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Abstract
A magnetostrictive actuator with a hydraulic displacement amplification mechanism is designed
to be used as a driver in active engine mounts. The dynamic response of the actuator is
quantified in terms of the output displacement and the magnetostriction. Eddy current losses are
modeled as a one-dimensional magnetic diffusion problem in cylindrical coordinates. The
Jiles–Atherton model is used to describe the magnetization state of the material as a function of
applied magnetic fields. Magnetostriction, which is modeled as a single-valued function of
magnetization, provides an input to the mechanical model describing the system vibrations.
Friction at the elastomeric seals is modeled using the LuGre (Lund–Grenoble) friction model for
lubricated contacts. Results show that the model accurately describes the dynamic behavior of
the actuator up to 500 Hz. An order analysis of the data and calculated responses shows that the
model describes the fundamental and higher-order spectral components generated by the device.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An engine mount is used to isolate engine vibrations from
the passenger compartment and prevent excessive engine
bounce from shock excitations. An active mount consists
of a passive hydro-mount combined with an actuator which
modulates the pressure of the hydraulic fluid so as to reduce
the mount’s force transmissibility. Thus the performance of
an active mount depends heavily on the performance of the
actuator. Many electromagnetic actuators [1–3] have been
suggested which improve the vibration isolation characteristics
of active mounts. However, these actuators exhibit a frequency
bandwidth lower than 80 Hz. To achieve broader frequency
bandwidth, actuators using smart material drivers have been
considered [4–6].

The smart materials capable of producing broadband
response have a small stroke. Hence their utilization in active
mounts requires a stroke amplification mechanism. Hydraulic
amplification [7–9] is particularly attractive as a means to
achieve large mechanical gains in a restricted space. However,
in most of the existing designs the mechanical performance
is significantly degraded by internal friction and compliances
in the fluid chamber components. Linear models fail to

account for these effects, which carry intrinsic nonlinearities
and hysteresis. Advanced modeling is therefore required to
accurately describe and analyze the behavior of hydraulically
amplified actuators.

In this paper we present a dynamic model for the
coupled response of a hydraulically amplified magnetostrictive
actuator for active mounts considering losses due to internal
friction and fluid chamber compliance. The primary use
of the proposed model is device design and control. The
model is developed to describe the dynamic response of
the hydraulically amplified Terfenol-D actuator developed
by Chakrabarti and Dapino [10]. The response of the
magnetostrictive material is modeled with a nonlinear and
hysteretic formulation for magnetization as a function of
applied fields and bias stress. The Jiles–Atherton model is
coupled with Maxwell’s equations in order to quantify the
radial dependence of magnetization and associated dynamic
losses. Magnetostriction, which is modeled as a single-valued
function of magnetization, provides an input to the mechanical
model. Friction at the elastomeric seals is described with the
LuGre dynamic friction model. The resulting formulation thus
incorporates friction phenomena such as stick-slip, pre-sliding
displacement and the Stribeck effect. Structural dynamics of

0964-1726/10/055009+08$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA1

http://dx.doi.org/10.1088/0964-1726/19/5/055009
mailto:chakrabarti.3@osu.edu
mailto:dapino.1@osu.edu
http://stacks.iop.org/SMS/19/055009


Smart Mater. Struct. 19 (2010) 055009 S Chakrabarti and M J Dapino

Figure 1. Flowchart for the actuator model.

the support is considered in order to increase the accuracy of
the mechanical model.

1.1. Model structure

Modeling the strain–field hysteresis loops for magnetostrictive
materials has been a traditionally difficult problem. Numerous
models exist which describe the strain–field loops at
quasi-static frequencies. Modeling the dynamic strain–
field relationship in magnetostrictive transducers is even
more challenging because of dynamic magnetic losses and
magnetoelastic coupling induced by vibration of structural
components.

An approach to model the strain–field loops was
developed by Sarawate and Dapino [11] where the radial
dependence of field in a magnetostrictive rod is established by
solving the magnetic diffusion equation. A similar modeling
approach is followed in this paper (figure 1). The principal
difference lies in the way the averaging of the field is done
and the complexity of the loading on the magnetostrictive rod.
In [11] an average effective field is obtained by formulating a
weighted sum of the field at different radii while in the current
work the Jiles Atherton model with input H (r, t) is used to
calculate the magnetization M(r, t). The magnetostriction
λ(r, t) is directly calculated from M(r, t). Subsequent
averaging yields an average magnetostriction (λavg). The
dynamic strain of the driver is obtained by coupling the
magnetization model with the mechanical model.

In [11] the mechanical load acting on the driver is a
single degree-of-freedom linear spring, mass, and damper
system which allows to resolve the magnetostriction waveform
into Fourier components. The response of the mechanical
system to those components is calculated in the frequency
domain. In the present work, the mechanical system consists
of a hydraulic amplification mechanism with compliances and
frictional losses at the seals. Due to the nonlinear nature
of this system, the entire model is solved numerically in the
time domain and the Fourier components of the Terfenol-D
strain and total actuator displacement are calculated. Another
important difference is the range of fields used to excite the
Terfenol-D driver. In [11] the rod is driven at relatively lower
fields (16 kA m−1 pk–pk). This results in reduced nonlinearity
in the material response. Here the applied field is ≈ 55 kA m−1

which gives rise to increased nonlinearity and hysteresis in the
response.

2. Magnetic-field diffusion

Dynamic losses due to eddy currents can be quantified through
Maxwell’s equations,

∇ × H = J + ∂ D

∂ t
, (1)

∇ × E = ∂ B

∂ t
. (2)

Here, H and E respectively denote magnetic and electric
fields; J is the current density (J = σ E for ohmic materials),
and σ is the constant electrical conductivity of the medium.
The second term on the right hand side of (1) is known
as displacement current and gives rise to electromagnetic
radiation. This term can be neglected for the frequency
range in which magnetostrictive transducers are operated.
Further, assuming the change in magnetic flux density B to be
independent of the change in stress on the material, the spatial
variation of magnetic field can be obtained by combining (1)
and (2),

∇ × ∇ × H = ∇ × J

= ∇ × (σ E)

= −σ

(
∂ B

∂ t

)

= −σμ

(
∂ H

∂ t

)
, (3)

where μ is the magnetic permeability of the material. The left
hand side of (3) can be expressed as

∇ × ∇ × H = ∇ (∇ · H ) − ∇2 H

= ∇
(

∇ · B
1

μ

)
− ∇2 H

= −∇2 H (∵ ∇ · B = 0) . (4)

For cylindrical geometries, (3) and (4) give a magnetic
diffusion equation of the form

∂2 H

∂r 2
+ 1

r

∂ H

∂r
= σμ

∂ H

∂ t
. (5)

The boundary condition at the surface of the rod for a
harmonically applied field is H (R, t) = H0eiωt . We assume
the solution to be of the form H0h̃(r)eiωt where h̃(r) is a
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Figure 2. Field at 10 discrete radii from r = 0.127 to 6.35 mm.

complex function of the radius r . Equation (5) then reduces
to

∂2h̃

∂r 2
+ 1

r

∂ h̃

∂r
− iσμωh̃ = 0. (6)

Assuming μ to be constant over the range of applied fields, the
solution to (6) can be written as done in [12],

h̃(r) = I0(q(r))

I0(q(R))
, (7)

where I0 is the modified Bessel function of order zero, q(r) =
(
√

iσμω)r and R is the radius of the magnetostrictive rod.
Figure 2 shows the radial dependence of magnetic field in the
rod at 500 Hz for μ = 5μ0 and 1/σ = 58 × 10−8 � m. The
magnetic field decreases toward the center of the rod and lags
behind the field at the periphery of the rod.

3. Jiles–Atherton equations

The Jiles–Atherton model is used to describe the magnetization
of the magnetostrictive material as a function of the applied
magnetic field. The basic governing equations of the model are
described here. For a detailed derivation of the equations the
reader is pointed to [13]. The total magnetization at any instant
of time can be written as a combination of an anhysteretic and
an irreversible component,

M = cMan + (1 − c)Mirr, (8)

in which c is a reversibility parameter that accounts for
reversible bowing of domain walls. When c = 1, domain
wall motion is completely reversible and when c = 0, domain
wall motion is completely irreversible. The anhysteretic
magnetization is given by the Langevin function as

Man = Ms

(
coth

(
He

a

)
−
(

a

He

))
, (9)

where a is a shape parameter that controls the slope of
the anhysteretic magnetization curve, Ms is the saturation

magnetization of the material, and He is an effective field given
by [14]

He = H +
(

α + 9

2

σbiasλs

μ0 M2
s

)
︸ ︷︷ ︸

α̃

M. (10)

Here, σbias is the applied bias stress acting on the rod, α is
a parameter that quantifies magnetic domain interactions and
λs is saturation magnetostriction. The derivative of the total
magnetization with respect to the applied field can be written
as

dM

dH
= c

dMan

dH
+ (1 − c)

dMirr

dH

= c
dMan

dHe

(
dHe

dH

)
+ (1 − c)

dMirr

dHe

(
dHe

dH

)
, (11)

where
dHe

dH
= 1 + α̃

dM

dH
. (12)

The irreversible magnetization is calculated through a law of
approach to the anhysteretic magnetization,

dMirr

dHe
= Man − Mirr

δk
, (13)

where k is a parameter that quantifies the energy required to
break pinning sites and δ has a value of +1 for increasing fields
and −1 for decreasing fields. The derivative of the anhysteretic
magnetization relative to the effective field is

dMan

dHe
= Ms

a

⎛
⎝−

(
1

sinh
( He

a

)
)2

+
(

a

He

)2
⎞
⎠ , (14)

Recognizing that the field is radially dependent, combination
of (11)–(14) yields a single expression for the variation of
M(r) with respect to H (r),

dM

dH
(r) =

[
c

dMan

dHe
(r) + Man(r) − M(r)

δ(r)k

]
︸ ︷︷ ︸

	(M(r))

[
1 + α̃

dM

dH
(r)

]
,

(15)
which can be rearranged to give

dM

dH
(r) =

(
	(M(r))

1 − α̃	(M(r))

)
. (16)

Assuming the prestress is sufficiently large, magnetostriction
can be approximately modeled as a single-valued function of
magnetization through the relation

λ(r) = 3

2

λs

M2
s

M(r)2. (17)

An average magnetostriction can then be obtained by
conducting a weighted sum over the cross-section of the rod,

λavg = 1∑n
i=1 N(ri )

n∑
i=1

λ(ri )N(ri ), (18)

where ri are the discrete radii at which the magnetostriction is
evaluated and N(ri ) are the weights which are proportional to
ri . Figure 3 shows how the average magnetostriction decreases
and becomes delayed with increasing actuation frequency.
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Figure 3. λavg at different frequencies.

4. Mechanical model

A mechanical model for the actuator is shown in figure 4.
The pressure variation in the fluid can be linearized for small
volumetric changes as follows


p = β

V

Vref
, (19)

where β is the fluid’s bulk modulus and Vref is the fluid volume.
Volume change 
V can be written in terms of the piston
displacements xL and xp, the corresponding piston cross-
sectional areas AL and Ap, and the volumetric displacement of
the fluid chamber components. Expressing the latter in terms
of the change in chamber pressure 
p and the stiffness Co of
the fluid chamber components, one gets


V = Apxp − ALxL − 
p

Co
. (20)

Combination of (19) and (20) gives


p =
(

Coβ

CoVref + β

)
︸ ︷︷ ︸

βeff

(
Apxp − ALxL

)
. (21)

Parameter βeff is an effective modulus which quantifies
the compliance of the fluid and different fluid chamber
components including the o-rings, pistons, and casing. The
fundamental deformation equation which must be satisfied by
the magnetostrictive rod at all times is

λavg − σc

E
= ε = xp − xs

la
, (22)

in which σc is the compressive stress acting on the Terfenol-D
rod of modulus E and la is the length of Terfenol-D rod. The
force generated by the Terfenol-D, which has cross-sectional
area Ar, is

Fa = σc Ar = E Arλavg − E Ar

la
(xp − xs). (23)

Figure 4. Mechanical model for the magnetostrictive mount actuator
considered in this study.

The equations of motion for the two pistons and the support
structure are

Mp ẍp + (kdisk) xp + f rp = −
p Ap − σc Ar, (24)

ML ẍL + (kL + kpre)xL + f rL = 
p AL, (25)

Ms ẍs + ksxs = −Fa. (26)

Parameters kL and kpre are the stiffness of the load and preload
springs acting on the driven piston; kdisk is the stiffness of the
disk spring acting on the Terfenol-D rod; f rL and f rp denote
the friction forces at the small and large piston, respectively.
Friction at the smaller piston seal has a significant impact on
the dynamic response of the actuator since actuation forces
are low and velocities are high at this end. Actuation forces
at the larger piston are high, hence a small frictional force
would not have much effect on the dynamic response of the
transducer. For this reason, it is essential to accurately quantify
the friction dynamics at the smaller piston. The LuGre model
for lubricated contacts [15] is used to model the frictional force
based on the bristle interpretation of friction. The LuGre model
equations are given by

dz

dt
= v − σ0

|v|
g(v)

z,

g(v) = Fc + (Fs − Fc)e
−(v/vs)

2

,

Fr = σ0z + σ1(v)
dz

dt
+ σ2v.

(27)

Here, z is the bristle deflection state, Fs and Fc are the
static and Coulomb frictional forces, parameters σ0, σ1, σ2

respectively denote the bristle stiffness, bristle damping and
viscous damping coefficients, and vs is the Stribeck velocity.
The Jiles–Atherton model parameters are listed in table 1; the
LuGre model parameters are provided in table 2.
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Figure 5. Output pushrod displacement at different actuation frequencies.

Table 1. Jiles–Atherton parameter values.

Parameter Value

E (GPa) 32
a (A m−1) 6512
c 0.18
α 0.046
k (A m−1) 3000
λs 1150
σbias (ksi) −1.0
Ms (A m−1) 7.65 × 105

5. Model results

The actuator was operated at discrete frequencies from 10
to 500 Hz with a total mechanical prestress of ≈1 ksi on
the rod generated by the preload spring in contact with the
driven piston. The preload spring also acts as the load spring
as no external loading spring is attached to the pushrod.
The Terfenol-D rod is magnetically biased with a field of
≈27 kA m−1 by an Alnico magnet. The actuator is driven with
a 4.5 A sinusoidal current with no current bias. The strain on
the surface of the Terfenol-D rod is measured with a strain gage
and the displacement of the pushrod is measured with a laser
displacement sensor.

Figures 5 and 6 show the experimental and calculated time
domain responses of the pushrod displacement and Terfenol-
D strain at varied actuation frequencies. The model describes
the hysteretic and nonlinear shape of the response both in
terms of amplitude and phase. In the strain–field loops the
modeled curves gradually become slightly more hysteretic than
the experimental curves at higher frequencies. This could
be because the model describes the average dynamic strain
in the material while the strain gages measure the strain on

Table 2. Parameter values for the friction model.

Parameter Driven Piston (small) Driver Piston (large)

σ0 (N m−1) 0.34 × 105 1 × 107

σ1 (N s m−1) 35 0
σ2 (N s m−1) 4.3 5 × 104

vs (m s−1) 0.0009 0.0009
Fc (N) 5.2 (for v > 0) 100

11.0 (for v < 0)
Fs (N) 5.8 (for v > 0) 120

11.1 (for v < 0)

the surface of the rod. At the surface the effect of diffusion
would be absent while the average dynamic strain would
increasingly lag behind the surface strain with increasing
actuation frequency due to magnetic field diffusion, thereby
leading to an increase in hysteresis.

A Fourier analysis on the experimental and calculated
responses was conducted as shown in figures 7 and 8. The
model accurately describes trends in the spectral content
of the strain and displacement. Figures 9 and 10 show
the magnitude and phase of the first-order component of
the pushrod displacement and Terfenol-D strain, respectively.
Strong correlation is obtained in the pushrod displacement
response in both magnitude and phase. In the case of
strain the magnitude matches well but there is some error
in the phase at the higher frequencies. The cause for this
inaccuracy in the phase description is the same as that for the
increased hysteresis in the strain–field loops explained earlier.
However, in almost all displacement amplified devices the
primary concern is to predict the final output of the device
accurately rather than the intermediate variables. In this
case the output is the pushrod displacement which the model
accurately quantifies over the entire frequency range.
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Figure 6. Terfenol-D strain at different actuation frequencies.

Figure 7. Output pushrod displacement orders.

6. Concluding remarks

A nonlinear model is presented which describes the dynamic
response of a displacement amplified magnetostrictive ac-
tuator. Eddy current losses are modeled using Maxwell’s
equations. This gives rise to a radially dependent field in
the magnetostrictive rod. The Jiles–Atherton model is used
to quantify the magnetization in the rod as a function of the

radially dependent field. Magnetostriction, calculated as a
single-valued function of the magnetization, is averaged over
the cross-section of the rod to obtain an effective magne-
tostriction. It is observed that this average magnetostriction
becomes smaller in magnitude and increasingly lags behind the
surface magnetostriction with an increase in drive frequency.
The magnetic model is combined with the mechanical model
describing the system vibrations. The LuGre friction model
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Figure 8. Terfenol-D strain orders.

Figure 9. Output pushrod displacement magnitude and phase (first
order).

is used to describe the frictional force at the output pushrod
seal. It is observed that the LuGre model can describe the low
velocity behavior of the device. The complete model describes
the displacement-field and strain-field loops accurately up to
500 Hz. The nonlinearities in the response are also described
with sufficient accuracy in terms of the higher-order spectral
components, which are important for device control. At higher
frequencies there are some inaccuracies in the strain–field
loops due to the limitations of the constitutive model, friction
model and unmodeled structural and fluid dynamics in the
actuator.

Figure 10. Terfenol-D strain magnitude and phase (first order).
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