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We present a discrete energy-averaged model for the nonlinear and hysteretic relation of
magnetization and strain to magnetic field and stress. Analytic expressions from energy
minimization describe three-dimensional rotations of domains about easy crystal directions in
regions where domain rotation is the dominant process and provide a means for direct calculation
of magnetic anisotropy constants. The anhysteretic material behavior due to the combined effect of
domain rotation and domain wall motion is described with an energy weighted average while the
hysteretic material behavior is described with an evolution equation for the domain volume
fractions. As a result of using a finite set of locally defined energy expressions rather than a single
globally defined expression, the model is 100 times faster than previous energy weighting models
and is accurate for materials with any magnetocrystalline anisotropy. The model is used to interpret
magnetization and strain measurements of �100� oriented Fe79.1Ga20.9 and Fe81.5Ga18.5 as well as
�110� oriented Fe81.6Ga18.4. © 2010 American Institute of Physics. �doi:10.1063/1.3318494�

I. INTRODUCTION

Magnetostrictive materials deform when exposed to
magnetic fields and undergo magnetization changes in re-
sponse to stress. In these materials, the mechanical stiffness
and magnetic permeability depend on both magnetic field
and stress. Galfenol, an alloy of iron and gallium, is an
emerging magnetostrictive material which exhibits a rela-
tively high magnetomechanical coupling and mechanical
properties similar to steel. This unique combination of prop-
erties enables unprecedented adaptive structures, sensors,
and actuators with three-dimensional �3D� functionality and
load-bearing capabilities. The effective design and control of
Galfenol systems therefore requires advanced models ca-
pable of accurately describing 3D magnetomechanical be-
havior while simultaneously being computationally efficient.

In the work of Armstrong,1 any bulk quantity related to
magnetic moment orientation, such as magnetization or mag-
netostriction, is the expected value of a large collection of
magnetic moments. The probability density function is the
Boltzmann distribution in which all possible moment orien-
tations are considered and minimum energy orientations are
the most likely. While this model was formulated to describe
anhysteretic Terfenol-D measurements, extensions include
hysteresis in the presence of changing magnetic fields.2 The
hysteresis extension of the model lacks accuracy due to the
choice of moment orientations included in the summation for
the expected value calculations—only moments attaining a
local internal energy minimum are included �eight for
Terfenol-D and six for Galfenol.� Atulasimha et al.,3 im-
proved the accuracy of the hysteresis model by including 98
distributed orientations. The number of moments and their
directions was chosen for �110�-oriented material and may

be different for other orientations. Evans and Dapino4 de-
scribed rate dependent hysteresis in magnetization and mag-
netostriction by tracking the transitions of a large collection
of moments between energy wells. They then reverted to a
reduced number of possible orientations but used the local
minima of the free energy, which includes magnetic and
magnetomechanical work terms.5 This approach was shown
to simultaneously achieve the accuracy and computational
speed required for device characterization, design, and con-
trol.

These energy-weighted models have three critical limi-
tations. The first is that the form of the magnetocrystalline
anisotropy energy, which determines the orientations pre-
ferred by magnetic moments, is material specific. Current
material processes for Galfenol are capable of significantly
changing the magnetocrystalline anisotropy energy,6 hence
determination of the appropriate form of the anisotropy en-
ergy can be challenging and difficult to generalize. The sec-
ond limitation of previous models is the absence of a mecha-
nism for magnetic hysteresis under stress application, which
is critical for design of sensors and actuators exposed to vari-
able mechanical loads. The third limitation is that minor
loops from field application have negative susceptibility at
the field reversal points, which is inconsistent with data.
These limitations are addressed in this paper.

First, a general formulation for magnetocrystalline an-
isotropy energy is developed. Rather than seek to define a
global energy which includes the local energy minima or
preferred orientations, we define the anisotropy energy lo-
cally about the known preferred orientations. The total free
energy with locally defined anisotropy is minimized to cal-
culate the orientation of domains. Second, the magnetic hys-
teresis model is extended to account for hysteresis resulting
from both magnetic field and stress application. A single pa-
rameter characterizes the hysteresis delay in both cases.
Third, we include the effect of reversible changes in domain
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walls from wall bowing, while restricting the effect of irre-
versible processes so as to exclude the unphysical behavior
of negative susceptibility.

II. MODEL DEVELOPMENT AND EXPERIMENTS

Ferromagnetic materials are composed of regions of uni-
form magnetization Ms called domains.7 In the Stoner–
Wohlfarth �SW� approximation used here and in other mag-
netomechanical models,8 the material is modeled as a
collection of noninteracting, single-domain particles.9 The
internal energy of a particle is due to magnetocrystalline an-
isotropy which gives domains preferred or easy directions.
Work is required to rotate domains away from the easy di-
rections. As magnetic fields H and stresses T are applied,
domains rotate towards the field direction and perpendicular
to the principal stress directions. When magnetic domains
rotate, the magnetomechanical coupling induces lattice strain
and bulk magnetostriction. For a material composed of a
collection of SW particles in thermodynamic equilibrium
having r possible orientations, the bulk magnetization M and
magnetostriction Sm are the sum of the magnetization Msm

k

and magnetostriction Sm
k due to each orientation, weighted by

the volume fraction �k of particles in each orientation

M = Ms�
k=1

r

�kmk, Sm = �
k=1

r

�kSm
k . �1�

The total strain is the sum of the magnetostriction and the
purely mechanical strain sT, where s is compliance. The an-
hysteretic values of the volume fractions are calculated using
an energy-weighted average,

�an
k =

exp�− Gk/��
�k=1

r exp�− Gk/��
. �2�

The energy Gk is the part of the free energy related to orien-
tation mk and parameter � is the Armstrong smoothing fac-
tor. A Boltzmann-type, energy weighting expression was first
proposed for use in magnetostrictive materials by
Armstrong1,2 and applied to Galfenol by Atulasimha et al.10

The cited works use a large number r of fixed directions mk.
Evans and Dapino5 reduced r while maintaining accuracy by
utilizing only mk which attain a local energy minimum.

A. Energy formulation

The free energy of a magnetostrictive material has terms
for magnetic anisotropy, magnetomechanical coupling, and
Zeeman or field energy. These energies are formulated by
idealizing the complex domain structure of ferromagnetic
materials as a system of noninteracting, single-domain, SW
particles. The system of SW particles is composed of r dis-
tinct groups or variants which rotate about an energetically
favorable or easy direction which for the kth variant is ck. The
variants are distinguished by their easy directions. The free
energy is formulated separately for each of the variants
whereas in previous work �Atulasimha et al.,3 and Evans and
Dapino5� a single energy expression is used for any SW par-
ticle orientation. The benefit of this approach is that the an-
isotropy energy depends explicitly on the variant’s easy di-

rection. We can thus describe arbitrary anisotropy
symmetries, needing only a knowledge of the easy direc-
tions.

The anisotropy energy of the kth variant, GA
k , is the work

required to rotate a SW particle away from ck. This is analo-
gous to mechanical systems where work is required to dis-
place a spring from equilibrium. This can be expressed as

GA
k =

1

2
Kk�mk − ck�2. �3�

For materials with a cubic lattice, the �100� or �111� direc-
tions tend to be easy. The anisotropy coefficient in each di-
rection family is the same, thus Kk=K100 for all six �100�
directions and Kk=K111 for all eight �111� directions. For
negative anisotropy coefficients Kk, the direction ck is mag-
netically hard or an unstable equilibrium. Galfenol can thus
have 6, 8, or 14 easy directions, which dictates the number of
variants r. While unannealed Galfenol is generally cubic and
thus has either one or two distinct Kk coefficients, stress an-
nealing or residual stresses from the crystal growth process
can cause a change in symmetry resulting in distinct values
for Kk within the orientation families �100� and �111�.

The magnetomechanical coupling energy GC
k of a single

SW particle with magnetization Ms is the strain energy den-
sity resulting from the magnetostriction of the particle,

GC
k = − Sm

k · T , �4�

and the Zeeman energy is

GZ
k = − �0Msm

k · H �5�

Kittel7 provides expressions for the magnetostriction of a
SW particle with cubic symmetry

Sm
k = 	

�3/2��100�m1
k�2

�3/2��100�m2
k�2

�3/2��100�m3
k�2

3�111m1
km2

k

3�111m2
km3

k

3�111m3
km1

k


 . �6�

The total free energy for each particle variant therefore is

Gk =
1

2
Kk�mk − ck�2 − Sm

k · T − �0Msm
k · H , �7�

which is minimized to calculate the particle orientation.

1. Calculation of particle orientations

The magnetic orientations mk of the SW particles are
calculated from minimization of Eq. �7� with constraint C
= �mk�−1=0 �since mk is a unit vector�. The constrained
minimization can be formulated as an inhomogeneous eigen-
value problem through the use of Lagrange multipliers.
Gathering terms from Eq. �7� and expressing the particle free
energy as Gk= 1

2mk ·Kkmk−mk ·Bk, one can write the eigen-
value problem as

�Kk − �I�mk = Bk, �8�

where the magnetic stiffness matrix Kk and force vector Bk

are
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Kk = 	Kk − 3�100T1 − 3�111T4 − 3�111T6

− 3�111T4 Kk − 3�100T2 − 3�111T5

− 3�111T6 − 3�111T5 Kk − 3�100T3

 , �9�

Bk = �c1
kKk + �0MsH1 c2

kKk + �0MsH2 c3
kKk + �0MsH2 �T. �10�

While the orientations can be easily solved for in terms of �,
determination of � requires solution of a sixth-order polyno-
mial obtained by substitution of each �-dependent orienta-
tion into the constraint. The constraint is relaxed through
linearization about the easy direction ck. This has little effect
on the calculated bulk magnetization and magnetostriction,
since the energy weighting operation �Eq. �1�� ensures that
particles which have rotated far from the easy axis are less
likely or have smaller volume fractions than those particles
which have not rotated far. In other words, the orientations
which have easy axis near the field direction and perpendicu-
lar to the stress direction are most favorable. For the linear-
ized constraint, the solution to the inhomogeneous eigen-
value problem is

mk = �Kk�−1�Bk +
1 − ck · �Kk�−1Bk

ck · �Kk�−1ck ck� . �11�

The particle orientations �Eq. �11�� define the orientations to
be included in the energy averaging �Eq. �1��, thus in the
present formulation r depends on the number of easy axes.
Galfenol has six easy axes in the �100� directions.

2. Comparison between the Armstrong model for
cubic materials and the discrete energy-
averaged model

The traditional manner of expressing anisotropy energy
is to define a global energy expression as a function of SW
particle orientation, which has minima corresponding to the
easy axes. The form for cubic materials is7,11

GA = K4�m1
2m2

2 + m2
2m3

2 + m3
2m1

2� . �12�

The subscript of the anisotropy coefficient refers to the order
of the expression which is fourth-order in this case. This
energy has extrema in the �100� and �111� directions, con-
sistent with Galfenol, and for this reason it has been used in
magnetomechanical models for Galfenol.3,5 The anisotropy
of Galfenol can be changed through stress annealing �appli-
cation of stress at elevated temperatures.� Annealing along a
�100� direction has been shown to result in Galfenol material
with tetragonal anisotropy where the four �100� directions
perpendicular to the annealing direction have a lower energy
than the remaining two.

The formulation by Trémolet12 for tetragonal symmetry
is

GA = K2
m3
2 −

1

3
� + K4
m1

4 + m2
4 + m3

4 −
3

5
� + K4�
m3

4

−
6

7
m3

2 +
3

35
� , �13�

where the �001� and �001̄� directions have different energies
than the remaining four �100� orientations. The following
reduced form for tetragonal symmetry has been used for
stress-annealed Galfenol4,6

GA = K4�m1
4 + m2

4 + m3
4� + K2m3

2. �14�

While for the global formulations different material sym-
metries necessitate different forms for GA, adapting the lo-
cally defined expression �Eq. �3�� for different material sym-
metries requires only an adjustment of the coefficients.
Another advantage of the local formulation is the simplicity
of the minimization process. Consider for example a cubic
material; the globally defined free energy G in this case is

G = K4�m1
2m2

2 + m2
2m3

2 + m3
2m1

2� − Sm�m� · T

− �0Msm · H . �15�

Depending on the values of the coefficients and the applied
stress and field, this expression can have anywhere from one
to six minima requiring a robust, nonlinear minimization
scheme. The fact that minima can disappear presents a chal-
lenge when utilizing �Eq. �1�� to calculate the bulk magneti-
zation and magnetostriction with direct energy minimization,
since r varies with stress and field. To obviate this issue,
previous works5,13 considered small particle rotations by per-
forming a second-order expansion of �Eq. �15�� about the
easy crystal directions. The approach here is to formulate
second-order energy expressions directly, for each easy di-
rection.

A comparative study shows that minimum energy orien-
tations using the globally defined energy are similar to the
minimum orientations of the locally defined energies. Con-
sider a material with cubic symmetry having �100� easy di-
rections. For the global energy expression, Eq. �15� is used,
and for the local formulation six expressions are used, one
for each of the easy directions. Since the symmetry is cubic,
all of the local expressions �Eq. �3�� have the same coeffi-
cient Kk=K100 and differ only in ck.

When applying fields and stresses along the �100� direc-
tion, energy �Eq. �15�� initially has six minimum orienta-
tions. Two of the minima are
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m = 	�1

0

0

 , �16�

and the remaining four depend on stress and field, corre-
sponding to the rotation of particles away from the four re-
maining �100� directions and towards the applied field.
Stress tends to impede these rotations since it favors perpen-
dicular directions. Evans13 showed that for small rotations
these minima have the following component in the �100�
direction:

m1 =
�0Ms

2K4 − 3�100T
H . �17�

The other components are simply zero or �1.
The local energies �Eq. �7�� result in similar expressions

for the six minima. For the energy expressions with ck

= ��100� the minima are

m = 	�1

0

0

 , �18�

and for the expressions with ck= �0�10� and ck= �00�1�,
the component in the �100� direction is

m1 =
�0Ms

K100 − 3�100T
H , �19�

and the other components are again zero or �1. Since Eq.
�17� and �19� describe the same magnetization process,
K100=2K4 should be satisfied.

The Armstrong model uses the global energy expression
with fixed orientations whereas the discrete energy-averaged
model presented here uses local energy expressions with
field and stress dependent orientations. Calculation of bulk
behavior using the two approaches yields similar results so
long as one recognizes that K100=2K4. Two cases are consid-
ered, �100� field application and �110� field application, both
with a bias stress. The bulk magnetization is calculated using
Eq. �2� with various values of smoothing parameter �. In the
Armstrong model,1 the global energy expression is used and
r in Eq. �2� is a number of fixed particle orientations. In the
model presented here, local energy expressions are used. For
cubic symmetry, direct minimization of the energy corre-
sponding to each variant yields r=6 orientations which rotate
with stress and field application. To determine r in the Arm-
strong formulation, the discrete form �Eq. �2�� is found
through discretization of the continuous form,

���,�� =
exp�− G/��sin �d�d�

�0
	�0

2	exp�− G/��sin �d�d�
, �20�

where � is now interpreted as a probability density and the
pair �� ,�� represents the particle orientation in spherical co-
ordinates. To numerically integrate, the integration intervals
are discretized into NI segments and over each segment,
fourth-order Gauss quadrature is used. This results in 4NI

values each for � and � and r=16NI
2 total particle orienta-

tions. The required NI for good accuracy depends on �. As

� approaches zero, �=1 for the globally minimum orienta-
tion and �=0 for all other orientations. In the Armstrong
model, if the discretization is too coarse, then it may be that
none of the fixed orientations are near the global minimum.
In the model presented here, this issue does not arise because
the global minimum is simply the minimum of the local
minima, which are calculated explicitly. Figure 1�a� shows
M −H curves calculated with the Armstrong model at con-
stant T in which H and T are applied in the �110� direction
and � is low. Different values of NI are used. Curves calcu-
lated with NI=20 �r=6400� and NI=40 �r=25 600� show a
small difference, therefore the error in the NI=40 case is
assumed negligible and this curve is taken as the benchmark
for error calculations. The relative error was calculated for
each of the curves at all field values and is shown in Fig.
1�b�. The maximum error is less than 60% for NI=5 and less
than 10% for NI=20.

Since it has been demonstrated that r=25 600 results in
good accuracy, this is used for Armstrong model calculations
in comparing M −H curves with the anhysteretic discrete
energy-averaged model �see Fig. 2.� The anhysteretic dis-
crete energy-averaged model uses the local energy definition
�Eq. �7��, SW particle orientations �Eq. �11��, and discrete
energy-average �Eq. �2��. The model parameters used for the
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FIG. 1. �Color online� Effect of discretization in the Armstrong model. �a�
Magnetization versus field at constant stress, where the field and stress are
applied in the �100� direction. �b� Error relative to the NI=40 �r=25600�
case.
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comparison in Fig. 2 are �0Ms=1.59 T, K100=2K4

=17.5 kJ /m3, �3 /2��100=260
10−6, and 3�111=−10

10−6 at various values of � �50, 100, 200, 400, and 600 J�.
A bias stress of �26 MPa is used for the �100� calculations
and �50 MPa for the �111� calculations.

Although the difference between the Armstrong model
and the model presented here is greater with increasing �,
both models provide the same trends. When � is small, the
magnetization is only due to the global minimum orientation.
In this case the two models are nearly identical. There is a
small difference at high fields ��10.5 kA /m� for �110� ap-
plication owing to the fact that a linear approximation was
used for computing the minimum of the local energy expres-
sions for the discrete energy-averaged model. Though this
error is small in all cases, it is greater when field or stress
rotates particles to a direction far from the easy axes. In both
models, an increasing � results in smoother curves. Whereas
the curves for small � have sharp transitions representing a
change in the global minimum from one local minimum to
another, for large � the volume fractions or probability den-
sity are more broadly distributed, meaning that the bulk mag-
netization has contributions from the global minimum as
well as the other local minima in the discrete energy-

averaged model, and it has contributions from all the fixed
orientations in the Armstrong model. The difference between
the two models for higher � can be attributed to the presence
of orientations that are neither global nor local minima in the
Armstrong model, since the orientations used in the summa-
tion of the Armstrong model are found from Gauss-
quadrature rules without regard to energy.

The discrete energy-averaged model is computationally
efficient since it utilizes only six particle orientations �see
Fig. 3.� For the benchmark NI=40, the number of floating-
point operations is 10
106. For the discrete energy-
averaged model the number of orientations is fixed and the
required number of floating-point operations is 0.1
106, an
improvement of two orders of magnitude. This improvement
is significant for device design and control.

3. Š100‹ single-crystal Fe79.1Ga20.9 measurements and
anhysteretic model

Magnetization versus magnetic field measurements at
constant stress for �100�-oriented, single-crystal Fe79.1Ga20.9

are compared with the anhysteretic discrete energy-averaged
model �Eqs. �2�, �7�, and �11��. The material was grown with
the Bridgman method resulting in a single-crystal rod. Al-
though the material is body centered cubic, the magnetostric-
tion measurements indicate that the magnetic anisotropy has
tetragonal symmetry. Material with cubic symmetry has a
maximum magnetostriction of �100 in the �100� direction
when no stress is applied and �3 /2��100 when sufficient
stress is applied to align all domains perpendicular to the
field and stress. The measurements in Fig. 4�b� show that the
maximum magnetostriction exhibits little dependence on the
bias stress. This suggests that the material has tetragonal
symmetry where perpendicular domain orientations are ener-
getically preferred to parallel domain orientations, even
when no stress is applied. This could be due to either the
crystal growth process or tetragonal material phases. Studies
have shown that Fe–Ga alloys have a complicated phase dia-
gram and any given alloy may have multiple phases
present.14

The magnetization data has three linear regions sepa-
rated by nonlinear transitions �see Fig. 4�a��. In the model,
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FIG. 2. �Color online� Comparison of the Armstrong model with the discrete
energy-averaged model �DEAM� for � ranging from 50 to 600. �a� �100�
calculations. �b� �111� calculations.
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these regions are described by three variants of SW particles.
The linear region below the approach to magnetic saturation
is dominated by rotation of particles away from the �010�,
�01̄0�, �001�, and �001̄� directions—orientations initially per-
pendicular to the applied stress and field—and into the field
direction. These orientations have anisotropy coefficient K�.
The component of the orientation in the �100� direction, m�

given by Eq. �19�, results in a contribution of M�

=Msm���010+�01̄0+�001+�001̄� to the total magnetization.
The remaining regions are the positive and negative mag-
netic saturation regions, where little magnetization change
occurs with varying magnetic fields. These regions are domi-

nated by �100� and �1̄00� particles which are already aligned
with the field and stress axis. These particles have anisotropy
coefficient K�. The former orientation contributes to positive
saturation and the latter to negative saturation. Their contri-
butions to the total magnetization are M�100�,�1̄00�=Ms��100� ,
−Ms��1̄00�.

The volume fractions are determined from the energy-
weighted average �Eq. �2��. Stresses favor the off-axis or
initially perpendicular variants, each of which have the same
energy level, from Eq. �7�

E� =
H2��0Ms�2 − 3�100K�T + K�

2

6�100T − 2K�

. �21�

Applied magnetic fields favor the parallel orientations which
have energies

E�100�,�1̄00� = � H�0Ms −
3

2
�100T −

1

2
K� . �22�

With no applied field and stress, E� is much greater than
E�100�,�1̄00�. In the energy-weighted average this results in
�010+�01̄0+�001+�001̄�1 and the magnetization is simply Eq.
�19�; this expression is compared with the data in Fig. 5. The
anisotropy constant K� can thus be calculated directly from
the slope of the linear magnetization region. The kink in the
magnetization curves or the transition from the linear region
to saturation occurs when E�=E�. This gives a measure of
the other anisotropy coefficient K�. Two of the remaining
parameters are determined directly from the data; Ms and
�3 /2��100 are found from the magnetization and magneto-
striction at saturation. The smoothing parameter � is deter-
mined through least-squares optimization and determines the
sharpness of the transition to saturation. For �100� applica-
tion, the shear magnetostriction coefficient �111 does not en-
ter into the model and hence cannot be determined from the
data. The total magnetization as calculated by Eq. �2� is com-
pared with the data in Fig. 4. The model parameters used for
these calculations are provided in Table I.

B. Magnetomechanical hysteresis

Hysteresis is included in energy weighting models2–5

through an evolution equation for the volume fractions,

d�k =
1

kp
��an

k − �k��dH� . �23�

Parameter kp quantifies pinning site density of the material.
Pinning refers to material impurities or defects which impede
domain wall motion. This hysteresis model, first proposed by
Armstrong,2 employs concepts from the Jiles–Atherton
model.15 In the energy-weighted averaging model frame-
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FIG. 4. �Color online� �a� Magnetization and �b� magnetostriction of �100�
single-crystal Fe79.1Ga20.9 at constant stress values of 0.689, 13.8, 27.6, 41.3,
55.1, 68.9, 82.7, 96.4, and 123 MPa �compression�, compared with anhys-
teretic model calculations.

FIG. 5. �Color online� Rotation of perpendicular domain orientations com-
pared with data of �100� single-crystal Fe79.1Ga20.9 at constant stress values
of 0.689, 13.8, 27.6, 41.3, 55.1, 68.9, 82.7, 96.4, and 123 MPa
�compression�.
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work, domain wall motion is indirectly accounted for
through changes in the volume fractions. The energies de-
scribed in Sec. II A pertain to SW particles which approxi-
mately represent domain orientations. The anhysteretic vol-
ume fractions �an

k are calculated through the averaging
function �Eq. �2��, which is a function of stress and magnetic
field. As stress and magnetic field change, the volume frac-
tions change. Physically, the changes occur through motion
of domain walls where this motion causes regions aligned
along favorable domain orientations to grow at the expense
of the other regions. As the walls pass through defect sites,
energy is lost. In the Jiles–Atherton model, which is a do-
main wall motion model and does not involve volume frac-
tions and domain rotation, this loss is included through a
differential equation for magnetization.

The model represented by Eq. �23� has three deficien-
cies: �1� it does not account for hysteresis when stress is
varied at constant field, �2� minor loops exhibit an unphysi-
cal, negative differential susceptibility at the reversal points,
and �3� it is one-dimensional. Reported Galfenol measure-
ments indicate that hysteresis is more significant for stress
application than for field application.16 In this work, the rea-
son for the apparently wider hysteresis loops for stress appli-
cation is found to be that for Galfenol, the Zeeman energy
�Eq. �5�� is generally larger than the magnetomechanical
coupling energy �Eq. �4��.

Since both stress and field change the domain volume
fractions through domain wall motion, a single evolution
equation should describe the volume fractions in the pres-
ence of energy loss from wall pinning for both stress and
field application. Additionally, reversible volume fraction
changes from domain wall bowing should be accounted for
while restricting the irreversible changes predicted by the
model which lead to unphysical, negative differential suscep-
tibility. The irreversible changes are described by a modified
form of Eq. �23� which includes stress application and con-
sistent scaling

d�irr
k =




kp
��an

k − �irr
k ���0Ms��dH1� + �dH2� + �dH3��

+ �3/2��100��dT1� + �dT2� + �dT3�� + 3�111��dT4�

+ �dT5� + �dT6��� . �24�

In this extended evolution equation, 3D inputs are included
and scaled appropriately so that each input has units of en-
ergy density, hence kp has units of energy density. The value
of 
 is zero or one and used to restrict irreversible changes to
physically appropriate situations. First the fractional change
is calculated with 
=1 and if the resulting increment gives a
negative susceptibility, then it is changed to zero. This con-

dition was given by Jiles et al.17 The total volume fraction
change is

d�k = �1 − c�d�irr
k + cd�an

k , �25�

in which c is nondimensional and has a value between zero
and one. For a value of one, volume fraction changes are
completely reversible and for a value of zero they are com-
pletely irreversible.18 The magnetic hysteresis model for
magnetomechanical materials defined by Eqs. �24� and �25�
describes magnetic hysteresis for 3D field and stress inputs.
By including reversible magnetization changes and restrict-
ing irreversible changes to physically relevant cases, minor
loops do not have unphysical negative differential suscepti-
bility as exhibited by the previous model �Eq. �23��. Figure 6
demonstrates this improvement.

TABLE I. Model parameters.

�0Ms

�T�
K� ,K�

�kJ /m3� �3 /2��100 �
10−6� 3�111 �
10−6�
�

�J /m3�
kp

�J� c
E

�GPa�

�100� Fe81.5Ga18.5 1.55 35, 34 255 N/A 1100 230 0.1 75
�100� Fe79.1Ga20.9 1.21 9.95, 2.0 210 N/A 500 N/A N/A N/A
�110� Fe81.6Ga18.4 1.58 100, 100 290 �40 800 300 0.1 150
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FIG. 6. �Color online� Minor loop calculations using �a� the discrete energy-
averaged model and �b� the Armstrong model.
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C. Comparison with experiments

1. Š100‹ textured Fe81.5Ga18.5 measurements and
hysteretic model

Measurements of �100�-oriented, textured Fe81.5Ga18.5

grown with the Free Stand Zone Melt method �FSZM� at
Etrema Products Inc. are compared with model calculations.
The magnetostriction measurements �see Fig. 7� indicate a
slightly tetragonal magnetic anisotropy but much less so than
the higher Ga content sample grown with the Bridgman tech-
nique. The ratio of the maximum magnetostriction under
zero stress and at 32.3 MPa is 1.34. Increasing the stress
beyond 34.3 MPa does not result in high magnetostriction,
indicating that the maximum magnetostriction in this case is
�3 /2��100. The zero stress magnetization versus field curve
has a slightly kinked shape. This also suggests that K��K�

or that the magnetic anisotropy is tetragonal. The anhyster-
etic model parameters were determined in the same manner
as for the 20.9% Ga sample. The parameters in the hysteresis
model kp and c determine the width of the hysteresis loops
and were found through least-squares optimization.

Figure 7 demonstrates the close agreement between
model and data. The pinning energy density kp characterizes
the width of the hysteresis loops for both field and stress
application. It is the material properties which describe the
anhysteretic behavior that account for the apparently wider
magnetic hysteresis loops when stress is applied. In the hys-

teresis model �Eq. �24��, it is the ratio of the applied energy
to the pinning energy that determines the hysteresis delay.
Since Galfenol alloys have high saturation flux density �0Ms

and moderate maximum magnetostriction �3 /2��100, the en-
ergy from magnetic field application is higher than the en-
ergy from stress application. It is energetically easier to over-
come the pinning energy by applying a magnetic field.

Hysteresis is most significant in the burst regions where
volume fraction changes occur and negligible where the
magnetization process is dominated by domain rotation. For
example, in the magnetization versus magnetic field mea-
surement with the highest bias stress �32.3 MPa�, there is
little hysteresis in the range −5�H�5 kA /m, where �010

+�01̄0+�001+�001̄�1 and magnetization changes are domi-
nated by rotation of domains away from the four perpendicu-
lar �100� easy directions and towards the magnetic field.
Above 5 kA/m, the �100� easy direction aligned with the
field becomes the global minimum which causes a change in
the anhysteretic volume fractions �Eq. �2�� which drives the
first-order hysteresis model �Eq. �24��. For field application
at constant stress, the first-order �Eq. �24�� has a pseudotime
constant kp /�0Ms �the coefficient of the field increment�
which determines how the volume fractions approach the
anhysteretic volume fractions. Thus smaller kp and larger
�0Ms reduces the field delay associated with hysteresis.
Above 10 kA/m, there is no more change in the anhysteretic
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FIG. 7. �Color online� Measurement and model calculations for �100� Fe81.5Ga18.5 grown with FSZM at constant stress values of 0.32, 8.00, 13.4, 23.1, and
32.3 MPa �compression� and constant field values of 1.85, 3.24, 5.65, and 8.88 kA/m.
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volume fractions because ��100��1, and as the volume frac-
tions �irr

k approach this state, there is no more hysteresis.
Consider now the magnetization versus stress curve at

the highest bias field �8.88 kA/m�. At zero stress, the bias
field is enough to align all domains in the �100� direction
since its energy is significantly lower than the four perpen-
dicular directions. As the material is loaded in compression,
the perpendicular orientations eventually become globally
minimum at around 35 MPa. At this point the anhysteretic
volume fractions change, which drives the first-order hyster-
esis model �Eq. �24��. For stress application at constant field,
the first-order �Eq. �24�� has a pseudotime constant
kp / �3 /2��100 which determines the stress delay as the vol-
ume fractions approach the anhysteretic values. A smaller kp

again reduces the delay as well as a larger �100. Above 50
MPa, the volume fractions have reached the anhysteretic
fractions which are no longer changing, �010+�01̄0+�001

+�001̄�1. At this point the magnetization is dominated by
domain rotation as the stress competes with the bias field to
more fully align domains in the four perpendicular �100�
crystal directions. This rotation is described by Eq. �19�. The
rotation region is linear for applied field because Eq. �19� is
linear in H, however for stress application the rotation region
is nonlinear since stress appears in the denominator of Eq.
�19�.

The lower bias field cases �1.85 and 3.24 kA/m� have
more complex behavior. The first stress cycle is not a closed
loop whereas subsequent cycles are closed for both the mea-
surements and the model calculations. This can be under-
stood with the hysteresis model. The first stress cycle has a
different initial condition than subsequent cycles. In collect-
ing the measurements, the material is first saturated with a
magnetic field at zero stress followed by a reduction in the
magnetic field to the bias field value. At saturation, ��100�

=�an,�100�=1 and when the field is decreased to the bias point,
���100���an,�100���1 since there is a delay in the volume
fraction change. This is the starting point of the first stress
cycle. During the first cycle, the stress �compressive� is in-
creased until ��100�=�an,�100�=0 or all the domains are in the
perpendicular orientations. Upon reduction in the stress to
zero, �an,�100� increases, but due to the hysteresis delay,
���100���an,�100���1. Hence the final magnetization is less
than the initial magnetization for the first stress cycle since
the starting and ending values of the volume fractions are

different. Additional stress cycles return to the same volume
fraction values and hence subsequent loops are closed.

In the strain versus stress curves, the �E effect is ob-
served in both the model and the measurements. The linear
regions are governed by Hooke’s law and are used to deter-
mine Young’s modulus E, listed in Table I. The steepest part
of the active region, where the effective modulus decreases
significantly, is hysteretic since domain volume fractions
change in this region. The hysteresis observed in the strain
for both applied field and stress is due to the delay in volume
fraction changes in magnetic domains, therefore, magnetic
hysteresis is responsible for the energy loss in both the mag-
netization versus field relationship and in the strain versus
stress relationship.

2. Š110‹ single-crystal Fe79.1Ga20.9 measurements and
hysteretic model

For �110� application there are three distinct contribu-
tions from the six variants. The variants which dominate the
positive saturation region have their easy axes closest to the
positive field direction �100� and �010�, and rotate until they
are aligned parallel to the field �when field is applied at con-
stant stress.� The variants which dominate the negative satu-
ration region have their easy axes closest to the negative field

direction �1̄00� and �01̄0�, and rotate until they are aligned
parallel to the field. Finally, the variants which dominate the
low field region, prior to the burst towards saturation of the
magnetization versus field curves, have easy axes perpen-

dicular to the field, �001� and �001̄�. Utilizing Eq. �11�, the
component of the orientation in the �110� direction for the
variants with easy axes perpendicular to the field and stress is

m� =
�0Ms

K� − �3/2���100 + �111�T
H . �26�

The energy of these directions is

E� =
��2�0MsH�2 − 3K���100 + �111�T + 2K�

2

6��111 + �100�T − 4K�

. �27�

The component of the orientation in the �110� direction for
the variants with easy axes closest to the positive field direc-
tion is

m�+ =
�0Ms

2K� − 3�100T
H +

�2

2

1 +

3�111

2K� − 3�100T
� . �28�

The energy of these directions is

E�+ =
��2�0MsH�2 + 6�2���111 − �100�HT + �2/3�K100H��0Ms

12�100T − 8K�

+
9��111

2 − �100
2 �T2 + 4K�

2

12�100T − 8K�

. �29�

Finally, the component of the orientation in the �110� direction for the variants with easy axes closest to the negative field
direction is

m�− =
�0Ms

2K100 − 3�100T
H −

�2

2

1 +

3�111

2K� − 3�100T
� . �30�

The energy of these directions is
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E�− =
��2�0MsH�2 − 6�2���111 − �100�HT + �2/3�K�H��0Ms

12�100T − 8K�

+
9��111

2 − �100
2 �T2 + 4K�

2

12�100T − 8K�

. �31�

Since the S–W orientations are calculated with first-
order accuracy, the magnetostriction should also have first-
order accuracy. Linearization of the particle magnetostriction
�Eq. �6�� gives,

Sm � Sm,0 +
�Sm

�m
�m − m0� . �32�

For �110� application with high bias stress, the total magne-
tostriction �as measured in the �110� direction� at high fields,
or above the burst region, is the difference between the mag-

netostriction of the �100�, �010�, �1̄00�, �01̄0� easy axis vari-

ants and the �001� and �001̄� easy axis variants. This is be-
cause the material starts completely in the latter variants and
after the burst region is completely in the former variants.
This gives,

Sm =
3�2�0Ms�111

4K� − 6�100T
H +

�18�111
2 − 3�100

2 �T + 2�100K�

8K� − 12�100T

+
�100

2
, �33�

for the total magnetostriction at high fields. The presence of
�111 in the coefficient of H explains how it is possible to
have negative piezomagnetism at high fields. The sign de-
pends on the sign of �111. For the measurements shown in
Fig. 8, the slope of the magnetostriction versus magnetic
field curve is negative above the burst region. The anhyster-
etic model properties K�, K�, �0Ms, �100, and �111 can all be
found by measuring the slopes of the linear regions in the
magnetization and magnetostriction versus magnetic field
curves and comparing with the analytic expressions �Eqs.
�26�, �28�, and �30��. The remaining model parameters are
found from least-squares optimization.

The analytic expressions accurately describe the data in
the domain rotation regions. There is negligible error in the
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FIG. 8. �Color online� Measurement and model calculations for �110� Fe81.6Ga18.4 grown with the Bridgman method at constant stress values of 0.644, 22.1,
39.5, and 55.3 MPa �compression� and constant field values of 0, 1.61, 3.23, 4.84, and 6.46 kA/m.
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linear regions below and above the burst regions in the mag-
netization versus magnetic field curves. Additionally, the cor-
rect magnitudes and slopes are predicted by the model for
the magnetostriction above and below the burst region, in-
cluding the negative slope in the magnetostriction at high
fields. In both the measured curves and the model curves, the
magnetic hysteresis is again more significant for stress appli-
cation than for magnetic field application. The pseudotime
constant for field application is the same as for �100� appli-
cation, however for the stress it is

� =
kp

�3/2��100 + 3�111
. �34�

The negative �111 thus increases the hysteresis delay as com-
pared to �100� application.

There is a discrepancy between the model and the ex-
periments regarding the location of the burst region. The
predicted field location is lower and the predicted stress lo-
cation is higher. The location of the burst region caused by
volume fraction changes from the perpendicular variant to
the variant with easy axes closer to the field direction is
governed by E�=E�+ for positive field application and E�

=E�− for negative field application. Therefore, the error sug-
gests a missing energy term. However, modification of the
energies needs to be done with care since the S–W particle
orientations are calculated from the energies and the particle
orientations are correctly predicted by the model, as evi-
denced by the excellent correlation between the model and
the measurements in the anhysteretic regions dominated by
domain rotation. The details of the burst region are also af-
fected by the energy weighting scheme �Eq. �2��. Thus, the
discrepancy may be a consequence of unmodeled details in
the underlying domain wall motion process which causes the
volume fraction changes. The same discrepancy is observed
when employing the Armstrong model with the global en-
ergy definitions since as was demonstrated earlier, both mod-
els predict the same location for the burst region �see Fig.
2�b��.

III. CONCLUDING REMARKS

This work extends the energy-weighted averaging class
of magnetomechanical models by developing an efficient
implementation for magnetic hysteresis due to both applied
field and stress. By using local energy formulations depen-
dent on the magnetic easy axes, the formulation is 100 times
faster than previous energy weighting models and is appli-

cable to materials with any symmetry of magnetocrystalline
anisotropy. Since the hysteresis model accounts for magnetic
hysteresis for both field and stress application, it provides a
means to understand the history dependence of the magneti-
zation and strain including the apparently larger hysteresis
delay for stress application than for field application. Be-
cause the model uses analytic expressions for domain rota-
tion, most of the model parameters can be directly deter-
mined from features of the measurements. These analytic
expressions accurately describe the nonlinear magnetization
and strain versus field and stress behavior in regions where
domain rotation is the dominant process. In addition to fur-
thering the understanding of Galfenol magnetomechanical
behavior, this work provides an efficient modeling frame-
work for Galfenol devices subjected to 3D magnetic field
and stress loading, operated in nonlinear and hysteretic re-
gimes.
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