponding
to different orientations, an error in the modelling is unavoidable.
However, this error was shown to be small [5,7].

Thus calculated macroscopic values of magnetostriction /kS
can be used to evaluate the stress induced when a sample is
macroscopically constrained.

3.2. Blocked stress calculation

When the material is blocked, the macroscopic average
magnetostriction calculated using Eq. (27) leads to an induced
stress. To calculate this induced stress, the constitutive equation,
which is a 3D form of Hooke’s law relating strain and stress must
be used

r¼ Cðe�/kSðH,rÞÞ: ð28Þ
When the material is clamped in all directions the total strain
equals the pre-strain e¼ e0. The pre-strain e0 has two compo-
nents. The first component is the mechanical strain C�1r0 while
the second is the magnetostriction /kSðH0 ,r0Þ

due to the applica-
tion of pre-stress r0 and initial field H0. Therefore,

e¼ C�1r0þ/kSðH0 ,r0Þ
: ð29Þ

Substituting this into Eq. (28) and subtracting the pre-stress gives
the induced stress

rind ¼ Cð/kSðH0 ,r0Þ
�/kSðH,rÞÞ: ð30Þ

For cases where not all the directions are blocked, a constraint
vector ½bl11 bl22 bl33 bl12 bl23 bl13� describing which of the strains
are blocked can be defined. For example, bl11¼1 indicates that e11

is blocked.
If all the strains are blocked (blij¼1) then the total strain is the

pre-strain e¼ e0 and if none of the strains are blocked (blij¼0)
then the total stress is the pre-stress r¼ r0. For mixed cases
where strain along only selected directions is blocked, we can
combine the statements for blij¼1 and 0 cases to get

ACeþðI�AÞr¼ACe0þðI�AÞr0, ð31Þ

where

A ¼

bl11 0 0 0 0 0

0 bl22 0 0 0 0

0 0 bl33 0 0 0

0 0 0 bl12 0 0

0 0 0 0 bl23 0

0 0 0 0 0 bl13

2
6666666664

3
7777777775
: ð32Þ

Eqs. (28) and (31) can be represented in a matrix form

C �I

AC ðI�AÞ

" #
e

r

� �
¼

C/kSðH,rÞ

ACe0þðI�AÞr0

" #
: ð33Þ

The strain (eind) and stress (rind) induced can be calculated
from the total strain (e) and stress (r) evaluated from Eq. (33) by
subtracting the pre-strain (e0) and pre-stress (r0), respectively,

eind ¼ e�e0, rind ¼ r�r0: ð34Þ

The final equation (35) for calculating eind and rind can be
obtained by combining Eqs. (33) and (34)

eind

rind

" #
¼

C �I

AC ðI�AÞ

" #�1
C/kSðH,rÞ

ACe0þðI�AÞr0

" #
�

e0

r0

" #
: ð35Þ

Eq. (35) gives the induced stress (rind) in the material due to
/kSðH,rÞ when a magnetic field is applied. Since the energy is also
a function of stress, the induced stress changes the ET and hence
/MSðH,rÞ and /kSðH,rÞ. Therefore, in the first iteration the stress in
the material is assumed to be the pre-stress r¼ r0 and then the
macroscopic quantities /MSðH,r0Þ

and /kSðH,r0Þ
are evaluated.

Using these, the stress in the material is updated as r¼ r0þrind.
The updated stress is again used to re-evaluate /MSðH,rÞ and
/kSðH,rÞ. This process is iterated until the solution converges as
shown in the flow chart in Fig. 1.
4. Results and discussion

From the energy expression derived in Section 2, it can be said
that the energy potential often used in magneto-mechanical
models is thermodynamically consistent as long as the effective
anisotropy is used, i.e., K1

eff. Table 1 shows the reported values of
K1

eff along with the calculated values of DK1 using Eq. (17) with
values of the magnetostriction and elastic constants for different
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cubic magnetostrictive materials. Using DK1, the intrinsic
anisotropy constant K1

0 is then calculated.
The intrinsic anisotropy constant K1

0 deviates from the K1
eff by

about 0.3% and 10% for Fe and Ni, respectively. However, the
deviation for Tb0.3Dy0.7Fe1.9, Fe81Ga19, and Fe80Ga20 is 101%, 31%
and 196%, respectively. This shows that while it is not that
important whether intrinsic or effective anisotropy values are
used for modelling Fe and Ni, it becomes extremely important
when dealing with alloys like TbDyFe and FeGa.

To study if the anisotropy of a macroscopically clamped
sample is the intrinsic anisotropy only, the magnetoelastic model
developed in Section 3 is used. The induced stress rind and
Fig. 1. Flow chart of the model.

Table 1

DK1 for different materials.

Material 1
2ðc11�c12Þ c44 l100

Fe 49 [24] 118 [24] 24 [17]

Ni 50 [25] 125 [25] �66 [17]

Tb0.3Dy0.7Fe1.9 38 [26] 49 [26] 90 [5]

Fe81Ga19 16 [28] 110 [28] 247 [29]

Fe80Ga20 12.5 [28] 110 [28] 267 [29]

Elastic constants c11, c12 and c44 are in GPa. Magnetostrictive constants l100 and l111 a
magnetization /MS are calculated as a function of applied
magnetic field along the x-direction Hx with the sample
constrained in different directions. The x, y, and z axes of the
coordinate system are chosen to correspond to the /1 0 0S
crystallographic directions of the material. The material is
assumed to be Fe81Ga19 and the properties listed in Table 1 were
used. The pre-stress, pre-strain, and initial magnetic field were
all assumed to be zero. The scale parameter o was chosen as
0.6 kJ/m3 [7]. As described in the model, the process of calculation
of induced stress and magnetization is iterated till a converged
solution is obtained. The convergence criterion was chosen as
jDrindjo0:1% and jDeindjo0:1%. Fig. 2 shows the induced stress
for two cases. While case (a) is for the sample clamped only in the
x-direction, i.e., for constraint vector ½1 0 0 0 0 0�, case (b) is for
the sample clamped in all directions, i.e., for constraint vector
[1 1 1 1 1 1].

As expected, when the material is clamped only in the
x-direction a compressive stress is induced along this direction.
The induced stresses along other directions are zero. When the
material is clamped in all directions, compressive stress is
induced in the x-direction as its magnetostriction-induced
extension along this direction is blocked. As the moments rotate
and align along the direction of the field, which is the x-direction,
the material contracts along the y and z-directions. With these
strains blocked, tensile stresses are induced in these directions.
Due to the symmetry of the crystal, the induced stresses in y and
z-directions are equal in magnitude.
l111 K1
eff DK1 K1

0

�23 [17] 48 [17] �0.154 48.154

�29 [17] 5 [17] 0.51 5.51

1840 [5] �594 [27] �601 7

13 [29] 13 [30] 4.08 8.92

13 [29] �2 [30] 3.9 �5.9

re in ppm. K1
eff, DK and K1

0 are in kJ/m3.
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Fig. 2. sind2Hx curves for two cases: (a) strain is blocked only in the x-direction;

(b) strain is blocked in all directions.
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The bulk magnetization along the x-direction /MSx is plotted
against the magnetic field applied along the same direction Hx in
Fig. 3. The /MSx is plotted for three different cases. The first
case is an unconstrained material that is allowed to deform
freely, i.e., the constraint vector is ½0 0 0 0 0 0�. The second case
is a sample clamped macroscopically in all directions, i.e., the
constraint vector is ½1 1 1 1 1 1�. The third case is a sample
clamped microscopically, i.e., the energy shown in Eq. (23) was
used. The difference between the M–H curves of microscopically
clamped and unconstrained samples can be attributed solely to
the DK1 term that is absent in the microscopically clamped case. It
can be seen that macroscopic constraining of the sample does not
result in the M–H curve matching the microscopically clamped
case. This means that the anisotropy measured for the sample
that is macroscopically clamped will be different from the
intrinsic anisotropy. The reason for this is that when a sample is
macroscopically clamped the average strain is maintained
constant whereas microscopically the domains are free to
rotate. Therefore, although the macroscopic strain is maintained
constant the internal strain, locally, is not. The macroscopic
clamping case is analogous to the anisotropy introduced by the
induced stress that can be calculated using the stress induced
anisotropy energy expression with the converged induced-stress
values plotted in Fig. 2.

Further, it can be inferred that measuring the magnetic
anisotropy of a fully constrained bulk sample will not yield the
intrinsic anisotropy. It is plausible the anisotropy is the intrinsic
anisotropy if the sample is microscopically clamped. For this, the
sample must be locally constrained at the exchange length scales.
One possibility of achieving this is by growing a thin film
epitaxially on a lattice matching substrate. If the substrate is
much thicker than the film, which is usually the case, then the
film can be thought to be constrained microscopically. However,
the thickness of the film must be restricted to a few monolayers as
the lattice can relax the further it is from the film/substrate
interface. Since Secemski et al. [12] and Kuriki et al. [13]
measured the anisotropy of single crystalline Nickel films
constrained by substrates, they did indeed measure the intrinsic
anisotropy, which compared well when the DK1 was subtracted
from the bulk anisotropy.

The model presented in this work predicts that the anisotropy
measurements of Fe81Ga19 that is macroscopically clamped is
higher than that is unconstrained. To verify this experimentally,
bulk Fe81Ga19 must be encapsulated with a structure of higher
stiffness so that the magnetostriction is effectively constrained in
all directions. Alternatively, the sample can be constrained along
any one direction and an appropriate constraint vector can be
used for the model predictions.
5. Conclusions

It is mentioned in literature that the anisotropy of an
undeformed magnetostrictive material equals its intrinsic aniso-
tropy as opposed to the effective anisotropy. To model the
behavior of constrained samples, it is important to understand
whether or not to include DK1. In prior work, expressions for DK1

and Es were both derived without including the mechanical work
energy and by considering only the mechanical strains while
ignoring the magnetostrictive strains induced by the applied
stresses. In this work, an expression for the energy of a
ferromagnetic body has been derived starting from the system’s
Gibbs free energy. It has been shown that the energy potential
often used in magneto-mechanical models is thermodynamically
accurate as long as the effective magnetostriction-induced
anisotropy constant DKeff

1 is used. It is also shown that the
deviation of the intrinsic from the effective anisotropy for Fe–Ga
and Tb–Dy–Fe alloys is more than 35% and reaches 200% for
Fe–Ga alloys. Therefore, the DK1 is extremely important for giant
magnetostrictive materials like Fe–Ga and Tb–Dy–Fe alloys. A
model was developed to calculate the bulk magnetization and
induced stresses when a sample is clamped. It is shown that when
the sample is clamped microscopically, the anisotropy of the
material is the intrinsic anisotropy. However, when the sample is
clamped macroscopically then the measured anisotropy is neither
the intrinsic nor the effective anisotropies. The measured
anisotropy is equal to the effective anisotropy plus the stress-
induced anisotropy because of the stresses induced as a result
of clamping.
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