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ABSTRACT

A unified thermodynamic model is presented which describes the bulk magnetomechanical behavior of single-
crystal ferromagnetic shape memory Ni-Mn-Ga. The model is based on the continuum thermodynamics ap-
proach, where the constitutive equations are obtained by restricting the thermodynamic process through the
Clausius-Duhem inequality. The total thermodynamic potential consists of magnetic and mechanical energy
contributions. The magnetic energy consists of Zeeman, magnetostatic, and anisotropy energy contributions.
The microstructure of Ni-Mn-Ga is included in the continuum thermodynamic framework through the internal
state variables domain fraction, magnetization rotation angle, and variant volume fraction. The model quantifies
the following behaviors: (i) stress and magnetization dependence on strain (sensing effect), and (ii) strain and
magnetization dependence on field (actuation effect).

1. INTRODUCTION

Ferromagnetic shape memory alloys (FSMAs) in the Ni-Mn-Ga system are a class of magnetically-activated
smart material. The single crystal Ni-Mn-Ga typically exhibits 6% strains in the presence of magnetic fields
of around 700 kA/m.1 Due to the magnetic field activation, they also exhibit higher bandwidth compared
to conventional shape memory alloys.2 The large strain and broad frequency bandwidth provide a desirable
operating space for actuator applications. Several models have been developed to describe the actuation effect
of single-crystal Ni-Mn-Ga.

Our prior experimental measurements demonstrate the sensing potential of Ni-Mn-Ga.3 A continuum ther-
modynamics model was developed which describes these experimental results.4 Our model is constructed
with magnetization and strain as the independent variables, unlike similar models by Hirsinger,5 Kiefer and
Lagoudas6 and Faidley,7 which are based on the actuation effect and thus utilize magnetic field and stress as
the independent variables. Further, our model includes the magnetostatic energy and demagnetization effects.

In our sensing model, a special form of the Gibbs free energy including magnetic and mechanical contribu-
tions is used as a thermodynamic potential. To incorporate the microstructure of Ni-Mn-Ga in the continuum
thermodynamic framework, the following internal state variables are considered: domain fraction, magnetization
rotation angle, and variant volume fraction. The constitutive equations for stress and magnetization are obtained
by restricting the process through the Clausius-Duhem inequality (second law of thermodynamics). The model
parameters used in the model can be obtained from two simple tests.

In this paper, the same sensing model presented by Sarawate and Dapino4 is utilized to characterize Ni-Mn-
Ga actuation. An important feature of our unified model is that the actuation and sensing are characterized by
the exact same set of six parameters. The actuation model describes the dependence of strain and magnetization
on the external magnetic field. The Gibbs energy is used as thermodynamic potential with field and stress as
independent variables. The experimental results presented by Murray8 are used to verify the model performance.

The sensing model is described in section 2; this section presents discussions on the thermodynamic framework
considering elastic and magnetic terms, contributing energy terms, evolution of internal state variables, and
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results. Section 3 describes the extension of the model to the actuation effect and presents a comparison of
model results with experimental data.

2. CONTINUUM THERMODYNAMIC MODEL FOR THE SENSING EFFECT

2.1. Thermodynamic Framework
For a magneto-mechanical material undergoing an isothermal process, the Clausius-Duhem inequality that de-
scribes the second law of thermodynamics has the form4

−ρψ̇ + σε̇+ µ0HṀ ≥ 0, (1)

where ψ is the thermodynamic potential in the form of Helmholtz energy, H is the externally applied magnetic
field, M is the magnitude of magnetization in the direction of applied field, σ is the engineering stress along the
longitudinal direction of the sample, and ε is the strain. This material has constitutive dependencies

ψ = ψ(ε,M)
σ = σ(ε,M)
H = H(ε,M).

(2)

For the sensing effect under consideration, the strain is applied externally; hence, it is desirable to have strain
as an independent variable. A thermodynamic potential termed magnetic Gibbs energy is therefore obtained
through Legendre transformation9

ρφ = ρψ − µ0HM. (3)

Substitution of (3) into (1) results in a modified Clausius-Duhem inequality

−ρφ̇+ σε̇− µ0ḢM ≥ 0 (4)

which describes a magneto-mechanical material with the following constitutive dependencies,

φ = φ(ε,H, α, θ, ξ)
σ = σ(ε,H, α, θ, ξ)
M = M(ε,H, α, θ, ξ).

(5)

Here, the internal state variables α, θ, and ξ denote the domain fraction, magnetization angle, and variant volume
fraction. The internal state variables are generally used to include the microstructure and dissipative effects in
a continuum model.

A simplified two-variant Ni-Mn-Ga microstructure is shown in Figure 1, where the applied field is oriented
in the x direction and the applied stress (or strain) is oriented in the y direction. A field-preferred variant is one
with its c-axis aligned with the x direction and volume fraction ξ. A stress-preferred variant has its c-axis aligned
with the y direction and volume fraction 1− ξ. Each variant consists of a collection of 180-degree domains which
are formed in order to minimize the net magnetostatic energy due to finite dimensions of the sample. Neighboring
domains have magnetization vectors oriented opposite to each other, with volume fraction α and 1 − α.

In the absence of an external field, the domain fraction α = 1/2 leads to minimum magnetostatic energy. Due
to the high magnetocrystalline anisotropy energy of Ni-Mn-Ga, the magnetization vectors tend to attach to the
crystallographic c-axis. Any rotation of the magnetization vectors away from the c-axis thus results in an increase
in the anisotropy energy. The magnetization vectors in the field-preferred variants are always attached to the
c-axis of the crystals, i.e., they are aligned with the applied field. However, the direction of the magnetization
can be either in the direction of the field, or opposing it. The magnetization vectors in a stress-preferred variant
are rotated at an angle θ relative to the c-axis. This angle is equal and opposite in the two magnetic domains
within a stress preferred variant.

Using the chain rule, equation (4) becomes

(σ − ∂(ρφ)
∂ε

)ε̇+ (−µ0M − ∂(ρφ)
∂H

)Ḣ + παα̇+ πθ θ̇ + πξ ξ̇ ≥ 0, (6)
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Figure 1. Simplified two variant Ni-Mn-Ga microstructure.

where the terms πα = −∂(ρφ)/∂α, πθ = −∂(ρφ)/∂θ, and πξ = −∂(ρφ)/∂ξ represent thermodynamic driving
forces respectively associated with internal state variables α, θ, and ξ. In equation (6), the terms ε̇ and Ḣ are
assumed to be independent of each other, and of other rates. Thus, for an arbitrary process, the coefficients of
ε̇ and Ḣ must vanish in order for the inequality to hold. This leads to the constitutive equations

σ =
∂(ρφ)
∂ε

(7)

M = − 1
µ0

∂(ρφ)
∂H

. (8)

Thus, the Clausius Duhem inequality is reduced to

παα̇+ πθ θ̇ + πξ ξ̇ ≥ 0. (9)

By inspection of Figure 1, the magnetization in the x direction can be written as

M(ξ, α, θ) = Ms[2ξα− ξ + sin θ − ξ sin θ]. (10)

2.2. Energy Formulation
2.2.1. Magnetic energy

The total magnetic potential energy of a Ni-Mn-Ga sensor/actuator includes Zeeman, magnetostatic, and mag-
netocrystalline anisotropy contributions. The Zeeman energy, which represents the energy available to drive the
twin boundary motion by external magnetic fields, is minimum when the magnetization vectors are completely
aligned in the direction of the externally applied field, and is maximum when the magnetization vectors are
aligned in the direction opposite to the field. For the simplified two-variant system shown in Figure 1 with net
magnetization component M in the direction of externally applied field H , the Zeeman energy has the form

ρφze(H,α, θ, ξ) = −µ0Ms(2ξα− ξ + sin θ − ξ sin θ)H. (11)

The magnetostatic energy represents the energy opposing the external work done by magnetic fields, on
account of the geometry of the specimen. The magnetization creates a demagnetization field which opposes the
externally applied field and whose strength depends on the geometry and permeability of the material. For the
system shown in Figure 1, the magnetostatic energy is given by

ρφms(ξ, α, θ) =
1
2
µ0NM

2
s (2ξα− ξ + sin θ − ξ sin θ)2 (12)
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where N represents the difference in the magnetization factors along the x and y directions.10

The anisotropy energy represents the energy needed to rotate a magnetization vector away from its corre-
sponding easy axis. This energy is minimum (or zero) when the magnetization vectors are aligned along the
c-axis and is maximum when they are rotated 90 degrees away from the c-axis. In Figure 1, the only contribution
to the anisotropy energy is from the stress preferred variant. The anisotropy energy is thus given by

ρφan(α, θ, ξ) = Ku(1 − ξ) sin2 θ. (13)

The anisotropy constant, Ku, is calculated from the experimental M-H curves as the difference in the area under
the easy and hard axis M-H curves. It represents the energy associated with pure rotation of the magnetization
vectors (hard axis) compared to the magnetization due to zero rotation of vectors (easy axis). The anisotropy
constant of the material employed for model validation is 1.675 x 105 J/m3.

The total magnetic Gibbs energy can be written as the sum of Zeeman, magnetostatic, and anisotropy energy,

ρφmag(H, ξ, α, θ) = −µ0Ms(2ξα− ξ + sin θ − ξ sin θ)H
+ 1

2µ0NM
2
s (2ξα− ξ + sin θ − ξ sin θ)2 +Ku(1 − ξ) sin2 θ.

(14)

2.2.2. Mechanical energy

The total mechanical energy is considered to be composed of elastic strain energy and the energy associated
with detwinning. The model parameters required for determination of the mechanical energy of the system are
obtained from the stress-strain plot at zero bias field (Figure 2). For characterization of the sensing effect, the
material is compressed from its longest length (ξ =1) to beyond the length corresponding to complete stress
preferred variant state (ξ = 0). As is the case in conventional shape memory alloys (SMAs), the total strain is
composed of an elastic and a detwinning component,11, 12

ε = εe + εtw. (15)

The mechanical energy contribution to the thermodynamic potential thus has the form

ρφmech(ε, ξ) =
1
2
E(ε− εtw)2 +

1
2
aε2tw, (16)

in which the detwinning strain is assumed to be linearly proportional to the stress-preferred volume fraction,

εtw = (1 − ξ)ε0. (17)

Combination of (15) and (17) gives an expression for the elastic strain,

εe = ε− (1 − ξ)ε0. (18)

Parameter a represents a stiffness relating the variation of only detwinning strain to the total stress. It is obtained
from the measured model parameters E and k, where E represents the Young’s modulus, or the variation of only
elastic strain with stress, and k represents the slope of the stress-strain plot in the detwinning region. Thus,
k is equivalent to the net stiffness of two springs in series, with the deformations equivalent to the elastic and
detwinning strains. Thus, a can be calculated as

1
a

=
1
k
− 1
E
. (19)

Since E represents an average elastic modulus, it is calculated by taking the average of the initial and final slopes
of the stress-strain curve at zero magnetic field. For the material being considered, the measured values of these
parameters are k = 16 MPa and E = 1600 MPa.

When the sample is compressed, it is seen that the initial high stiffness region is followed by the low stiffness
detwinning region. The stress value at the onset of detwinning at zero magnetic field, σtw , is considered to be

Proc. of SPIE Vol. 6526  652629-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



σtw 

E0 
E1 

k 

Figure 2. Schematic stress-strain response at zero field.

a model parameter (σtw=0.8 MPa). The detwinning stress is observed to increase with increasing bias field.
Combination of relations (16)-(19) yields an expression for the mechanical energy

ρφmech(ε, ξ) =
1
2
E(ε− ε0(1 − ξ))2 +

1
2
aε20(1 − ξ)2. (20)

The total free energy is therefore found from (14) and (20) in the following manner,

ρφ = ρφmech + ρφmag, (21)

which in combination with (7) yields a constitutive relation for stress of the form

σ = E[ε− ε0(1 − ξ)]. (22)

The constitutive relation for magnetization is given by (8).

2.3. Development of Magnetic Parameters

We assume that the processes associated with the rotation of magnetization θ and evolution of domain fraction
α are reversible. This is supported by the fact that the easy- and hard-axis magnetization curves show negligible
hysteresis. The easy-axis magnetization process involves evolution of domains which depends on the magnitude
of the magnetostatic energy opposing the external magnetic field, whereas the magnetization along the hard axis
is due to magnetization rotation. On the basis of reversible processes, the corresponding driving forces lead to
zero increase in entropy. Hence, the driving forces themselves must be zero,

πθ = −∂(ρφ)
∂θ

= 0 (23)

πα = −∂(ρφ)
∂α

= 0. (24)

Equations (21), (23) and (24) yield a closed form solution for the angle θ, and domain fraction α,

θ(H, ξ, α) = arcsin
(

2µ0NM
2
sαξ − µ0NM

2
s ξ − µ0HMs

µ0NM2
s ξ − 2Ku − µ0NM2

s

)
(25)

α(H, ξ) =
H

2NMsξ
+

1
2
. (26)
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Figure 3. Easy and hard-axis B-H curves.

Thus, for a given volume fraction ξ and magnetic field H , the domain fraction α can be calculated from equa-
tion (26). Using this value of α, the magnetization rotation angle θ and magnetization M can be calculated from
(25) and (8), respectively. The evolution of volume fraction ξ is discussed in the next section.

For comparison with Hall probe measurements,3 the magnetic induction is calculated by means of the relation

Bm = µ0(H +DM), (27)

where D is the demagnetization factor in the x direction.13 A comparison of model results and experimental
data for hard axis and easy axis magnetization curves is shown in Figure 3.

2.4. Evolution of volume fraction

2.4.1. Loading

During loading of the material, the mechanical energy is given by equation (20). The driving force associated
with the evolution of volume fractions is composed of magnetic and mechanical components,

πξ = πξ
mag + πξ

mech, (28)

with the magnetic and mechanical driving forces given by

πξ
mag = µ0HMs(2α− 1 − sin θ) +Ku sin2 θ − µ0NM

2
s (2ξα− ξ + sin θ − ξ sin θ)(2α − 1 − sin θ) (29)

πξ
mech = −E[ε− ε0(1 − ξ)]ε0 + a(1 − ξ)ε20. (30)

It is emphasized that if the total driving force is positive, it will assist the evolution of the field-preferred
volume fraction (ξ), whereas if it is negative, it will oppose it. It will be seen that the force associated with
mechanical driving forces remains negative throughout the process, which is evident since the stress always
remains compressive indicating that it always opposes the evolution of the field-preferred twin variants.

The start of the detwinning process in SMAs and FSMAs requires the overcoming of a finite energy treshold
associated with the detwinning stress. This is evident from the stress-strain plots at zero field, and also from
strain-field plots.6, 14 Likewise, a finite field strength is required for initiating the evolution of field-preferred
variants and ensuing deformation during unloading. The associated energy or driving force required to initiate
twin boundary motion is estimated from the detwinning stress at zero field. For the Ni-Mn-Ga sample under
consideration,3 the numerical value of the critical driving force is πcr = σtwε0 = 46400 J/m3.
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From (9) and (23), assumming isothermal process, the Clausius-Duhem inequality is reduced to

πξ ξ̇ ≥ 0. (31)

During loading, in the initial configuration the sample consists of only one variant preferred by field (ξ = 1).
The loading process takes place with evolution of stress-preferred variants, indicating that ξ̇ < 0. The driving
force πξ should therefore be negative in order for inequality (31) to be satisfied. Thus, the increase of stress-
preferred volume fraction (1 − ξ), or decrease in ξ, begins when the driving force reaches the negative value of
the critical driving force. The numerical value of ξ can then be obtained by solving the relation

πξ = −πcr. (32)

It is noted that ξ is restricted so that 0 ≤ ξ ≤ 1. Thus, once ξ is evaluated at a certain time in the loading
process, then the stress (σ) and magnetization (M) can be found by equations (22) and (8), respectively.

2.4.2. Unloading

The unloading process can be treated independently after the loading model is completed. During unloading, the
initial configuration corresponds to the material consisting of one variant preferred by stress (ξ = 0, 1 − ξ = 1).
This configuration corresponds to a state where the sample is compressed beyond its natural stress preferred
variant length, since the loading is extended even after completion of the detwinning process. Thus, a large
negative thermodynamic driving force associated with stress acts on the material along with the driving force
associated with the magnetic field, which is always positive. The bias field is always present throughout the
unloading process.

Since the detwinning strain is now given by

εtw = ε0ξ, (33)

the mechanical energy takes the form

ρφmech =
1
2
E[ε− ε0(1 − ξ)]2 +

1
2
aε20ξ

2. (34)

The elastic component of the strain is found by subtracting the total detwinning strain incurred during loading,
ε0, from the original strain value and then accounting for the detwinning strain given by (33). Thus, the elastic
component has the form

εe = ε− ε0 + εtw = ε− ε0(1 − ξ). (35)

Employing the procedure detailed in section 2.2.2 for the mechanical energy, the mechanical component of the
driving force becomes

πξ
mech = −E[ε− ε0(1 − ξ)]ε0 − aε20ξ. (36)

During unloading, the evolution of fraction ξ is of interest. Once the detwinning starts, the rate is positive, ξ̇ > 0.
Thus, the total driving force πξ has to be positive in order for the Clausius Duhem inequality to be satisfied.
As the total force starts increasing from its lowest negative value, and reaches the positive critical driving force
value, the evolution of ξ is initiated. The value of ξ can then be found by numerically solving the equation

πξ = πcr. (37)

The constitutive equation for stress, σ = Eεe, has the same form as (22) due to the elastic strain (35) having
the same form as (18).

The procedure of arriving at the values of all parameters with a constant bias field and varying strain ε is
similar to that outlined earlier. The difference lies in the initial configuration and the terms associated with
mechanical energy as stated above. A restriction is placed on the calculated stress that it must be always
compressive. Because the sample is not attached to the machine’s cross arm, no tensile stress can be applied to
the sample during unloading.
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Figure 4. Stress strain model results.

2.5. Sensing model results

The experimental setup used for model parameter identification and validation consists of an electromagnet and
a uniaxial stress stage oriented perpendicular to the axis of the magnetic poles.3 A 6×6×20 mm3 single crystal
Ni-Mn-Ga sample (AdaptaMat Ltd.) is placed in the center gap of the electromagnet with its long axis aligned
with the stress axis. The sample exhibits a free magnetic-field induced deformation of 5.8 % under a field of
720 kA/m. For the measurements, the material is first converted to a single field-preferred variant by applying
a high field, and subsequently compressed at a fixed displacement rate of 25.4 × 10−3 mm/sec, and unloaded
at the same rate while subjected to different bias fields. The flux density inside the material is measured by a
1×2 mm2 transverse Hall probe placed in the gap between one of the magnet poles and the face of the sample.
The compressive force is measured by a 200 pounds of force (lbf) load cell, and the displacement is measured
by a linear variable differential transducer (LVDT). This process is repeated for several magnetic bias intensities
ranging between 0 and 445 kA/m.

The calculated stress-strain plots are compared with experimental measurements in Figure 4. For the various
bias fields measured, the model adequately predicts the amount of pseudoelasticity and the strain at which the
sample returns to zero stress. As the external bias field is increased, more energy is required to initiate twin
boundary motion, resulting in an increase in the detwinning stress with increasing bias field. In prior models by
Likhachev and Ullakko15 and Straka et al.,16 a term known as ‘magnetic field induced stress’ was introduced to
account for this effect. Our model requires no adjustments.

The flux density plots shown in Figures 5 and 6 are of interest for sensing applications. The absolute value
of flux density decreases with increasing compressive stress. As the sample is compressed from its initial field-
preferred variant state, the stress-preferred variants are nucleated at the expense of field-preferred variants. Due
to the high magnetocrystalline anisotropy of Ni-Mn-Ga, the nucleation and growth of stress-preferred variants
occurs in concert with rotation of magnetization vectors into the longitudinal direction, which causes a reduction
of the permeability and flux density in the transverse direction. There is a strong correlation between Figure 2
and Figures 5 and 6 regarding the reversibility of the magnetic and elastic behaviors. Because a change in
flux density relative to the initial field-preferred single variant is directly associated with the growth of stress-
preferred variants, the flux density value returns to its initial value only if the stress-strain curve exhibits
magnetic field induced pseudoelasticity. The model calculations accurately reflect this trend. Further, the model
correctly identifies the transition from irreversible quasiplastic to reversible pseudoelastic behavior at a bias field
of 368 kA/m. The simulated curves show less hysteresis than the measurements as well as a small non-linearity
in the relationship between flux density to strain. The large hysteresis in the measured data is believed to be
because of the experimental errors.
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3. EXTENSION OF THE MODEL TO ACTUATION EFFECT

Our sensing model can also be used to characterize the actuation behavior of Ni-Mn-Ga. The external field and
bias stress constitute the independent variables, with the strain and magnetization being dependent variables.
Despite the swapping of variables, the actuator model utilizes the exact same parameters as the sensing model.
Further, the actuation model framework is consistent with previous models by Kiefer6 and Faidley.7

The model is formulated by defining the Gibbs energy as thermodynamic potential via Legendre transform,

ρφ = ρψ − σεe − µ0HM. (38)

This leads to Clausius-Duhem inequality of the form,

−ρφ̇+ σ̇(εe + εtw) + µ0HṀ ≥ 0. (39)

Following a process similar to that employed to develop the sensing model, we arrive at the constitutive equations

εe = −∂φ
∂σ

(40)

M = − 1
µ0

∂φ

∂H
. (41)

The Clausius-Duhem inequality reduces to the form,

(−∂φ
∂ξ

+ σε0)ξ̇ ≥ 0 (42)

πξ∗
ξ̇ ≥ 0 (43)

where the total driving force πξ∗
can be defined as

πξ∗
= −∂φ

∂ξ
+ σε0 = πξ + σε0 = πξ

mag + πξ
mech + σε0. (44)

The contribution of the magnetic energy to the total Gibbs energy remains exactly the same as that given by (14).
The mechanical energy contribution in the Gibbs energy is given by

φmech = −1
2
Sσ2 +

1
2
aε20ξ

2. (45)
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Figure 5. Induction vs. strain model results.
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Figure 6. Induction vs. stress model results.
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The first term represents the elastic Gibbs energy due to stress, while the second term represents the energy due
to detwinning. Unlike in the sensing model, the mechanical energy equation remains the same in both loading
and unloading.

The initial condition for the actuation process is the sample at its minimum length (ξ = 0) in the presence
of a bias stress σ. This bias stress compresses the sample elastically, since the sample is already in the complete
stress preferred state. In this situation, the parameters associated with the mechanical energy are the same as
those presented for the sensing model. The compliance S is the inverse of the elastic modulus E, and σ represents
the compressive bias stress. When the magnetic field is increased, the driving force due to the field starts acting
opposite to the driving force due to stress. The expression for the driving force due to field is the same as (29),
and the expression for mechanical driving force is

πξ∗
mech = −aε20ξ + σε0. (46)

When the total driving force exceeds the critical value πcr, twin boundary motion is initiated. The numerical
value of volume fraction ξ can be obtained by solving the relation

π = πcr. (47)

The twinning process continues while the applied field is increasing. When the field is decreased, the volume
fraction does not decrease with the field immediately, since the total driving force needs to be lower than the
negative value of critical driving force. When the applied field becomes sufficiently low, the twin boundary
motion in the opposite direction is initiated, and the volume fraction values can be obtained by solving

π = −πcr. (48)

The identification of model parameters is conducted by comparison of model results with experimental data
published by Murray.8 The model parameters required for the actuation model are exactly the same as for the
sensing model, and for the considered data they are: σtw=0.8 MPa, Ku=1.7E5 J/m3, ε0=0.058, E = 850 MPa, k
= 14 MPa, Ms = 0.65 T, N = 0.239. The model results and comparison with experimental data at various bias
stresses is shown in Figure 7. The model accurately quantifies the maximum magnetic field-induced deformation
at different bias stresses ranging from 0.25 MPa to 2.11 MPa. For most stress values, the model results both
for the forward and return path accurately match the measurements. According to the model, the bias stresses
of 0.89 MPa and 1.16 MPa can be considered as optimum where the completely reversible behavior is observed
with maximum magnitude of strain.

4. CONCLUSION

This paper presents a unified model which can describe the following behavior and interdependence for the
complete magnetomechanical characterization of a commercial single crystal Ni-Mn-Ga alloy: (i) sensing: stress
and magnetization dependence on strain at constant bias field, and (ii) actuation: strain and magnetization
dependence on applied field at constant bias stress. A fixed set of model parameters is used for both cases, which
can be readily obtained from two simple magnetomechanical tests. This leads to a simple model with lesser
dependence on adjustable parameters and more emphasis on accurate construction of energy terms. The changes
needed to shift from one type of model to another are made in the basic thermodynamic framework concerning
the use of a given thermodynamic potential, but formulation of specific energy terms remains unchanged.
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