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Abstract
This paper presents an overview of the characterization and modeling of single crystal
ferromagnetic shape memory Ni–Mn–Ga. A continuum thermodynamics model is presented
which describes the magnetomechanical characterization of single crystal Ni–Mn–Ga for the
following behavior: (i) sensing effect; (ii) actuation effect; (iii) blocked force (stress
generation). The thermodynamic potentials, namely the magnetic Gibbs energy and the Gibbs
energy, are obtained from the Helmholtz energy in order to arrive at the set of required
independent and dependent variables; the potentials include magnetic energy consisting of
Zeeman, magnetostatic and anisotropy components, and mechanical energy consisting of elastic
and twinning components. Mechanical dissipation and the microstructure of Ni–Mn–Ga are
incorporated in the continuum model through the internal state variables volume fraction,
domain fraction, and magnetization rotation angle. The constitutive response of the material is
obtained by restricting the process through the second law of thermodynamics. The model
requires only seven parameters identified from two simple experiments. Several interesting
characteristics of Ni–Mn–Ga are examined in concert with the magnetomechanical
characterization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ferromagnetic shape memory alloys (FSMAs) in the Ni–Mn–
Ga system are a class of active materials which typically
generate 6% strain in response to externally applied magnetic
fields [1]. In contrast to conventional heat driven shape
memory alloys (SMAs), the magnetically driven FSMAs
exhibit high operating frequency in the kHz range [2, 3],
making them attractive for actuation applications. Most of the
work on characterization and modeling of FSMAs has been
focused on quasistatic actuation, i.e., strain dependence on
magnetic field (e.g. see review papers [4, 5]). The sensing

* This work was performed by the authors at The Ohio State University.
3 Author to whom any correspondence should be addressed.

effect, i.e., magnetization dependence on external strain
input was recently characterized [6] and modeled [7] using
continuum thermodynamics principles. This work extends the
model to incorporate actuation and blocked force behavior.
The model uses a unified continuum thermodynamics
framework to describe the following magnetomechanical
interdependencies: (i) stress and magnetization dependence
on strain input at varied bias fields (sensing), (ii) strain and
magnetization dependence on field input at varied bias stresses
(actuation), (iii) stress and magnetization dependence on field
input at varied bias blocked strains (blocked force).

The strain mechanism in FSMAs is well established in
the literature [8–10]. In the low temperature martensite
phase, FSMAs consist of a self-accommodating twin-variant

0964-1726/10/035001+20$30.00 © 2010 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0964-1726/19/3/035001
mailto:sarawate@ge.com
mailto:dapino.1@osu.edu
http://stacks.iop.org/SMS/19/035001


Smart Mater. Struct. 19 (2010) 035001 N N Sarawate and M J Dapino

Figure 1. Schematic of strain mechanism in FSMAs under transverse field and longitudinal stress.

structure consisting of crystals with orthogonal orientations of
magnetically easy c-axes, separated by a twin boundary as
shown in figure 1. The twin-variant rearrangement or twin
boundary motion results in deformation of the material due to
reorientation of the crystal structure. The twin boundary can
be driven by externally applied transverse magnetic fields, or
by longitudinal compressive stress. A magnetic field applied
in the x direction produces alignment of the magnetization
vectors and the crystal c-axis along the field direction, thereby
producing positive strain in the y direction. A compressive
stress in the y direction produces alignment of the c-axis and
magnetization vectors along the y direction, thus restoring the
initial configuration. The maximum possible strain depends
on the crystal geometry, with a typical value of 6% in
commercially available single crystal specimen [11].

Several models have been proposed for describing twin-
variant rearrangement in FSMAs, with the primary intent of
characterizing the magnetic field induced strain or actuator
behavior. The most common approach relies on construction
and minimization of an energy function to obtain stress, strain,
and magnetization responses to magnetic fields.

James and Wuttig [12] presented a model based on a
constrained theory of micromagnetics (see also [13, 14]).
The terms contributing to the free energy in their model
are the Zeeman energy, the magnetostatic energy and
the elastic energy. The magnetization of Ni–Mn–Ga is
assumed to be fixed to the magnetic easy axis of each
martensitic variant because of the material’s high magnetic
anisotropy. The microstructural deformations and the resulting
macroscopic strain and magnetization response are predicted

by detecting low-energy paths between initial and final
configurations. They conclude that the typical strains observed
in martensite, together with the typical easy axes observed in
ferromagnetic materials, lead to layered domain structures that
are simultaneously mechanically and magnetically compatible.
Because of the complexity of the model, it has been
implemented only for certain simplified cases [15, 16].

After the discovery of Ni–Mn–Ga, Likhachev and Ullakko
proposed a model that has become the basis for much of
the subsequent modeling work [9, 17–22]. In this model,
the anisotropy energy difference between the two variants is
identified as the chief driving force. The derivative of the easy-
axis and hard-axis magnetic energy difference is defined as the
magnetic field induced driving force acting on a twin boundary.
The magnetization is assumed to be a linear combination of
easy-axis and hard-axis magnetization values related by the
volume fraction. It is argued that regardless of the physical
nature of the driving force, twin boundary motion should be
initiated at equivalent load levels. The strain output for a given
magnetic field input can be predicted through an analytical
interpolation of mechanical stress–strain experimental data by
replacing the mechanical stress with an effective force due
to the field. A similar model was utilized by Straka and
Heczko [23–25] for describing the stress–strain response at
varied bias fields.

O’Handley [8] presented a model that quantifies the
strain and magnetization dependence on field by energy
minimization. The Zeeman energy difference (�M · H)
across the twin boundary is the driving force responsible
for strain generation. The contributions of elastic, Zeeman,
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and anisotropy energy are considered, with the latter defining
three cases depending on its strength being low, medium,
or high. This model is anhysteretic because technique of
energy minimization results in thermodynamically reversible
behavior. For the intermediate anisotropy case, a parametric
study was conducted which shows the influence of varying
elastic and magnetic anisotropy energies. This work provided
a significant advancement towards modeling of FSMAs by
proposing the twin boundary mechanism due to the interaction
between anisotropy and Zeeman energy as the reason behind
stress generation. Further work by the authors has been based
on this model, with focus on modeling the strain–field behavior
from micromagnetic considerations [26–28].

A model by Couch and Chopra [29–31] is based on
an approach similar to that by Brinson [32, 33] for thermal
shape memory materials. The stress is assumed to be a
linear combination of strains, volume fractions and magnetic
fields. The model was developed to describe the stress–strain
behavior at varied magnetic fields and quantify the transition
from irreversible to reversible behavior. The model parameters
are obtained as for thermal shape memory alloys, by using
the values of slopes that the curves of critical stress values
make when plotted against the bias magnetic field. The critical
stresses are expressed as a function of the magnetic field using
these slopes. While this model is tractable, the identification of
model parameters requires stress–strain testing over a range of
bias fields in order to obtain the necessary stress profiles as a
function of field.

Glavatska et al [34] developed a statistical model for
magnetic field induced strain by relating the magnetoelastic
interactions to the internal microstress in the martensite. The
probability of rearrangement for the twins in which the stresses
are near the critical values is described through a statistical
distribution. Chernenko et al [35, 36] further modified this
model to describe the quasiplastic and superelastic stress–
strain response of FSMAs at varied bias fields.

A thermodynamic approach was introduced by Hirsinger
and Lexcellent, and was used in their subsequent publica-
tions [37, 10, 38–40]. Magnetomechanical energy expressions
were developed. The microstructure of single crystal Ni–
Mn–Ga was represented by internal state variables; the
evolution of these variables was used to quantify the strain
and magnetization response to applied magnetic fields. The
anisotropy energy effect was not considered in [10] but
was later considered in [38, 41] in order to model the
magnetization.

Kiefer and Lagoudas [42–44] employed a similar
approach with a more systematic thermodynamics treatment.
Polynomial and trigonometric hardening functions were
introduced to account for interaction of evolving volume
fractions. However, this leads to increased number of model
parameters. Faidley et al [45–47] used the thermodynamic
approach to describe reversible magnetic field induced strain
in research-grade Ni–Mn–Ga. The Gibbs energy potential
was constructed for the case when the twin boundaries are
pinned by dislocations, which had been previously shown by
Malla et al [48] to allow in some cases for reversible twin
boundary bowing when the single crystal is driven with a

collinear magnetic field and stress pair. While similar in
concept to the models by Hirsinger and Lexcellent [10] and
Kiefer and Lagoudas [42], in this model the energy of a
mechanical spring is added to the Zeeman and elastic energies
to account for the internal restoring force supplied by the
pinning sites. The anisotropy energy was assumed to be
infinite in [42] and [45] and magnetostatic energy was not
considered with the argument that it depends on the geometry
of a sample. One tenet of the proposed model is that
the magnetostatic energy is an important component of the
magnetization response, which is critical for describing the
sensing effect. The magnetostatic energy is thus considered
as a means to quantify the demagnetization field. While
the magnitude of the demagnetization field depends on a
specimen’s shape, it can be assumed to be uniform throughout
a continuum.

In this paper, a thermodynamic model is presented to
describe the sensing behavior. The focus is on modeling
the magnetization versus strain behavior and magnetic field
induced pseudoelasticity in Ni–Mn–Ga FSMAs. Further,
this sensing model is extended to describe the actuation and
blocked force behavior of single crystal Ni–Mn–Ga.

We present a unified magnetomechanical model based
on a continuum thermodynamics approach similar to that
in [10, 42, 45]. However, the primary intent is to present
an improved sensing effect model as compared to [7]; which
is then extended to model the actuation and blocked force
behavior. Numerous magnetomechanical characterization
factors like the flux density sensitivity with respect to strain,
the magnetic field induced stress, the maximum field induced
strain and optimum bias stress, the variation of initial
susceptibility with blocked strain and the maximum generated
blocked stress are presented in terms of both experimental
results and model at various stages in the paper, illustrating
the rich magnetomechanical coupling in Ni–Mn–Ga. This
coupling, however, should not be viewed in the traditional
sense of the magnetostrictive effect. The magnetomechanical
coupling in Ni–Mn–Ga results from the competition between
the strong magnetocrystalline anisotropy and Zeeman energy
due to applied fields. The conventional magnetoelastic
coupling resulting from magnetostriction, or domain rotation,
is often ignored in modeling of Ni–Mn–Ga as the associated
deformations are several orders of magnitude larger than the
associated magnetostrictive strains [49, 50]. This coupling
must be included for modeling the blocked force behavior
when the material is constrained from mechanical deformation.
The experimental characterization of sensing and blocked force
is explained briefly. The experimental data on actuation
is obtained from [51], as actuation characterization is well
established.

The outline of the paper is as follows. A brief
thermodynamic background with the inclusion of magnetic
terms is given in section 2. The incorporation of the
microstructure in the continuum thermodynamics framework
using the internal state variables volume fraction, domain
fraction, and magnetization rotation angle is discussed in
section 3. Sections 4–7 discuss the sensing model, which
includes magnetic and mechanical energy formulations (4) fol-
lowed by the discussion of evolution of internal state variables
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(sections 5 and 6) and model results (section 7). A specific
form of thermodynamic potential termed magnetic Gibbs
energy is defined which includes Zeeman, magnetostatic,
and anisotropy energy contributions. The mechanical energy
includes an elastic component and dissipative effects due to
twinning. As is often done for modeling of shape memory
alloys, the total strain is decomposed into an elastic and
twinning strain. The process associated with magnetization
variables is assumed to be reversible but the evolution of
volume fraction is assumed to be dissipative, which implies
that the constitutive response depends on the volume fraction
history. The model is extended to the actuation effect in
section 8 to describe strain dependence on field. Section 9
presents the characterization and modeling of blocked (zero
strain) force, and the concluding remarks are presented in
section 10. The model requires only seven parameters, which
are determined through the following simple experiments:
stress–strain curve at zero bias field, and easy-axis and hard-
axis magnetization curves, with one additional parameter for
the blocked force model. The comparison of model results with
experimental measurements is presented throughout the paper.

2. Thermodynamic framework

The first law of thermodynamics dictates that the rate of change
of internal energy of any part S of a body is equal to the rate of
mechanical work of the net external force acting on S plus all
other energies that enter or leave S. For solids, the Lagrangian
or referential form is used, where the reference (unloaded)
configuration is known. For a thermo-magnetomechanical
solid, the conservation law is given in local form as,

ρε̇ = P · Ḟ + μ0
−→H · −̇→M + ρr − Div q, (1)

where ε is the specific internal energy, ρ is the density of
the material in referential coordinates, P is the first Piola–
Kirchhoff stress tensor, F is the deformation gradient tensor,
r is the specific heat source inside the system and q is a
referential heat flux vector representing the heat going out of
the system. The term P · Ḟ represents the stress power, or
the rate of work done on the system by external mechanical

action. The term μ0
−→H · −̇→M represents the energy supplied

to the material by a magnetic field [52], with
−→H denoting

the resultant applied magnetic field vector and
−→M the net

magnetization vector inside the material. The first law assumes
that mechanical energy can be converted to heat energy and
vice versa with no restrictions placed on the transformation.
In actuality, the inverse transformation is subject to definite
restrictions which are formalized through the second law of
thermodynamics.

One mathematical representation of the second law is
the Clausius–Duhem inequality, which states that the rate of
change of entropy of part S at time t is greater than or equal to
the entropy increase rate due to the specific heat supply rate
r minus the entropy decrease rate due to the heat flux rate.
Mathematically, this is expressed in local form as,

ρη̇ � ρ
r

�
− Div

(
q
�

)
, (2)

where � is the absolute temperature, and η is the specific
entropy. In short, the Clausius–Duhem inequality states that
mechanical forces and deformation can only increase the
entropy of a part S of the body.

Elimination of r from (1) and (2) gives

ρ�η̇ − ρε̇ + P · Ḟ + μ0
−→H · −̇→M − 1

�
q · Grad� � 0. (3)

In the case of the sensing behavior, the material is
subjected to a uniaxial strain (ε) along the y-direction in
presence of magnetic field (H ) along the transverse x-
direction. This results in the generation of engineering stress
(σ ) along the y-direction and magnetization (M) along the x-
direction. Therefore, expression (3) is simplified as,

ρ�η̇ − ρε̇ + σ ε̇ + μ0 H Ṁ − 1

�
q · Grad� � 0. (4)

Expression (4) represents the Clausius–Duhem inequality
for a material that responds to thermal, mechanical and
magnetic stimuli. The quantities involved in this inequality can
be conceptually divided into the following subsets,

Independent variables: {ε,M, η}
Dependent variables: {σ, H, ε,q,�}

Balancing terms: {r, ρ}.
(5)

The independent variables or inputs can be arbitrarily
specified as a function of space and time. The dependent
variables or outputs are determined through response functions
(constitutive equations) which depend on the history of the
independent variables. Once the dependent variables are
determined through response functions, the balancing terms
are assigned the values that are necessary to satisfy the
equations of motion. This conceptual division is chosen based
on the form of the Clausius–Duhem inequality. However, the
temperature � is typically chosen as an independent variable
instead of entropy as it is easier to measure and control. To
accomplish the change of independent variable from η to �,
we replace the independent variable ε with ψ through the
Legendre transformation,

ψ = ε −�η, (6)

where ψ is the specific Helmholtz energy potential. It is a free
energy potential that represents the energy required to build a
system at temperature �. Combination of (4) and (6) gives,

− ρψ̇ − ρη�̇+ σ ε̇ + μ0 H Ṁ − 1

�
q · Grad� � 0. (7)

We now assume isothermal conditions. This is because
the coupled magnetomechanical behavior of interest in
ferromagnetic shape memory Ni–Mn–Ga occurs in the low
temperature martensite phase. The effect of changing
temperature on the performance of Ni–Mn–Ga actuators and
sensors is not considered in this study. The isothermal
condition is represented as,

�̇ = 0, Grad� = 0. (8)
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Figure 2. Simplified two-variant microstructure of Ni–Mn–Ga.

The Clausius–Duhem inequality (7) is reduced to a
simplified form

− ρψ̇ + σ ε̇ + μ0 H Ṁ � 0. (9)

Implicit in (9) are the constitutive assumptions, or
constitutive dependences,

σ = σ(ε,M) H = H (ε,M) ψ = ψ(ε,M).
(10)

For most of the applications involving magnetomechanical
materials, such as sensing and actuation, the magnetic field is
chosen as an independent variable as it is relatively easy to
control by monitoring the current through a solenoid or an
electromagnet. Magnetization, on the other hand, is usually
more difficult to control, as this requires a feedback control
system. To convert the set of independent variables (ε,M) to
(ε, H ), a specific magnetic Gibbs energy ϕ is defined through
the Legendre transformation,

ρϕ = ρψ − μ0 H M. (11)

This leads to the inequality,

− ρϕ̇ + σ ε̇ − μ0 M Ḣ � 0. (12)

Inequality (12) is used to arrive at the constitutive response
of the material for the sensing case. The Clausius–Duhem
inequality for modeling of the actuation behavior is discussed
in section 8.

3. Incorporation of the Ni–Mn–Ga microstructure in
the thermodynamic framework

The framework discussed in section 2 pertains to thermo-
magnetomechanical materials which have a perfect memory
of their reference configuration and temperature. Similar to
the thermal shape memory materials, FSMAs have imperfect
memory, i.e., the materials when loaded and unloaded do not
necessarily return to their initial undeformed configuration and
temperature. One of the ways to model such a material is by
introducing internal state variables in the argument list [53].
Internal state variables make it possible to extend the results

Figure 3. Image of twin-variant Ni–Mn–Ga microstructure by
scanning electron microscope [54].

of thermoelastic theory to dissipative materials and account for
certain microstructural phenomena.

Figure 2 shows the microstructure of single crystal Ni–
Mn–Ga in the low temperature martensite phase. This
microstructure is represented by three internal state variables:
variant volume fraction ξ , domain fraction α, and magneti-
zation rotation angle θ . These three variables account for
the magnetic microstructure and the variant volume fraction
accounts for the mechanical dissipation. This representation
of the microstructure is motivated from experimental obser-
vations of single crystal Ni–Mn–Ga [54], which is shown in
figure 3.

The applied field is oriented in the x direction, and the
applied strain (or stress) is oriented in the y direction. The
material is divided into regions which contain the crystals with
their short, magnetically easy c-axes oriented perpendicular to
one another. These regions are called variant volume fractions.
The arrows indicate the magnetization vectors, and Ms denotes
saturation magnetization. The two variants are separated by a
twin boundary which is oriented at about 45◦ from the crystal
axes. A field-preferred variant, with volume fraction ξ , is
one in which the magnetically easy c-axis is aligned with the
x direction. A stress-preferred variant, with volume fraction
1 − ξ , is one in which the c-axis is aligned in the y direction.
The evolution of the twin variants is termed twin boundary
motion or twin-variant rearrangement, which results in the
macroscopic deformation of the material due to the mismatch
in the crystal dimensions. The twin boundary can be driven by
either magnetic fields or mechanical stress.

It is assumed that the variant volume fractions are
sufficiently large to be subdivided into 180◦ magnetic
domains with volume fractions α and 1 − α. This domain
structure minimizes the net magnetostatic energy due to finite
dimensions of the sample. In the absence of an external
field, the domain fraction α = 1/2 leads to minimum
magnetostatic energy. The high magnetocrystalline anisotropy
energy of Ni–Mn–Ga dictates that the magnetization vectors
in the field-preferred variant tend to remain attached to the
crystallographic c-axis, i.e., they are oriented in the direction
of the applied field or in the opposite direction. Any rotation
of the magnetization vectors away from the c-axis results in an
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increase in the anisotropy energy. The magnetization vectors in
the stress-preferred variant are oriented at an angle θ relative to
the c-axis. Energy minimization dictates that the two magnetic
domains within a stress-preferred variant are oriented at the
same angle θ , as shown in figure 2.

The concept of the thermomechanical process is now
different than that described in the section 2. The independent
variables are the strain ε, field H and the internal state variables
α, θ, ξ . Therefore, the constitutive dependences for the sensing
model are

ϕ = ϕ(ε, H, α, θ, ξ) σ = σ(ε, H, α, θ, ξ)

M = M(ε, H, α, θ, ξ).
(13)

The rate of change of magnetic Gibbs energy can be
expressed using the chain rule in the form

ρϕ̇ = ∂(ρϕ)

∂ε
ε̇ + ∂(ρϕ)

∂H
Ḣ + ∂(ρϕ)

∂α
α̇ + ∂(ρϕ)

∂θ
θ̇ + ∂(ρϕ)

∂ξ
ξ̇ .

(14)
Combination of (12) and (14) gives

−
[
∂(ρϕ)

∂ε
ε̇ + ∂(ρϕ)

∂H
Ḣ + ∂(ρϕ)

∂α
α̇ + ∂(ρϕ)

∂θ
θ̇ + ∂(ρϕ)

∂ξ
ξ̇

]

+ σ ε̇ − μ0 M Ḣ � 0, (15)

which can be expanded as,[
σ − ∂(ρϕ)

∂ε

]
ε̇ +

[
−μ0M − ∂(ρϕ)

∂H

]
Ḣ

+ παα̇ + πθ θ̇ + πξ ξ̇ � 0. (16)

Here, the terms πα , πθ , and πξ represent thermodynamic
driving forces respectively associated with internal state
variables α, θ , and ξ . Note that these forces are defined as,

πα := −∂(ρϕ)
∂α

, πθ := −∂(ρϕ)
∂θ

,

πξ := −∂(ρϕ)
∂ξ

.

(17)

In inequality (16), the terms ε̇ and Ḣ are independent of
each other, and of other rates. Therefore, for an arbitrary
process, the coefficients of ε̇ and Ḣ must vanish in order for
the inequality to hold. This leads to the constitutive equations,

σ = ∂(ρϕ)

∂ε
, (18)

M = − 1

μ0

∂(ρϕ)

∂H
. (19)

With these definitions, the Clausius–Duhem inequality reduces
to

παα̇ + πθ θ̇ + πξ ξ̇ � 0. (20)

The constitutive equations or response functions for stress
and magnetization are derived. These equations describe the
material response under the given set of independent and
dependent variables. Once the specific form of the magnetic
Gibbs energy potential is constructed, expressions for the stress
and magnetization can be obtained. The energy formulation is
discussed in following section.

4. Energy formulation

The total thermodynamic free energy potential includes
magnetic and mechanical components. The energy associated
with the conventional magnetoelastic coupling is neglected,
as the ordinary magnetostriction is around 100 times lower
than the strain produced due to twin-variant rearrangement.
Also, the energies associated with the thermal components are
neglected as we are only concerned with isothermal behavior.

4.1. Magnetic energy

The total magnetic potential energy of the sample is a
summation of the Zeeman energy, magnetostatic energy and
magnetocrystalline anisotropy energy. Various magnetic
energy components are given as a weighted summation of the
energies of the two variants.

The Zeeman energy represents the work done by external
magnetic fields on the material, or the energy available to drive
twin boundary motion by magnetic fields. As seen in (11),
the net magnetic Gibbs energy is a function of the internal or
Helmholtz energy and the Zeeman energy. The Zeeman energy
is minimum when the magnetization vectors are completely
aligned in the direction of the externally applied field, and
is maximum when the magnetization vectors are in opposite
direction of the externally applied field. For the sensor/actuator
model the Zeeman energy is

ρϕze = ξ [−μ0 H Msα + μ0 H Ms(1 − α)]
+ (1 − ξ)[−μ0 H Ms sin θ ]. (21)

The magnetostatic energy represents the self-energy due
to the magnetization or the energy opposing the external
work done by magnetic fields, on account of the geometry of
the specimen. The magnetization creates a demagnetization
field which tends to oppose the externally applied field.
The strength of the demagnetization field depends on the
geometry and permeability of the sample. A very long sample
magnetized along its length has a very low demagnetization
field as compared to the sample magnetized along its smallest
dimension. The associated energy, or magnetostatic energy,
tends to reduce the net magnetization of the material to zero by
forming 180◦ domain walls. The magnetostatic energy is given
by

ρϕms = ξ [ 1
2μ0 N(Msα − Ms(1 − α))2]

+ (1 − ξ)[ 1
2μ0 N M2

s sin2 θ ], (22)

where N represents the difference in the demagnetization
factors along the x and y directions [55] and it depends on the
geometry of the specimen.

The magnetocrystalline anisotropy energy represents the
energy needed to rotate a magnetization vector away from the
magnetically easy c-axis. This energy is minimum (or zero)
when the magnetization vectors are aligned along the c-axis
and is maximum when they are rotated 90◦ away from the c-
axis. In figure 2, all the contribution towards the anisotropy
energy comes from the stress-preferred variant. The anisotropy
energy is usually given in the form of a trigonometric power
series for uniaxial symmetry. For Ni–Mn–Ga, it has been
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observed that the approximation of up to the first term is
usually sufficient to express the anisotropy energy, which is

ρϕan = (1 − ξ)[Ku sin2 θ ]. (23)

The anisotropy constant, Ku , is calculated experimentally
as the difference in the area under the easy- and hard-axis
magnetization–field curves. It represents the energy associated
with pure rotation of the magnetization vectors (hard axis)
compared to the magnetization due to zero rotation of vectors
(easy axis). Thus, the parameters required to calculate the
magnetic energy component (Ms and Ku) can be obtained
from one experiment which measures the easy and hard-axis
magnetization curves.

The contribution from magnetic energy in a given
thermodynamic potential remains unchanged when modeling
sensing, actuation and blocked force behavior. The magnetic
component of the thermodynamic potential is

ρϕmag = ρϕze + ρϕms + ρϕan. (24)

Thus,

ρϕmag = ξ [−μ0 H Msα + μ0 H Ms(1 − α)

+ 1
2μ0 N(Msα − Ms(1 − α))2] + (1 − ξ)

× [−μ0 H Ms sin θ + 1
2μ0 N M2

s sin2 θ + Ku sin2 θ ]. (25)

4.2. Mechanical energy

The mechanical energy represents the elastic strain energy
contribution towards the internal or Helmholtz energy. For
modelling the sensing effect, the expression for the mechanical
energy depends on whether the process under consideration
is strain loading (ξ̇ � 0) or unloading (ξ̇ � 0). Similar
to the shape memory materials, the total strain is assumed to
consist of an elastic component (εe) and a twinning component
(εtw). Moreover, the twinning strain is proposed to be linearly
proportional to the variant volume fraction,

Loading: εtw = ε0(1 − ξ) (ξ̇ � 0)

Unloading: εtw = ε0ξ (ξ̇ � 0)
(26)

with ε0 being the maximum twinning strain,

ε0 = 1 − c/a. (27)

The mechanical loading arms are not glued to the sample,
and the total strain depends on the distance of the loading
arm with respect to its initial position. Therefore, the total
strain during unloading accounts for the irreversible maximum
twinning reorientation (ε0) that occurs after loading.

Loading: ε = εe + εtw

Unloading: ε = εe − εtw + ε0.
(28)

The discrepancy in the two equations arises because the
undeformed or reference configuration is assumed to be in a
completely unloaded state, which corresponds to ξ = 1. The

Figure 4. Schematic of stress–strain curve at zero bias field.

mechanical energy equation for both loading and unloading has
the form

ρϕmech = 1
2 E(ξ)ε2

e + 1
2 a(ξ)ε2

tw. (29)

The first term in (29) represents the energy due to elastic
strain, whereas the second term represents the energy due
to twinning strain. The terms E(ξ), and a(ξ) respectively
represent effective moduli associated with elastic and twinning
strains [6]. The parameters associated with the mechanical
energy are obtained from the experimental stress–strain curve
at zero bias field, shown schematically in figure 4. Modulus
a(ξ) is obtained from the slope of twinning region k by analogy
with two stiffnesses in series, having deformations equivalent
to the elastic and twinning strains

1

a(ξ)
= 1

E(ξ)
− 1

k
. (30)

The compliance (S(ξ)) of the material is considered to be
a linear combination of the compliances at complete field-
preferred state (S0) and complete stress-preferred state (S1).
This linear average for effective material properties has been
shown to be accurate for shape memory alloys and is equally
appropriate for Ni–Mn–Ga [56, 57]. Therefore, the effective
modulus is given as,

E(ξ) = 1

S(ξ)
= 1

S0 + (1 − ξ)(S1 − S0)
. (31)

The parameters (E0 = 1/S0) and (E1 = 1/S1) are obtained
from the initial and final moduli as shown in figure 4.

The total magnetic Gibbs energy potential is the
summation of magnetic and mechanical components,

ρϕ = ρϕmag + ρϕmech. (32)

From equations (18), (26), (28), (29) and (32), the constitutive
equation for stress for both loading and unloading cases is

σ = E(ξ)εe = E(ξ)[ε − ε0(1 − ξ)]. (33)

The constitutive equation for magnetization is obtained
from (19), (25) and (32) as,

M = Ms[2ξα − ξ + sin θ − ξ sin θ ]. (34)

The next step is to obtain the solutions for the evolution
of the internal state variables (α, θ , ξ ) so that the macroscopic
material response can be obtained from (33) and (34).
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(a)

(b)

Figure 5. Variation of (a) domain fraction and (b) rotation angle with
applied field.

5. Evolution of domain fraction and magnetization
rotation angle

The evolution of domain fraction and rotation angle is
associated with the magnetization change only, and is
not directly related to the mechanical deformation of the
material. The processes associated with the rotation of
magnetization vectors and evolution of domain fraction are
proposed to be reversible, because the easy-axis and hard-axis
magnetization curves show negligible hysteresis. The easy-
axis magnetization process involves evolution of domains,
which is dictated by the magnitude of the magnetostatic energy
opposing the Zeeman energy. The hard-axis magnetization
process involves the rotation of magnetization vectors with
respect to the easy c-axis of the crystals as dictated by
the competition between the anisotropy energy and Zeeman
energy. For reversible processes, the corresponding driving
forces lead to zero increase in entropy. Hence, the driving
forces themselves must be zero,

πα = −∂(ρϕ)
∂α

= 0, (35)

πθ = −∂(ρϕ)
∂θ

= 0. (36)

Closed form solutions for domain fraction and magneti-
zation rotation angle are obtained from (25), (29), (32), (35),
and (36),

α = H

2Ms N
+ 1

2
, (37)

θ = sin−1

(
μ0 H Ms

μ0 N M2
s + 2Ku

)
(38)

with the constraints 0 � α � 1 and −π/2 � θ � π/2. The
variation of domain fraction and magnetization rotation angle
is independent of variant volume fraction, and hence external
strain or deformation. The dependence of these two internal
variables on applied field is shown in figure 5.

6. Evolution of volume fraction

From (20), (35) and (36), the Clausius–Duhem inequality is
reduced to

πξ ξ̇ � 0. (39)

The total thermodynamic driving force associated with the
evolution of volume fraction also includes magnetic and
mechanical contributions.

πξ = πξmag + π
ξ

mech, (40)

with the magnetic and mechanical driving forces given by

πξmag = −∂(ρϕmag)

∂ξ

= μ0 H Msα − μ0 H Ms(1 − α)

− 1
2μ0 N(Msα − Ms(1 − α))2

− μ0 H Ms sin(θ)+ 1
2μ0 N M2

s sin(θ)2 + Ku sin(θ)2, (41)

Loading: πξmech = −∂(ρϕmech)

∂ξ
= −E(ξ)[ε − ε0(1 − ξ)]ε0

− 1

2

∂E(ξ)

∂ξ
[ε − ε0(1 − ξ)]2

+ a(ξ)(1 − ξ)ε2
0 − 1

2

∂a(ξ)

∂ξ
ε2

0(1 − ξ)2, (42)

unloading: π
ξ

mech = −∂(ρϕmech)

∂ξ

= −E(ξ)[ε − ε0(1 − ξ)]ε0 − 1

2

∂E(ξ)

∂ξ
[ε − ε0(1 − ξ)]2

− a(ξ)ε2
0ξ − 1

2

∂a(ξ)

∂ξ
ε2

0ξ
2. (43)

The start of the twinning process in shape memory
materials and FSMAs requires the overcoming of a finite
energy threshold associated with the twinning stress. This
is evident from the stress–strain plots at zero field shown in
figure 4, and also from strain field plots [42, 10], where a
finite threshold field needs to be overcome. The associated
energy or critical driving force (π cr) required for twin-variant
rearrangement to start is estimated from the twinning stress at
zero field (σtw0)

π cr = σtw0ε0. (44)

This twinning barrier conceptually represents the work
required to rotate a single crystal, which is therefore the
product of the associated force (σtw0) and deformation (ε0).
During loading, the stress-preferred variants grow at the
expense of field-preferred variants, implying ξ̇ � 0. Thus
the driving force πξ must be negative for inequality (39) to be
satisfied. The growth of stress-preferred variants begins when

8
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the total driving force reaches the negative value of the critical
driving force. The value of ξ is then obtained by numerically
solving the relation,

πξ = −π cr. (45)

During unloading, the field-preferred variants grow, hence
ξ̇ � 0. Thus, the driving force πξ has to be positive in
order for inequality (39) to be satisfied. When the total force
reaches the positive critical driving force, the evolution of
ξ is initiated. The subsequent values of ξ are obtained by
numerically solving the equation

πξ = π cr. (46)

Once α, θ , and ξ are determined, the stress σ and
magnetization M are found from (33) and (34), respectively.
It is noted that ξ is restricted so that 0 � ξ � 1.

7. Sensing model results

The equations in sections 2–6 are solved using MATLAB. The
equations are solved in an iterative manner to check the twin
onset condition at each step. Also, the restrictions are imposed
so certain variables do not exceed their physical limits.

7.1. Stress–strain results

Calculated stress–strain plots at bias fields ranging from 94 to
368 kA m−1 are compared with experimental measurements in
figure 6. The parameters used for model calculations are: E0 =
400 MPa, E1 = 2400 MPa, σtw0 = 0.6 MPa, k = 14 MPa,
ε0 = 0.058, Ku = 1.67 × 105 J m−3, Ms = 625 kA m−1, N =
0.308. The initial high-slope region is produced by the elastic
compression of the material, which takes place until a certain
critical stress is reached. Once the critical stress is reached, the
twin-variant rearrangement starts, represented by the low-slope
region. This low-slope region continues until the twin-variant
rearrangement is complete. Beyond this state, the material
again is compressed elastically. During unloading, the material
follows similar behavior, i.e., elastic expansion followed by
twin-variant rearrangement in the reverse direction. However,
the behavior during unloading depends on the magnitude of
the bias field. At low bias fields, the material does not return
to its original shape, whereas at medium and high bias fields
the material respectively shows a partial and complete recovery
of its original shape. Thus, increasing bias fields reveal the
transition from irreversible to reversible behavior. For the
applied bias field used in this study, the model accurately
describes the shape of the hysteresis loop and the amount of
pseudoelasticity or residual strain at which the sample returns
to zero stress.

As the bias field is increased, more energy is required for
twin-variant rearrangement to start, resulting in an increase
in the twinning stress. The twinning stress at a given bias
field corresponds to the situation where the net thermodynamic
driving force is equal to the critical driving force (πξ =
−π cr) and also the material is in complete field-preferred state

(ξ = 1). Therefore, an expression for the twinning stress can
be obtained as detailed below:

πξmag + π
ξ

mech = −π cr

At start of twinning (ξ = 1),

πξmag(H )− σtw(H )ε0 = −σtw0ε0

σtw(H ) = πξmag(H )

ε0
+ σtw0.

(47)

Figure 7 shows the dependence of the twinning stress on
the applied bias field, calculated from the experiments and
the model. The model accurately quantifies the monotonic
increase in twinning stress with increasing bias field. This
result is an improvement over an earlier model [7], in which
the twinning stress was constant below fields of 195 kA m−1.
The twinning stress–field curve shows a sigmoid shape, which
eventually saturates at high magnetic fields. This indicates
that the stress–strain behavior will remain unchanged when the
applied bias field is greater than the saturation field.

7.2. Flux density results

In order to compare the model results with flux density
measurements [6], the magnetic induction or flux density (Bm)
is calculated from magnetization (34) by means of the relation

Bm = μ0(H + Nx M), (48)

where Nx is the demagnetization factor in the x direction [58].
It is seen that for the same magnetization, the measured flux
density depends on the geometry of the sample.

The flux density plots shown in figure 8 are of interest
for sensing applications. The absolute value of flux density
decreases with increasing compressive stress. As the sample
is compressed from its initial field-preferred variant state
(ξ = 1), the stress-preferred variants grow at the expense of
field-preferred variants. Due to the high magnetocrystalline
anisotropy of Ni–Mn–Ga, the nucleation and growth of stress-
preferred variants occurs in concert with the rotation of
magnetization vectors into the longitudinal direction, which
causes a reduction of the permeability and flux density in
the transverse direction. The curves obtained from model
calculations show less hysteresis than the measurements and
a slight nonlinearity in the relationship between flux density
and strain. This is in agreement with measurements by Straka
et al [23] in which the magnetization dependence on strain is
almost linear and exhibits very little hysteresis. As shown in
figure 8(b), the model accurately quantifies the dependence
of flux density on stress. While the tests were conducted
in displacement control, the observed trends should resemble
those obtained experimentally with stress as the independent
variable.

The overall change in flux density from the initial state
(ξ = 1) to the final state (ξ = 0) is a function of applied bias
field. Because of the almost linear nature of the flux–strain
(B–ε) curve, the slope of this curve at a given strain is defined
as sensitivity, or a factor similar to piezoelectric coupling
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Figure 6. Stress–strain plots at varied bias fields. Dotted line: experiment; solid line: calculated (loading); dashed line: calculated
(unloading).

coefficient at constant field, (∂B/∂ε)H . This sensitivity factor
is defined as the slope at mid-range (3% strain) in the loading
path of the flux–strain curve. The variation of this factor with
bias field is shown in figure 9. The experimental values of
sensitivity factor are approximated to the ratio of total flux
density change to the associated strain range.

This behavior can be explained from the easy- and hard-
axis flux density curves of Ni–Mn–Ga. The easy-axis curve
corresponds to the state in which the sample is in complete
field-preferred state, whereas the hard-axis curve corresponds
to the state of the sample when the sample is in complete stress-
preferred state. Therefore, the expressions for the easy-axis
(ξ = 1) and hard-axis (ξ = 0) magnetization as a function of
magnetic field can be obtained from (34), (37) and (38), giving

Measy = M(ξ=1) = H

N

Mhard = M(ξ=0) = μ0 H M2
s

μ0 N M2
s + 2Ku

If M > Ms, M = Ms.

(49)

Figure 7. Variation of twinning stress with applied bias field.

Model results for easy-axis and hard-axis magnetization and
flux density are shown in figures 10(a) and (b), respectively.
When the sample is compressed at a given constant field,
the flux density changes from the corresponding easy-axis

10



Smart Mater. Struct. 19 (2010) 035001 N N Sarawate and M J Dapino

(a)

(b)

Figure 8. Model results for (a) flux density–strain and (b) flux
density–stress curves. Dotted line: experiment; solid line: calculated
(loading); dashed line: calculated (unloading).

Figure 9. Variation of sensitivity factor with applied bias field.

value to the corresponding hard-axis value. Hence, the
optimum sensing range occurs when the two curves are at
the maximum distance from each other and the sample shows
pseudoelastic behavior. At a bias field of 368 kA m−1, a
reversible flux density change of 145 mT is obtained over
a range of 5.8% strain and 4.4 MPa stress. This makes
the magnetic field of 368 kA m−1 the optimum bias field
to obtain maximum reversible sensing from the material.

(a)

(b)

Figure 10. Model results for easy-axis and hard-axis curves. (a) flux
density versus field; (b) magnetization versus field.

The Ni–Mn–Ga alloy investigated here therefore shows
potential for high-compliance, high-displacement deformation
sensors.

7.3. Thermodynamic driving force and volume fraction

The volume fraction dictates the deformation of the material
and is the only variable that is responsible for the coupling
between the magnetic and mechanical domains. Therefore,
the evolution of volume fraction and the corresponding
thermodynamic driving forces provide key insight into the
material’s behavior. The driving forces are calculated from
equations (41), (42) and (43), and the volume fraction is
obtained by numerically solving equations (45) and (46).

The evolution of the thermodynamic driving forces acting
on a twin boundary with increasing compressive strain is
shown in figure 11 for several bias fields. It is seen that
the driving force due to stress is negative since the stress
is compressive, and more importantly, it opposes the growth
of volume fraction ξ . Conversely, the driving force due to
magnetic field is positive indicating that the field favors the
growth of volume fraction ξ . During loading, the total force
has to overcome the negative critical driving force (−π cr)
for twin-variant rearrangement to start. Similarly, during
unloading, the total force has to overcome the positive critical
driving force (π cr) for the start of twin-variant rearrangement

11
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Figure 11. Evolution of thermodynamic driving forces.

in the opposite direction. The magnitudes of total driving force
during twin-variant rearrangement for loading and unloading
are negative and positive, respectively, in order for Clausius–
Duhem inequality (39) to be satisfied. Once the twin boundary
motion is initiated, the total driving force remains at almost the
same value as the critical driving force value. These principles
hold true for the actuation model also. The corresponding
variation in the variant volume fraction is shown in figure 12.

There is a strong correlation between stress–strain (fig-
ure 6) and flux density–strain (figure 8(a)) regarding the
reversibility of the magnetic and mechanical behavior. Because
a change in flux density relative to the initial field-preferred
single variant is directly associated with the growth of stress-
preferred variants, the flux density value returns to its initial
value only if the stress–strain curve exhibits magnetic field
induced pseudoelasticity. The model calculations accurately
reflect this trend, as seen by the variation of residual strain with
bias field shown in figure 13.

8. Extension to actuation model

The framework developed for the sensing model is extended to
model the actuation behavior of Ni–Mn–Ga, i.e., dependence
of strain and magnetization on varying field under bias
compressive stress. The actuator model utilizes the exact same
parameters as the sensing model. Further, the actuation model
framework is consistent with previous models by Kiefer and
Lagoudas [42] and Faidley et al [45]. In a typical Ni–Mn–Ga
actuator, the material is subjected to a bias stress or prestress
using a spring. The initial configuration of the material is
usually its shortest length (ξ = 0). In the presence of bias
stress, an external field is applied to generate strain against
the mechanical load. During increasing field ( ˙|H | > 0), the
material does the work by expanding against the prestress and
strain is generated. During reverse field application ( ˙|H | < 0),
if the prestress is sufficiently large, the original length of the
sample is restored to complete one strain cycle.

12
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Figure 12. Evolution of volume fraction.

Figure 13. Variation of residual strain with applied bias field.

8.1. Actuation model

In the actuator model, the applied field and bias stress
constitute independent variables, whereas the generated strain
and magnetization constitute the dependent variables. To arrive

at the desired set of independent variables (H, σ ) from the
original (M, ε) variables seen in (9), the model is formulated
by defining the specific Gibbs energy (φ) as thermodynamic
potential via a Legendre transform,

ρφ = ρψ − σεe − μ0 H M. (50)

Gibbs free energy is a thermodynamic potential which
conceptually represents the amount of useful work obtainable
from a system. It is obtained by subtracting the work done
by external magnetic field and mechanical stress from the
Helmholtz energy. From (9) and (50), a Clausius–Duhem
inequality is obtained, which has the form,

− ρφ̇ − σ̇ εe − μ0 M Ḣ + σ ˙εtw � 0, (51)

where the twinning strain component is

εtw = ε0ξ. (52)

The actuator under consideration has the constitutive
dependences,

φ = φ(σ, H, ξ, α, θ) ε = ε(σ, H, ξ, α, θ)

M = M(σ, H, ξ, α, θ).
(53)
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The domain fraction, rotation angle and variant volume
fraction constitute the internal state variables as in the sensing
model. Following the Coleman–Noll procedure similar to that
employed to develop the sensing model in section 3, we arrive
at the constitutive equations

εe = −∂(ρφ)
∂σ

, (54)

M = − 1

μ0

∂(ρφ)

∂H
. (55)

The Clausius–Duhem inequality reduces to the form,
(

−∂(ρφ)
∂ξ

+ σε0

)
ξ̇ � 0, (56)

πξ
∗
ξ̇ � 0, (57)

where the total thermodynamic driving force πξ
∗

is defined as

πξ
∗ = −∂(ρφ)

∂ξ
+ σε0 = πξ + σε0

= πξmag + π
ξ

mech + σε0. (58)

The contribution of the magnetic energy to the total Gibbs
energy remains the same as (25). Therefore, the evolution
equations for domain fraction (37), rotation angle (38) and
magnetic driving force (41) remain intact. The mechanical
energy contribution to the Gibbs energy is

ρφmech = − 1
2 Sσ 2 + 1

2 aε2
0ξ

2. (59)

Here, the first term represents the elastic Gibbs energy due to
bias stress, while the second term represents the energy due to
twinning. Unlike in the sensing model, the mechanical energy
equation for actuation remains the same during application
of both increasing and decreasing fields. The parameters
associated with the mechanical energy are the same as those
presented for the sensing model, except compliance. An
average value of compliance (S) is used, which is the inverse
of the average elastic modulus (E).

The undeformed configuration for the actuation process
represents the sample at its minimum length (ξ = 0) in the
presence of a compressive bias stress σ . This bias stress
compresses the sample elastically, as the sample is already in
the complete stress-preferred variant state. When the magnetic
field is increased, the driving force due to the field starts acting
opposite to the driving force due to stress. The expression for
net mechanical thermodynamic driving force is

π
ξ∗
mech = −aε2

0ξ + σε0. (60)

When the applied field increases ( ˙|H | � 0), the volume
fraction tends to increase (ξ̇ � 0). When the total
thermodynamic driving force exceeds the positive critical value
π cr, twin boundary motion is initiated. The numerical value of
volume fraction ξ can be obtained by solving the relation

πξ
∗ = π cr. (61)

When the field decreases ( ˙|H | � 0), the stress-preferred
variants start to grow (ξ̇ � 0) if the field becomes sufficiently

low, provided the bias compressive stress is strong enough to
start twin boundary motion in the opposite direction. If the total
driving force becomes lower than the negative of the critical
driving force, the volume fraction is obtained by solving

πξ
∗ = −π cr. (62)

Finally, from the values of α, θ , and ξ , magnetization is
obtained from (34) and total strain is obtained by addition of
elastic and twinning components,

ε = εe + εtw. (63)

8.2. Actuation model results

The model validation and identification of model parameters is
conducted by comparison of model results with experimental
data published by Murray et al [51]. A 14×14×6 mm3 single
crystal Ni–Mn–Ga sample was subjected to slowly alternating
magnetic fields of amplitude 750 kA m−1 in the presence of
compressive bias stresses ranging from 0 to 2.11 MPa. The
magnetic field was applied using an electromagnet, whereas
the bias stresses were applied using dead weights. The
initial configuration of the sample was a complete stress-
preferred state, which enabled generation of full 6% strain
under saturating fields. The model parameters utilized in the
actuation model are: E = 800 MPa, σtw0 = 0.8 MPa, k =
14 MPa, ε0 = 0.058, Ku = 1.7×105 J m−3, Ms = 520 kA m−1,
N = 0.239.

8.2.1. Strain–field. The model results for strain dependence
on field at varied bias stresses are shown in figure 14. With
increasing field, the material does not start deforming until the
coercive field is reached. Further deformation occurs with a
rapid increase in strain for a relatively small magnetic field
range. This region corresponds to the twin boundary motion
where the thermodynamic driving force due to magnetic field
exceeds that due to the bias stress. Depending on the
magnitude of the bias field, a saturating strain is reached, after
which the material does not deform with further application
of magnetic field. This saturation strain or the maximum
magnetic field induced strain is a function of the bias stress.
When the field is removed, the material does not return to its
original shape unless the applied bias stress is sufficiently large.
The increasing bias stress marks the transition from irreversible
to reversible behavior. This effect is analogous to that of the
bias field in the sensing study. With increasing bias stress, the
total strain produced decreases monotonically, and the coercive
field required to initiate twin boundary motion increases. For
most of the bias stress values, the model results both for the
forward and return path accurately match the measurements.

8.2.2. Maximum strain. The maximum magnetic field
induced strain is of interest for actuation applications. For the
saturating field, the maximum strain is obtained from

πξmag(Hsat)+ π
ξ

mech = π cr ξmax = Ku + σbε0 − π cr

aε2
0

ε(Hsat) = Sσb + ε0ξmax.

(64)
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Figure 14. Strain–applied field at varied bias stresses. Dotted line:
experiment; solid line: calculated (loading); dashed line: calculated
(unloading).

The maximum thermodynamic driving force at the saturating
field is equal to the anisotropy constant (Ku). The model
accurately quantifies the maximum magnetic field induced
deformation at different bias stresses ranging from 0.25 to
2.11 MPa. According to the model, the bias stresses of 0.89 and
1.16 MPa can be considered as optimum where a completely
reversible strain of maximum magnitude is obtained. A
comparison between calculations and experimental data is
shown in figure 15.

8.2.3. Coercive field. Coercive field is the field at
which twin-variant rearrangement starts during forward field
application ( ˙|H | � 0). Evaluation of the coercive field
is important as it dictates the strength of magnetic field
required to actuate the material. As seen in figure 14, once
the coercive field is exceeded, the subsequent twin-variant
rearrangement occurs with relatively smaller increase in the
magnetic field. Therefore, accurate evaluation of the coercive
field gives an estimate of the magnetic field requirements
for the electromagnet design. The coercive field determines
the resistance to the twin boundary motion due to the added
contributions of internal material dislocations (twinning stress)
and the compressive bias stress. It is an analogous quantity to
the twinning stress in the sensing behavior: the coercive field
increases with increasing bias stress in actuation, whereas the
twinning stress increases with increasing bias field in sensing.

When the applied field equals the coercive field, the net
thermodynamic driving force equals the critical value (πξ

∗ =
π cr), and the material consists of a single stress-preferred
variant (ξ = 0). Under these conditions, the expression for
the domain fraction is reduced to α = 1, as the magnetic field
is assumed to be strong enough to transform the material into
a single domain. The expression for the magnetization rotation
angle θ remains intact as given by (38). Using these properties,
the coercive field (Hc) is obtained by solving

− μ0 HcMs sin θ + 2μ0 HcMsα − μ0 HcMs

− 2μ0 N M2
s α

2 + 2μ0 N M2
s α + σbε0

+ Ku − 1
2μ0 N M2

s cos2 θ − Ku cos2 θ = σtw0ε0. (65)

Figure 15. Variation of maximum magnetic field induced strain with
bias stress.

The expression for the coercive field is therefore

Hc =
{
μ0 N M2

s + 2Ku

−
√

2μ0 N M2
s [Ku+ε0(σb−σtw0)]+4Kuε0(σb−σtw0)+4K 2

u

}

× {μ0Ms}−1 (66)

which is obtained from (41), (44), and (61). Although
the twinning stress at zero field (σtw0) and the bias stress
(σb) have opposite signs in equation (66), it must be
noted that the twinning stress at zero field is defined as
positive for compression whereas the bias stress is defined as
negative for compression. Thus, the bias stress adds to the
resistance applied by the twinning stress to the twin-variant
rearrangement. Therefore, the coercive field increases with
increase in bias stress. Figure 16 shows the variation of
the coercive field with the bias stress. The model results
are in overall agreement with the experimental data. The
dependence of the coercive field on the bias stress resembles
a parabolic pattern, and it increases rapidly as bias stress
increases. Therefore, the optimum bias stress is desired to
be as low as possible in order to keep the coercive field at
a reasonably low value. A lower coercive field facilitates a
compact electromagnet.

8.2.4. Magnetization–field. Model calculations for the
magnetization dependence on field are shown in figure 17.
The hysteretic magnetization curves illustrate that the
volume fraction varies during increasing and decreasing field
application. The initial part of the magnetization curve at all
bias stresses resembles the hard-axis curve, as the material
initially consists of only one variant preferred by stress. When
the twin boundary motion starts, the curve rapidly goes to
saturation indicating transition into a field-preferred variant
state. When the field is decreasing, the curve resembles the
easy-axis magnetization curve in the case in which there is zero
or very little evolution of stress-preferred variants (0.25 MPa).
With increasing bias stresses, the magnetization curve tends
to shift away from the easy-axis curve during field reversal.
At bias stress of 2.11 MPa, where twin boundary motion is
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Figure 16. Variation of the coercive field with bias stress.

almost suppressed, the behavior is similar to the hard-axis
curve during both forward and reverse field application.

9. Blocked force model

The force generated by a Ni–Mn–Ga sample in partially
blocked conditions during actuation measurements was
presented by Henry [59] and O’Handley et al [28].
Their measurements suggest the presence of significant
magnetoelastic coupling: as the transverse magnetic field was
increased below the field required to initiate twin boundary
motion, the measured stress increased even though the sample
and spring remained undeformed. Because a spring was used
to precompress the sample in the axial direction, some amount
of detwinning was allowed and hence the blocking stresses
were not measured. Further, no model for magnetization
was presented. Force measurements under completely
mechanically blocked conditions at different bias strains were
presented by Jaaskelainen et al [60] and recently by Couch
and Chopra [61]. Neither magnetization measurements nor
analytical models were included. Likhachev et al [21]
presented an expression for the thermodynamic driving force
induced by magnetic fields acting on the twin boundary.
This force depends on the derivative of the magnetic energy
difference between the hard-axis and easy-axis configurations.
Although this force is useful in modeling the strain–field
and stress–strain behavior, its origin is not well understood.
Further, this force is independent of the volume fraction, thus
it cannot accurately model the stress–field behavior, in which
the net generated stress varies with bias strain (see figure 21).
The behavior of Ni–Mn–Ga under constant stress of 0.6 and
3 MPa was characterized and modeled by Ma and Li [62],
who demonstrated the effect of unconstrained and constrained
twin-variant reorientation on the magnetization of Ni–Mn–
Ga. Landis [63] presented a continuum thermodynamics
formulation to investigate the interactions between magnetic
domain walls and martensite twin-variant reorientation, and
developed an expression for the critical blocking stress.

The available blocking stress, defined as the maximum
field induced stress relative to the bias stress, is critical for
quantifying the work capacity of an active material. In this

Figure 17. Magnetization–applied field at several bias stresses.
Dotted line: experiment; solid line: calculated (loading); dashed line:
calculated (unloading).

study we characterize and model the magnetic field induced
stress and magnetization generated by a commercial Ni–
Mn–Ga sample (AdaptaMat Ltd) when it is prevented from
deforming. We refer to this type of mechanical boundary
as ‘mechanically blocked condition’. The material is first
compressed from its longest shape to a given bias strain (which
requires a corresponding bias stress) and is subsequently
subjected to a slowly alternating magnetic field while being
prevented from deforming. The tests are repeated for several
bias strains.

The experimental setup is the same as for sensing char-
acterization, which consists of a custom-made electromagnet
and a uniaxial stress stage. A 6 × 6 × 10 mm3 Ni–Mn–
Ga sample (AdaptaMat Ltd) is placed in the center gap of
the electromagnet. The sample exhibits a free magnetic
field induced deformation of 5.8% under a transverse field of
700 kA m−1. The material is first converted to a single field-
preferred variant through the application of a high transverse
field, and is subsequently compressed to a desired bias strain.
The sample is then subjected to a sinusoidal transverse field of
amplitude 700 kA m−1 and frequency of 0.25 Hz. A 1×2 mm2

transverse Hall probe placed in the gap between a magnet
pole and a face of the sample measures the flux density, from
which the magnetization inside the material is obtained after
accounting for demagnetization fields. The compressive force
is measured by a 200 pounds of force (lbf) load cell, and
the displacement is measured by a linear variable differential
transducer. This process is repeated for several bias strains
ranging between 1% and 5.5%.

Similar to the sensing model, the applied field (H ) and
blocked bias strain (εb) constitute the independent variables,
whereas the magnetization component in the x direction (M)
and stress (σ ) constitute the dependent variables. The overall
model framework remains the same as in sensing model,
with magnetic Gibbs energy as the primary thermodynamic
potential. It is assumed that the volume fraction remains
unchanged after initial compression during the field application
because of the blocked configuration. The initial volume
fraction before field application is calculated from the sensing
model.
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Figure 18. Stress–field at several blocked strains. Dots: experiment;
solid line: model.

The magnetoelastic coupling is often ignored in the
modeling of actuation and sensing in Ni–Mn–Ga, in which
the strains due to variant reorientation are considerably larger
than the magnetostrictive strains. This has been experimentally
confirmed by Heczko [49] and Tickle et al [50]. The
magnetoelastic energy is also ignored in the calculation of the
magnetic parameters through expressions (37) and (38), as its
contribution is around three orders of magnitude smaller than
the other magnetic energy terms. However, the contribution
of the magnetoelastic coupling to the generation of stress in
mechanically blocked conditions is significant: twin boundary
motion is completely suppressed and the magnetoelastic
energy is the sole source of stress generation when a magnetic
field is applied. The magnetoelastic energy is proposed to have
the form

ρϕme = B1εy(1 − ξ)(− sin2 θ)+ σ0εyξ(− sin2 θ). (67)

Here, B1 represents the magnetoelastic coupling coeffi-
cient [55] obtained by measuring the maximum stress gener-
ated when the sample is biased by 5.5% (when ξ = 0), and εy

represents the magnetostrictive strain in the y direction. The
first term represents the magnetoelastic energy contribution
due to magnetic fields, which contributes only in the stress-
preferred variant (1 − ξ ). The second term represents the
energy contribution due to the initial compressive stress σ0.
The applied field leads to an energy increase in stress-preferred
variants, whereas the stress leads to an energy increase in
the field-preferred variants. The stress generated due to
magnetoelastic coupling thus has the form

σme = [B1(1 − ξ)+ σ0ξ ](− sin2 θ). (68)

9.1. Results of blocked force behavior

Figure 18 shows experimental and calculated stress–applied
field curves at several bias strains. Hysteresis is not included
in the model. The significance of magnetoelastic coupling is
evident as the stress starts increasing as soon as the field is
applied and the magnetization vectors begin to rotate. The
increase in stress is directly related to the angle of rotation

Figure 19. Magnetization–field at several blocked strains. Dashed
line: experiment; solid line: model.

(θ ) predicted by the magnetization model. Conversely, the
variant reorientation process is typically associated with a
high amount of coercive field that increases with increasing
bias stress [42, 7]. The absence of a coercive field, and of
discontinuity in stress profiles, confirms the magnetoelastic
coupling rather than twin reorientation as the origin of the
stress.

Figure 19 shows the magnetization dependence on applied
field at several blocked strains. The negligible hysteresis is
typical of single crystal Ni–Mn–Ga when the volume fraction
is approximately constant. Thus, the model assumption of
reversible evolution of α and θ is validated along with the
assumption of constant volume fraction. This is in contrast
to figure 17, where the hysteresis occurs in concert with twin-
variant rearrangement. The initial susceptibility of Ni–Mn–
Ga varies significantly with bias strains, as the M–H curve
shifts between the two extreme cases of easy-axis and hard-
axis curves. A 59% change in susceptibility is observed over
a range of 4% change in strain. Figure 20 shows the variation
of susceptibility with bias strain. The parameters employed for
model calculations are: E0 = 125 MPa, E1 = 2000 MPa,
σtw0 = 1 MPa, k = 16 MPa, ε0 = 0.055, Ku = 2.2 ×
105 J m−3, Ms = 700 kA m−1, N = 0.2. Magnetoelastic
coefficient B1 is the available blocking stress produced with
5.5% blocked strain, which is 1 MPa.

Our mechanically blocked measurements and thermo-
dynamic model for constant volume fraction describe the stress
and magnetization dependence on field, and provide a measure
of the work capacity of Ni–Mn–Ga. The work capacity,
defined as the area under the σbl − σ0 curve, is 72.4 kJ m−3

for this material. This value compares favorably with that
of Terfenol-D and PZT (18–73 kJ m−3 [64]). However,
the work capacity of Ni–Mn–Ga is strongly biased towards
high deformations at the expense of low generated forces,
which severely limits the actuation authority of the material.
Terfenol-D exhibits a measured stress of 8.05 MPa at a field
of 25 kA m−1 and prestress of −6.9 MPa [65]. The lower
maximum available blocking stress of 1.47 MPa produced by
Ni–Mn–Ga is attributed to a low magnetoelastic coupling.

The maximum available blocking stress is observed at a
bias strain of 3%, though the maximum blocking stress occurs,
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Figure 20. Variation of initial susceptibility with biased blocked
strain.

Figure 21. Experimental blocking stress σbl, minimum stress σ0, and
available blocking stress σbl − σ0 as a function of bias strain.

as expected, when the sample is completely prevented from
deforming. Due to the competing effect of the stress-preferred
and field-preferred variants, the stress is highest when the
volume fractions are approximately equal (ξ = 0.5) as seen
in figure 21.

The magnetoelastic energy in Ni–Mn–Ga is considerably
smaller than the Zeeman, magnetostatic, and anisotropy
energies. The magnetostrictive strains in Ni–Mn–Ga are
of the order of 50–300 ppm [49, 50], which are negligible
when compared to the typical 6% deformation that occurs by
twin-variant reorientation. The contribution of magnetoelastic
coupling can thus be ignored when describing the sensing and
actuation behavior in which the material deforms by several
per cent strain. In the special case of field application in
mechanically blocked conditions, twin-variant reorientation
is completely suppressed and the magnetoelastic coupling
becomes significant as it remains the only source of stress
generation. This is validated from the experimental stress data
as there is no coercive field associated with the twin-variant
rearrangement. In summary, the magnetoelastic coupling in
Ni–Mn–Ga is relatively low and becomes significant when the
material is prevented from deforming.

10. Discussion

A unified magnetomechanical model based on the continuum
thermodynamics approach is presented to describe the
sensing [7], actuation [66] and blocked force [67] behavior of
ferromagnetic shape memory Ni–Mn–Ga. The model requires
only seven parameters, which are identified from two simple
experiments: stress–strain plot at zero magnetic field, and
easy-axis and hard-axis magnetization curves. The model
parameter B1 is incorporated to describe the blocked force
behavior. The model is low-order, with up to quadratic terms,
which makes it convenient from the viewpoint of finite element
implementation and incorporation in the structural dynamics
of a system. The model spans three magnetomechanical
characterization spaces, describing the interdependence of
strain, stress, field and magnetization. The model accurately
quantifies the dependent variables over large ranges of the bias
independent variable, which is rarely seen in the literature.
The magnetic Gibbs energy is the thermodynamic potential for
sensing and blocked force models, whereas the Gibbs energy
is the thermodynamic potential for the actuation effect.

Several important characteristics are investigated in
concert with magnetomechanical characterization of single
crystal Ni–Mn–Ga, along with the model predictions. The
flux density sensitivity with strain ( ∂B

∂ε
) varies from 0 to a

maximum value of 4.19 T/%ε at a bias field of 173 kA m−1,
and has a maximum reversible value of 2.38 T/%ε at a bias
field of 368 kA m−1 (figure 9). The stress induced by magnetic
fields has a theoretical maximum value of 2.84 MPa (figure 7).
The maximum field induced strain has a maximum reversible
value of 5.8% at bias stresses of 0.89 and 1.16 MPa, which
are optimum for actuation (figure 15). The initial susceptibility
( ∂M
∂H |H=0) changes by 59% over a range of 4% strain (figure 20)

when the material is mechanically blocked. The maximum
stress generation capacity is 1.47 MPa (over the bias stress)
at 3% strain, which is 37% higher than that at the end values
of blocked strain (figure 21). These parameters provide key
insight into the magnetomechanical coupling of Ni–Mn–Ga.

Although the emphasis of the work is on a specific
material single crystal Ni–Mn–Ga, the developed model can
be applicable to any class of ferromagnetic shape memory
materials. With recent advances in increased blocking
stress [68], FSMAs are a promising new class of multi-
functional smart materials. Modeling polycrystalline behavior
is one of the future opportunities which could be explored
based on the results of this research. Possible future work
could also involve extending the model framework for 3D
cases which will enable design of structures that incorporate
FSMAs. Characterization in 3D involves the development of
test setups capable of applying magnetic fields and mechanical
loading in three directions simultaneously. The interference
between these mechanisms presents a challenge which has not
been addressed thus far. The modeling effort would require
construction of energy terms that include magnetic fields in
multiple directions, along with additional variants oriented
with their long axis in the z-direction. Constitutive 3D models
will also facilitate implementation of finite element analysis of
structures to solve various magnetomechanical boundary value
problems.
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